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ABSTRACT

In neuroimaging and functional Magnetic Resonance Imaging (fMRI), many derived data are made
openly available in public databases. These can be re-used to increase sample sizes in studies and
thus, improve robustness. In fMRI studies, raw data are first preprocessed using a given analysis
pipeline to obtain subject-level contrast maps, that are then combined into a group analysis. Typically,
the subject-level analysis pipeline is identical for all participants. However, derived data shared on
public databases often come from different workflows, which can lead to different results. Here,
we investigate the validity of mega-analyses combining subject-level contrast maps processed with
different pipelines. We use the HCP multi-pipeline dataset, containing contrast maps for N=1,080
participants of the HCP Young-Adult dataset, whose raw data were processed and analysed with 24
different pipelines. We perform between-groups analyses with contrast maps from different pipelines
in each groups and estimated false-positive rates. We show that the analytical variability induced by
the parameters explored in this dataset increases the false positive rates of studies combining data
from different pipelines.

Keywords neuroimaging, analytical variability, pipelines, validity, data re-use

1 Introduction

Over the past few years, concerns have been raised regarding the lack of reproducibility of neuroimaging findings [1, 2, 3].
In particular, the low statistical power of studies was criticised, as effectively leading to low probabilities of identifying
true effects but also to high probabilities of reporting false positive findings in the literature [1]. Researchers proposed
different approaches to increase sample sizes, and thus statistical power, for instance with the development of large-scale
studies [4, 5]. However, acquiring such amount of data is costly and due to the challenge of finding participants, these
studies often contain a few number of data per participant. In functional Magnetic Resonance Imaging (fMRI), a brain
imaging technique in which brain activity is studied under different conditions, these datasets cover a limited subset of
brain functions, limiting the flexibility of research questions to explore. A potential solution to increase sample size
while avoiding these challenges, is to re-use the data already acquired in other studies into meta- or mega-analyses [6].

With the increased adoption of open science practices [7, 8, 9] and the development of dedicated research infrastruc-
tures [10, 11, 12], such as NeuroVault [10], OpenNeuro [11], more and more neuroimaging data from various studies
have been made available to the scientific community. This includes raw data at the subject-level, that can be re-analyzed
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using the same processing steps and combined in a mega-analysis, but also derived data (i.e. already processed) at the
subject or group-level. At the group-level, derived data can be used in meta-analyses to build consensus results across
multiple studies [6], but there are several limitations to this method due to publication bias [13].

At the subject-level, individual contrast maps (after the subject-level processing) from different studies can be combined
using mega-analyses. Their re-use is more optimal compared to raw data, not only because sharing of statistic maps
is easier due to reduced privacy requirements, but also because it avoids having to perform costly re-computations.
Indeed, fMRI studies require multiple processing steps on the data, both at the subject-level (preprocessing of the raw
fMRI data to prepare them for statistical analysis, and first-level analysis for each participant) and at the group-level
(second-level statistical analysis using the subject-level contrast maps resulting from first-level analysis).

However, it is likely that derived data available on public databases come from different pipelines. Moreover, in
some cases, fMRI datasets could be analyzed using adaptable pipelines that apply processing steps on the subject data
depending on which data is available as it is the case for example with fMRIprep [14]. This suggests that derived data
from a single raw dataset could also be obtained through different pipelines.

Multiple studies have shown that different implementations of a processing pipeline can lead to different results in
neuroimaging. These changes can arise from different levels of variations: different software packages [15] or software
packages version [16], different algorithms and processing steps [17, 18, 19], different software environment [20], etc.
In [18], 70 teams analyzed the same task-fMRI dataset, each with their usual pipeline, leading to 70 different analytical
conditions. They found substantial differences in the results obtained across teams, in terms of statistic maps but also
answers to binary hypotheses. This variability resulting from the processing and analysis protocol used on the data is
also known as analytical variability.

The question of whether analytical variability makes it impossible to combine subject data for between-group analyses
in these conditions remains open. Previous studies have focused on how analytical variability affects the reproducibility
of existing results in neuroimaging, by using different pipelines to complete a similar analysis in which the processing
applied on all subject data is the same, and comparing the results obtained across pipelines using different processing
pipelines. In addition, dedicated frameworks for optimizing the choice of pipelines have been proposed based on an
estimation of reproducibility performance [21, 22]. Notably, solutions to use different subject-level processing pipelines
have been suggested in this context [23].

Here, we explore the validity of these mega-analyses that combine data processed differently at the subject-level. We
carry out a series of between-groups analyses, with each group corresponding to subject-level contrast maps processed
with different pipelines and randomly sampled from the Human Connectome Project (HCP) Young Adult dataset [5].
Since participants in each groups are sampled from the same population, all differences detected are therefore false
positives offering an empirical estimation of the false positive rate.

2 Material and Methods

The goal of this study is to test the validity of between-group analyses using subject-level contrast maps processed with
different pipelines. In the following sections, the term “pipeline” is used to refer to the subject-level pipelines only.

The steps performed in order to estimate this validity are presented in Figure 1. First, we randomly sampled subject-level
contrast maps processed through different pipelines from the HCP multi-pipeline dataset [24] (see section 2.1). Then,
for each pair of pipelines, we performed a between-group analysis (see section 2.2). This group comparison was
repeated 1,000 times in order to estimate the empirical false positive rate (see section 2.3).

All the scripts used to perform the study (group-level analysis and false positive rate estimation) are available on
Software Heritage [25]: swh:1:snp:585d3a0a3388a928ab3c6211c1826702aa618190.

2.1 HCP multi-pipeline

This study was performed using derived data from the HCP Young Adult [5]. Written informed consent was obtained
from participants and the original study was approved by the Washington University Institutional Review Board. We
agreed to the HCP Young Adult Open Access Data Use Terms available at: [26].

Subject-level contrast and statistic maps from 1,080 subjects of the HCP Young Adult S1200 release [5] for the motor
task were obtained with 24 different pipelines. In brief, the pipelines implemented in the dataset varied on the following
set of parameters:

• Software package: SPM (Statistical Parametric Mapping, RRID: SCR_007037) [27] or FSL (FMRIB Software
Library, RRID: SCR_002823) [28].
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Figure 1: Overview of the method: 1) sampling of n=50 subject-level contrast maps for each group (i.e. one group =
one pipeline) from the HCP multi-pipeline dataset [24], 2) between-group analysis “Group 1 ̸= Group 2”, 3) running
1,000 iterations of 1) and 2), and 4) estimation of the false positive rate.

• Smoothing kernel: Full-Width at Half-Maximum (FWHM) of 5 mm or 8 mm.

• Number of motion regressors included in the General Linear Model (GLM) for the first-level analysis: 0, 6
(3 rotations, 3 translations) or 24 (3 rotations, 3 translations + 6 derivatives and the 12 corresponding squares).

• Presence (1) or absence (0) of the derivatives of the Hemodynamic Response Function (HRF) in the first-level
GLM. The temporal derivative was added in FSL and both the temporal and dispersion derivatives in SPM.

In total, this led to 24 different subject-level pipelines (2 software packages × 2 smoothing kernels × 3 numbers of
motion regressors × 2 HRF). Together those contrast and statistic maps are referred to as the HCP multi-pipeline
dataset. More details about the analysis and its implementation can be found in [24].

2.2 Between-group analyses

In this study, we explored the validity of between-group studies with subject-level contrast maps from different pipelines
in three settings: within-pipeline (baseline), within-software (i.e. pipeline implemented in the same software package
with different parameters) and between-software (i.e. pipeline implemented in different software packages with similar
parameters).
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2.2.1 Contrast post-processing

As FSL and SPM use different MNI templates [29], subject-level contrast maps from different software packages had
different dimensions. To compute between-software comparisons, we therefore had to post-process the contrast maps to
put them in the same target space and at the same resolution. We used Nilearn [30] (RRID: SCR_001362) to resample
all subject-level contrast maps to the MNI152Asym2009 brain template with a 2 mm resolution using continuous
interpolation. We masked the contrast maps using the intersection of all subject-level brain masks (all pipelines).

FSL and SPM contrast maps are also scaled differently (see [31]). In both software packages, contrast maps are
theoretically expressed in percent BOLD change but there are important differences in how this percent BOLD change
is computed that effectively lead to scaling differences. Hence, in SPM, contrast maps units are closer to 2.5 times
percent BOLD change due to the mask used to compute the global in-brain mean intensity. On the other hand, FSL
contrast maps are scaled to 10,000 (i.e. 100 times percent BOLD change). We applied a factor to each contrast map to
make them closer to percent BOLD change. Contrast maps in SPM and FSL were therefore rescaled by multiplying by
100/250 = 0.4 and 100/10, 000 = 0.01 respectively.

All between-group analyses were performed on resampled, masked and re-scaled subject-level contrast maps. As a
sanity check, we also ran the between-group same-pipeline analyses on the original (i.e. not resampled, masked nor
unit-re-scaled) subject-level contrast maps. As expected, no differences were identified in the estimated false positive
rate (see Supplementary Table 1).

2.2.2 Analysis setup

For each between-group analysis, we randomly sampled 100 participants without replacement among the full set of
1,080 participants and splitted them into two groups (N = 50 in each group). In each group, subject-level contrast
maps were obtained with a different pipeline. This process was repeated for different groups and pairs of pipelines.
We performed a one-tailed two-sample t-test with unequal variance and computed the statistic maps associated to H0:
“no mean difference of activation between groups”. We used a voxelwise p < 0.05 FWE-corrected threshold. All
between-group analyses were performed in SPM in order to keep consistent second-level analysis conditions.

2.3 False Positive Rates Estimation

For a given pair of pipelines, the between-group analysis was repeated 1,000 times with different set of participants.
Since participants in each group were sampled from the same population, H0 is true by construction. All differences
detected were therefore false positives and the empirical false positive rate was estimated as the proportion of between-
group analyses, across the repetitions, with at least one significant detection (see Figure 1).

Since the null hypothesis is true, we expect the p values associated with the between-group statistic maps to be uniformly
distributed, and in particular, the empirical false positive rate is expected to be equal to the α-level (here 0.05). A
higher rate highlights invalidity (i.e. an inflated rate of false positive) and a lower rate conservativeness (i.e. reduced
sensitivity).

2.4 Statistical distributions and P-P plots

P-P plots are usually used to observe how a given set of statistical values diverge from an expected distribution by
plotting, for each kth ordered statistical value, the expected associated p value on the x-axis and the obtained p value on
the y-axis. Here, under the null hypothesis, p values were expected to follow a uniform distribution U(0, 1). Thus, for a
set of N statistical values, the kth ordered p value was expected to be equal to k/(N + 1).

We used a Bland-Altman [32] variant of P-P plots by replacing the p values by the following:

• on the x-axis: the expected p value in −log10

• on the y-axis: the difference between the −log10 obtained and the −log10 expected p values.

This update made it easier to observe the behaviour in the tails of the p value distribution (which is of interest here).
High statistical values (right tail of our sample) are associated to low p values, i.e. to high −log10 p values. We also
looked at the distributions of the statistical values for multiple between-group analyses, and compared with a Student
distribution T98.
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3 Results

3.1 Analyses using the same pipeline (baseline)

Table 1 shows the false positive rates obtained for all analyses with the same pipeline in both groups, separately for
SPM and FSL. For all combinations, the false positive rates were below the expected value of 0.05, ranging between
0.012 and 0.028 for SPM and between 0.013 and 0.024 for FSL.

SPM
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.012 0.013 0.016 0.023
6 motion regressors 0.015 0.006 0.024 0.013

24 motion regressors 0.023 0.016 0.025 0.028

FSL
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.014 0.013 0.015 0.023
6 motion regressors 0.018 0.014 0.018 0.018

24 motion regressors 0.015 0.013 0.016 0.024

Table 1: False positive rates for between-groups analyses with the same pipeline in both groups, with SPM and FSL and
for all possible sets of parameters (number of motion regressors, smoothing kernel FWHM and presence or absence of
HRF temporal derivatives). The false positive rates were always under 0.05.

These results, obtained with the same pipeline in both groups, are used as a baseline in the following. False positive
rates obtained with original contrast maps (non resampled, masked and corrected) were similar to these ones (see
Supplementary Table 1).

3.2 Analyses using pipelines with different parameters

The following subsections present the results obtained with pipelines using different set of parameters (within software).
In each case, we looked at the false positive rates (Figure 2), the statistical distributions (Supplementary Figures 4
and 5) and the associated P-P plots (Figure 3, Figure 4 and Supplementary Figures 1 and 3). To present the results,
we chose a default value for each studied parameter – smoothing 5 mm FWHM, HRF with derivatives and 24 motion
regressors – and compared our results to those obtained with the default.

3.2.1 Different HRF

Adding derivatives to model the HRF was the most impacting of all three varying factors in both software packages.
The false positive rates obtained with different HRF (canonical HRF versus HRF with derivatives) in the pipelines are
presented in Figure 2 A and C (red curves) for the six analyses performed (i.e. with varying levels of smoothing and
number of motion regressors – with the same setting in both pipelines).

In SPM, the comparison canonical HRF > HRF with derivatives (Figure 2 A, red curve on the left) showed invalid
false positive rates (above the 0.05 threshold) for all pipeline combinations. Similarly, in FSL, all combinations gave
invalid results for this same comparison except two combinations: 5 mm or 8 mm smoothing FWHM and 24 motion
regressors. These two analyses led to values close to the 0.05 threshold (0.032 and 0.061 respectively). For the opposite
comparison (i.e. canonical HRF < HRF with derivatives) all combinations resulted in valid results with false positive
rates under 0.05.

Figures 3 and Supplementary Figure 1 show the corresponding Bland-Altman P-P plots for comparisons with different
HRF and otherwise default parameters. In both software packages, consistently with what we observed for the false
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SPM
A. B.

FSL
C. D.

Figure 2: False positive rates for pipelines with different parameters within SPM (A, B) and FSL (C, D). For each
studied parameter (HRF derivatives, smoothing and motion regressors), we provide the false positive rates obtained for:
1/ both tails, i.e. pipeline 1 > pipeline 2 and reverse (crosses) and 2/ for the corresponding analysis in which pipeline 1
and 2 are identical, i.e. the reference (circles). Panels B and D, provides the false positive rates when two parameters
vary. The grey dashed line corresponds to the expected theoretical value (0.05).

positive rates, the comparison canonical HRF > HRF with derivatives led to values that were outside of the 95%
confidence interval (grey area). In SPM, values were further away from the 95% confidence interval than in FSL.

The same observations could be made on the statistical distributions for both SPM and FSL (Supplementary Figures 4
and 5): both showed a shift in mean and variance, but this was smaller for FSL. The combination of pipelines parameters
used in this Figure (i.e. pipelines with 5 mm FWHM and 24 motion regressors, with different HRF derivatives) showed
nearly valid false positive rates, as stated in the previous paragraph (see Figure 2), which could explain why the shift
seemed smaller in FSL compared to SPM. We also observed the P-P plots for a different combination of FSL pipelines
with other parameters (5 mm, 0 motion regressors) in Supplementary Figure 2 and found a similar shift as the one
observed for SPM.

3.2.2 Different smoothing

The false positive rates obtained with different levels of smoothing (5 mm or 8 mm) in the pipelines are presented in
Figure 2 A and C (blue curves) for the six analyses performed (i.e. with varying HRF models and number of motion
regressors – with the same setting in both pipelines).

The false positive rates obtained with different levels of smoothing (5 mm versus 8 mm) in the pipelines were above the
0.05 theoretical false positive rate in FSL (ranging from 0.07 to 0.16) and below or close to the theoretical rate in SPM
(ranging from 0.03 to 0.05). Compared to the baseline analyses using the same pipelines, the false positive rates were
always inflated and were slightly higher for the tail 5 mm > 8 mm.
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Figure 3: Bland-Altman P-P plots for pipelines with different (right column) and same (left column) parameters within
SPM. The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence
interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors
and no HRF derivatives.
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Figure 4: Bland-Altman P-P plots for pipelines with two different (right column) parameters and with the same
(left column) parameters within SPM. The grey shade corresponds to the 0.95 confidence interval. A curve above
(respectively below) the confidence interval indicates invalidity (respectively conservativeness). Default parameters:
5 mm smoothing, 24 motion regressors and no HRF derivatives.

The Bland-Altman P-P plots (Figure 3 and Supplementary Figure 1) are consistent with the observations made on the
false positive rates. Between-group analyses using pipelines with different smoothing gave invalid results in FSL and
values within the 95% confidence interval in SPM, with only a small positive difference in the direction 5 mm > 8 mm.

The behaviors observed on the P-P plots can be explained by the positive shift in mean values and standard deviations
observed on the statistical distribution for 5 mm > 8 mm for FSL (Supplementary Figure 5), which is less pronounced
for SPM (Supplementary Figure 4).

3.2.3 Different number of motion regressors

The false positive rates obtained with different number of motion regressors (0, 6 and 24) in the pipelines are presented
in Figure 2 A and C (yellow and green curves) for the six analyses performed (i.e. with varying levels of smoothing and
different HRF – with the same setting in both pipelines). We studied the combinations 24 motion regressors versus
6 motion regressors (yellow curves) and 24 motion regressors versus 0 motion regressors (green curves).

In SPM, false positive rates were below the 0.05 theoretical rate for all comparisons of 24 motion regressors versus
6 motion regressors. For the comparison with no motion regressors, the false positive rates were higher and above
0.05 for 24 motion regressors > 0 motion regressors and slightly below for the opposite. In FSL, the validity of the
results was dependant on the other pipeline parameters. All combinations led to invalid results (i.e. above the theoretical
0.05 threshold) except for 24 motion regressors > 0/6 motion regressors when using the canonical HRF (i.e. no HRF
derivatives) in both pipelines.

In Section 3.2.1), we showed that all combinations of pipelines with varying HRF models led to invalid results except
those with 5 mm or 8 mm smoothing and 24 motion regressors. Here, we also observe invalid results for all combinations
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of pipelines with 24 motion regressors versus 0/6 motion regressors, except those with 5 mm or 8 mm smoothing and no
HRF derivatives. We can suppose that in FSL, when using 24 motion regressors, the use of HRF derivatives in the GLM
has a low impact on the results and similarly, when using the canonical HRF, using 0, 6 or 24 motion regressors does
not change the results much, and thus has a low impact on the validity of the mega-analyses combining subject-level
data obtained from pipelines with different parameters.

In the Bland-Altman P-P plot for SPM (Figure 3), we observed more extreme values in the P-P plots for the comparisons
“24 motions regressors versus 0 motion regressors” than for those of “24 motions regressors versus 6 motion regressors”,
which is consistent with our observations on false positive rates. The Bland-Altman P-P plot (Supplementary Figure 1)
for FSL with 5 mm smoothing and an HRF with derivatives, the comparison 24 motion regressors versus 0 motion
regressors were consistent with the invalid false positive rates found with such parameters: we found conservative
results for the comparison 24 motion regressors > 0 motion regressors (plain line) and invalid results in the opposite
direction (dashed line).

Statistical distributions (Supplementary Figures 4 and 5) also show a shift in mean and variance for the comparison
“24 motion regressors versus 0 motion regressors”, for both SPM and FSL. This shift is not as important for the
comparison “24 motion regressors versus 6 motion regressors”. The comparison “6 motion regressors versus 0 motion
regressors” was also showed for comparison, and showed similar results as the “24 motion regressors versus 0 motion
regressors” comparison.

3.2.4 Combined effects of parameters

We observed the combined effects of:

• differences in smoothing and in HRF model

• differences in smoothing and in motion regressors

The false positive rates obtained with different smoothing and different HRF model or different motion regressors in the
pipelines are presented in Figure 2 (B and D) for the different analyses performed.

In both SPM and FSL, the first set of between-group analyses (5 mm smoothing, canonical HRF) > (8 mm smoothing,
HRF with derivatives) led to invalid results, with false positive rates largely above the 0.05 theoretical threshold (around
0.60). The opposite test provided valid results.

In SPM, the results for (5 mm smoothing, canonical HRF) > (8 mm smoothing, HRF with derivatives) were close to
those obtained for the analyses with a single varying parameter canonical HRF > HRF with derivatives (from 0.46
to 0.63 in the combined effect analysis and from 0.32 to 0.52 in the exploration of HRF derivatives effect only, see
Figure 2). In the isolated analyses, the effect of changing the smoothing kernel FWHM was not very important in SPM
(“5mm vs 8mm smoothing kernel FWHM”), which might explain why the false positive rates did not increase much in
the combined effect analyses.

Under FSL, the previous analyses on the effect of each of these parameters separately (changing smoothing kernel
FWHM and changing HRF model separately) both gave inflated false positive rates, and their combined effect largely
increased the false positive rates (up to 0.77) compared to the effect of changing the use HRF derivatives alone (up to
0.49).

Similar observations can be made on the P-P plots on Figure 4 and Supplementary Figure 3.

In both SPM and FSL, the second set of analyses (5 mm smoothing, 24 motion regressors) versus (8 mm smoothing,
0 motion regressors), we found invalid results for nearly all combinations. In SPM, false positive rates were only
slightly above the theoretical threshold of 0.05 (0.081 and 0.11), which is consistent with our previous observation:
initially, changing smoothing kernel FWHM and number of motion regressors separately led to false positive rates close
to 0.05, consistently, their combination led to rates that were only slightly invalid.

For both SPM and FSL, we observed shifts in the distributions of statistical values (Supplementary Figures 4 and 5).
These shifts were similar to those obtained for changes in motion regressors only.

3.3 Analyses using pipelines with different software packages

We also explored the ability to use in a same between-group analysis subject-level data obtained with different software
packages (here FSL and SPM). We performed the analyses for all possible combinations SPM versus FSL: 2 smoothing
kernels × 3 numbers of motion regressors × 2 HRF models, corresponding to 12 between-software comparisons –
with the same setting for both SPM and FSL pipelines. The false positive rates are displayed in Figure 5. For all
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Figure 5: False positive rates for pipelines with different software packages. For each pipeline combination, we
provide the false positive rates obtained for: 1/ both tails, i.e. pipeline 1 > pipeline 2 and reverse (crosses) and 2/ for
the corresponding analysis in which pipeline 1 and 2 are identical, i.e. the baseline (circles). The grey dashed line
corresponds to the expected theoretical value (0.05).

Figure 6: Bland-Altman P-P plots for pipelines with different software packages. The grey shade corresponds to the
0.95 confidence interval. A curve above (respectively below) the confidence interval indicates invalidity (respectively
conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.

Figure 7: Distribution of statistical values for between-software analyses, compared to the expected distribution.

10
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between-software analyses, the false positive rates were above 0.05. We obtained lower values for SPM > FSL (between
0.10 to 0.32), than for the opposite test (between 0.56 to 0.95). In all cases, false positive rates were largely increased
compared to the reference analyses (i.e. using the same software in both groups). This observation was consistent with
the P-P plot, which showed a large deviation from the 95% confidence interval for the direction SPM < FSL (Figure 6).
Figure 7 shows the distribution of statistical values for the between-software comparison with all other parameters set
with default values (i.e. 5mm smoothing kernel, 24 motion regressors and no HRF derivatives). We can see a shift in
terms of mean and standard deviation of values. This shift was larger than those observed, for instance, for the effect of
HRF derivatives, which was the most impacting factor on within-software comparisons.

4 Discussions

In this study, we showed that between-group analyses that use data generated by different pipelines can lead to invalidity
(i.e. inflated false positive rates). In almost all cases, combining data processed with different pipelines led to false
positive rates above the theoretical 0.05 threshold. These invalid results, obtained when combining subject-level contrast
maps processed differently, suggest that it is necessary to consider how analytical variability may affect the results when
combining data.

When performing analyses using the same pipeline on all participants’ data (as traditionally done in the literature),
results were valid for all analyses. Although the false positive rates obtained were lower than the expected 5% rate, the
results were similar to those obtained in [33]. The level of smoothing, combined with the thresholding method that we
chose (i.e. voxelwise FWE-corrected based on random field theory in SPM) , may be responsible for these lower false
positive rates [34].

Our results for different pipeline analyses suggest that some factors have a larger impact than others. We saw that for
differences regarding the size of the smoothing kernel and number of motion regressors (6 versus 24 motion regressors)
within SPM software package, results were similar to those obtained with identical pipeline analyses, suggesting that
participant data can be combined without having to consider the differences in pipelines, if this is the only difference.
This is not the case for differences in the use of HRF derivatives and use of motion regressors (0 motion regressors
versus 6 or 24 motion regressors), which gave invalid results.

We also saw that combining multiple differences in parameters could result in bigger effects, depending on the effect of
each parameter alone. The combination of two parameters that both have a high effect on compatibility led in our case
to inflated false positive rates, while the combination of parameters that had a limited effect on validity did not lead
to higher false positive rates (e.g. smoothing and motion regressors in SPM). This suggests that it may be possible to
model the effect caused by specific variations in the subject-level pipelines. To enable this in the future, it is essential
that the pipelines used is shared with enough details to allow a reproduction of the exact processing applied on the data.

However, the ability to model the effect of parameters is limited to specific variations. For example, for each variation of
parameter, we saw different effects across the two software packages under study (SPM and FSL). Overall, observations
were similar, but false positive rates were often increased in FSL compared to SPM for the same comparison. This
suggests that some parameters values are more robust to changes when combined together, here, in FSL, when using 24
motion regressors, combining data with different use of HRF derivatives led to false positive rates closed to the baseline
analysis (i.e. same pipeline in both groups).

The most important source of invalidity was found when studying the effect of differences in software packages. SPM
and FSL both implement similar pipeline steps with different settings. While we tried to align some parameters between
the two software packages by changing the software package default values (e.g. smoothing kernel, type of HRF, etc.),
some steps are specific to each software and cannot be changed by the user, causing potential differences between the
results. We tried to correct some of these differences, in particular for the unit scale of subject-level contrast maps. But,
even with these corrections, we still found highly inflated false positive rates when comparing pipelines with the same
values for the parameters under study and different software packages. We suppose that differences in how software
packages scale the data were not compensated by our simple rescaling approach and that more work will be needed to
be able to combine subject-level data from two different software packages in the same analysis.

In this study, we focused on between-group analyses in which each group of participants was processed with a different
pipeline. In practice, other combinations may be observed, for example with multiple pipelines used within a group.
The setup that we used here – in which processing pipelines varied depending on the group – was justified by the
use-case in which data from various public datasets are used in the same analysis. For example, specific datasets have
been created to study various neurological disorders, usually associated with a minimal processing pipeline dedicated to
the study, and the corresponding minimally processed data (Alzheimer’s Disease Neuroimaging Initiative (ADNI) [35]
for Alzheimer’s disease, Autism Brain Imaging Data Exchange (ABIDE) [36] for autism, etc). Researchers may want
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to use these minimally processed data and compare groups of participants where each group corresponds to a specific
disease.

We chose to study variations induced by 4 types of parameters (software package, HRF, smoothing and number of
motion regressors), within each software package based on their widespread use in the neuroimaging community [37].
Yet, in practice, there are many more variations: researchers might use different software versions, perform or not
specific sub-steps in the analysis (for example, the use or not of slice-timing correction), use different HRF models etc.
Therefore, in real conditions, the differences observed between pipelines will likely be more important. In future works,
other analyses may be done for other varying parameters using the same framework.

Here, we showed that the effects of analytical variability often prevent doing a direct analysis without considering the
differences in processing pipelines. For other sources of variability, methods have been proposed to remove unwanted
variance: for example, correcting the variability resulting from imaging site and scanner effect (technical variability)
in neuroimaging [38, 39]. Recently, deep learning frameworks, and in particular generative models used for style
transfer [40], showed their potential for such task in converting data between different domains (e.g. acquisition site)
[41, 42]. Considering the achievements of these models, there is reason to anticipate their success in transitioning
between other domains, such different analysis pipelines.

5 Conclusion

Our study shows that, in between-group analysis using participant data which have been processed differently, the
validity of the results can be affected. While some parameters did not have significant effects, others produced invalid
results, suggesting that it is impossible to combine processed fMRI data without taking into account differences in
subject-level processing. In further works, we will develop methods to mitigate the effect of analytical variability.

6 Code availability

All analysis pipelines were executed in Python v3.8. The executions require the installation of SPM and FSL software
packages. To facilitate reproducibility, we provide a NeuroDocker image that can be pulled from Dockerhub and
that contains all necessary software packages. The Docker image is available at: https://hub.docker.com/r/
elodiegermani/open_pipeline.

6.1 HCP Multi-pipeline

Python scripts to run the pipelines and create the dataset were made available publicly in the Software Heritage public
archive:swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b [43].

6.2 Between-group analyses, figures and tables

Python and Matlab scripts to run the experiments and to create the figures and tables of this article are available in the
Software Heritage public archive: swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8 [25].

• Programming language: Python3.8, Matlab
• Licence: MIT
• Requirements: multiple Python libraries, available in the Docker container open_pipeline

7 Data availability

This study was performed using derived data from the HCP Young Adult [5], publicly available at ConnectomeDB. Data
usage requires registration and agreement to the HCP Young Adult Open Access Data Use Terms available at: [26].

The HCP multi-pipeline dataset [24] is in the process of being made publicly available on Public-nEUro [44] (we are
currently pending approval from Data Protection Officers at our institute).

8 Ethics

This study was performed using derived data from the HCP Young Adult [5]. No experimental activity involving the
human participants was made by the authors. Only publicly released data were used.
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Written informed consent was obtained from participants and the original study was approved by the Washington
University Institutional Review Board.

We agreed to the HCP Young Adult Open Access Data Use Terms available at: [26].
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Supplementary materials

SPM
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

0 motion regressors 0.014 0.019 0.025 0.019
6 motion regressors 0.013 0.015 0.021 0.025

24 motion regressors 0.021 0.015 0.018 0.019

FSL
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

No motion regressors 0.01 0.013 0.014 0.014
6 motion regressors 0.015 0.017 0.017 0.022

24 motion regressors 0.017 0.02 0.014 0.012

Supplementary Table 1: False positive rates for between-groups analyses using contrast maps without post-processing
with the same pipeline in both groups, with SPM and FSL and for all possible sets of parameters (number of motion
regressors, smoothing kernel FWHM and presence or absence of HRF temporal derivatives).
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Supplementary Figure 1: Bland-Altman P-P plots for pipelines with different (right column) parameters and with the
same (left column) parameters within FSL. The grey shade corresponds to the 0.95 confidence interval. A curve above
(respectively below) the confidence interval indicates invalidity (respectively conservativeness). Default parameters:
5 mm smoothing, 24 motion regressors and no HRF derivatives.
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Supplementary Figure 2: Bland-Altman P-P plots for pipelines with two different (right column) parameters and
with the same (left column) parameters within SPM. The grey shade corresponds to the 0.95 confidence interval. A
curve above (respectively below) the confidence interval indicates invalidity (respectively conservativeness). Default
parameters values were modified to 5 mm smoothing, 0 motion regressors and no HRF derivatives to explore the impact
of fixed parameters on the validity of analyses.

Supplementary Figure 3: Bland-Altman P-P plots for pipelines with two different (right column) parameters and
with the same (left column) parameters within FSL. The grey shade corresponds to the 0.95 confidence interval. A
curve above (respectively below) the confidence interval indicates invalidity (respectively conservativeness). Default
parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.
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Supplementary Figure 4: Distribution of statistical values for multiple between-group analyses under SPM, compared
to the expected distribution. Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.
Pipelines which differ from the default pipeline are put in bold. The orange curve represents the Student distribution
with 98 degrees of freedom, which is the expected distribution in our case under null hypothesis.
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Supplementary Figure 5: Distribution of statistical values for multiple between-group analyses under FSL, compared
to the expected distribution. Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.
Pipelines which differ from the default pipeline are put in bold. The orange curve represents the Student distribution
with 98 degrees of freedom, which is the expected distribution in our case under null hypothesis.
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