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Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder with a poorly
understood physiopathology and no established biomarkers for the diagnosis of early
stages and for prediction of disease progression. Several neuroimaging biomarkers have
been studied recently, but these are susceptible to several sources of variability related
for instance to cohort selection or image analysis. In this context, an evaluation of the
robustness of such biomarkers to variations in the data processing workflow is essential.
This study is part of a larger project investigating the replicability of potential
neuroimaging biomarkers of PD. Here, we attempt to reproduce (re-implementing the
experiments with the same data, same method) and replicate (different data and/or
method) the models described in [1] to predict individual’s PD current state and
progression using demographic, clinical and neuroimaging features (fALFF and ReHo
extracted from resting-state fMRI). We use the Parkinson’s Progression Markers
Initiative dataset (PPMI, ppmi-info.org), as in [1] and aim to reproduce the original
cohort, imaging features and machine learning models as closely as possible using the
information available in the paper and the code. We also investigated methodological
variations in cohort selection, feature extraction pipelines and sets of input features.
Different criteria were used to evaluate the reproduction and compare the reproduced
results with the original ones. Notably, we obtained significantly better than chance
performance using the analysis pipeline closest to that in the original study (R2 > 0),
which is consistent with its findings. Moreover, using derived data provided by the
authors of the original study, we were able to make an exact reproduction and managed
to obtain results that were close to the original ones. The challenges encountered while
reproducing and replicating the original work are likely explained by the complexity of
neuroimaging studies, in particular in clinical settings. We provide recommendations to
further facilitate the reproducibility of such studies in the future.
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Introduction 1

Parkinson’s disease (PD) is the second most common neurodegenerative disorder with 2

more than 10 million people affected in the world. Disease manifestations are 3

heterogeneous and their evolution varies between patients, dividing them in different 4

subtypes and stages [2]. Identification of these stages is essential for clinical trials as 5

well as for clinical practice to track the disease progression. However, there is currently 6

no established biomarker of disease severity or progression [3, 4]. 7

Neuroimaging techniques are able to capture rich and descriptive information about 8

brain structure and functional architecture non-invasively. In conjunction with 9

computational algorithms based on pattern recognition and machine learning, 10

neuroimaging measures began to emerge as candidate PD biomarkers in the past few 11

years. Among other imaging modalities, functional Magnetic Resonance Imaging (fMRI), 12

which estimates the blood oxygenation level-dependent (BOLD) effect to represent 13

neural activity, showed a high potential in identifying specific biomarkers related to PD 14

and its progression [5]. While disease phenotypes are heterogeneous, neuronal 15

dysfunction patterns were shown to be highly replicable between patients. In [6], 16

authors showed that while the location of the dysfunction within brain networks might 17

vary between individuals, the progression of this dysfunction over time, associated with 18

the progression of the disease itself, was shown to be highly similar between individuals. 19

Resting-state fMRI (rs-fMRI) features are particularly promising. Region-wise 20

measurements such as regional homogeneity (ReHo) and Amplitude of Low Frequency 21

Fluctuations (ALFF) were used in multiple studies to predict PD trajectory or motor 22

subtypes [1, 7–11]. ReHo quantifies the connectivity between a voxel and its nearest 23

neighboring voxels and was shown to be affected by neurodegenerative diseases [12]. 24

ALFF and its normalized form, fractional ALFF (fALFF), measure the power of the low 25

frequency signals at rest, which mostly consists in spontaneous neuronal activity [13]. In 26

previous studies, specific regional values of these two measures (e.g. ReHo in the 27

putamen and cerebellum, and fALFF in the right cerebellum) were found to be 28

correlated positively or negatively with MDS-UPDRS scores. These findings have been 29

attributed to the role of several brain networks involving these regions in motor function. 30

However, despite their potential, neuroimaging measures are sensitive to multiple 31

sources of variability that impact their replicability and may explain why the derived 32

biomarkers are not well established in clinical and research practice. In particular, 33

neuroimaging analyses require specific methodological choices at various computational 34

steps, related to the software tools, the method, and the parameters to use. These 35

choices, also known as “researchers’ degrees of freedom” [14], might have a large impact 36

on the results of an experiment as they can impact the predictiveness of the signal 37

extracted and can lead to a lack of agreement when analyzing the same neuroimaging 38

dataset with different analysis pipelines [15,16]. For instance, in task-based fMRI, 70 39

research teams were asked to analyze the same fMRI dataset using their usual analysis 40

pipeline and results were substantially variable across teams [16]. 41

Furthermore, neuroimaging results have been shown to be impacted by differences in 42

hardware architectures or software package versions [17,18], questioning the robustness 43

of the results. This suggests that a single pipeline evaluation is not sufficient to obtain 44

robust results. A poor robustness of the results would question their reliability, since 45

significant results might have been obtained by chance and might actually be false 46

positive findings [19]. This robustness can be assessed by studying the distribution of 47

results across perturbations of the workflow. 48

There are also concerns about the reproducibility of machine learning studies. 49

Indeed, in a recent study [20], researchers attempted to reproduce several machine 50

learning experiments, revealing multiple issues which could lead to the 51

non-reproducibility of findings. These issues can be split in three categories [21]: data 52
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leakage, computational reproducibility, and choice of evaluation metrics. In 53

particular, [22] performed a review of CNN-based classification of Alzheimer’s subtypes 54

and found a potential data leakage in half of the 32 surveyed studies due to a wrong 55

data split at the subject-level, a data split after data augmentation or dimension 56

reduction, transfer learning with models pre-trained on parts of the test set or the 57

absence of an independent test set. Such a data leakage, which we did not notice in our 58

study, might cause an over-optimistic performance assessment of models and thus, a 59

lack of reproducibility and replicability of the findings. Evaluation procedures can also 60

cause the non-reproducibility of findings, due to unsuitable metric choices when using 61

unbalanced datasets for instance or questionable cross-validation procedures, in 62

particular with low sample sizes. Random choices in a training procedure, for instance 63

initial weights or hyper-parameters random selection, which all impact computational 64

reproducibility, might also lead to uncontrolled fluctuations in results when using 65

different random initialization states. 66

Conflicting terminologies exist for the terms reproducibility and replicability [23]. 67

Here, we define reproducibility as attempts made with the same methods and materials. 68

Replicability, on the other hand, is tested with different but comparable materials or 69

methods, assuming that the tested pipelines are all suitable to extract signal from the 70

data. Note that the term comparable is ambiguous, but we define its use in the context 71

of this study in the Method Section. 72

Replicability experiments have shown different degrees of variability between 73

findings obtained with different analytic conditions. These studies are usually done 74

using healthy populations, as in [16]. For clinically-oriented research, i.e. using patient 75

populations, however, the topic remains understudied. Such studies requires a specific 76

attention as they are useful to develop new biomarkers that can influence treatment 77

development and clinical trial applications. These studies also often target specific 78

populations of patients with unique characteristics, in particular for PD for which 79

inter-individual variability is high [24]. Such studies often use small sample sizes, which 80

has been shown to lead to a lower reproducibility and replicability of findings [25,26]. 81

Reproducibility and replicability of studies in clinical settings is of higher importance to 82

improve the trustworthiness of new biomarkers, which is an important factor that would 83

facilitate their development and application in clinical practice.. 84

In this paper, we evaluate the reproducibility and replicability of the study in [1], a 85

clinically-oriented study on a PD population. The study in [1] is of particular interest as 86

it uses the Parkinson’s Progression Markers Initiative (PPMI) dataset [27], a large open 87

access dataset to study Parkinson’s disease. Moreover, it investigates the clinically 88

relevant problem of trying to predict an individual’s current and future disease severity 89

over up to 4 years and it uses two different rs-fMRI-derived biomarkers: ReHo and 90

fALFF. In [1], the authors, including current co-authors KPN and AAM, trained several 91

machine learning models using regional measurements of ReHo or fALFF along with 92

clinical and demographic features to predict Movement Disorder Society-Unified 93

Parkinson’s Disease Rating Scale (MDS-UPDRS) total score at acquisition time and up 94

to 4 years after. They selected n=82 PD patients by searching for all patients available 95

at that time with rs-fMRI and MDS-UPDRS score at the same visit from the PPMI 96

database and preprocessed the functional images to extract whole-brain maps of fALFF 97

and ReHo. They compared three atlases, splitting the brains in different numbers of 98

regions to extract mean region-wise features which are fed to the machine learning 99

models. They achieved better than chance performance for prediction at each time 100

point with both fALFF and ReHo, e.g. r-squared of 0.304 and 0.242 for prediction of 101

current severity with ReHo and fALFF respectively. Finally, the authors discussed the 102

most important brain regions for prediction. Although most studies do not perform 103

external validation, authors of [1] confirmed the predictiveness of their models on an 104
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external dataset, the next largest dataset available at the time: the Parkinson’s Disease 105

Biomarkers Program (PDBP) from NIH. On this dataset, they found reproducible 106

model performance. 107

Different criteria could be used to conclude on success of the reproduction and 108

replication of this study: 1) if the models trained on fALFF and ReHo at each time 109

points showed better than chance performance in terms of r-squared (R2 >0 and R2 110

>chance-model R2) when tested on the PPMI dataset using the evaluation procedure 111

proposed in [1] and 2) if these models showed similar performance (R2 greater than 0 112

and absolute difference between original and reproduction R2 less than 0.15) to those 113

proposed in the original study. Our main interests were to assess the difficulties and 114

challenges of reproducing fMRI research experiments, thus we first tried to reproduce 115

the study without contacting the authors to assess the importance of publicly-shared 116

resources and description given in the paper. After that, we contacted the authors to 117

better understand the failure of our initial reproduction.. But our goal was also to 118

further evaluate the impact of different analytical choices (e.g. processing pipeline, 119

choice of feature set, etc.) on the results of these experiments. In this paper, we explore 120

how these choices affect different parts of the analysis: 121

• Cohort selection and sample size, 122

• fMRI pre-processing pipeline, 123

• fMRI feature quantification, 124

• Choice of input features for machine learning models, 125

• Machine learning models choice and results reporting. 126

A primary purpose of this investigation is also to learn about the difficulties encountered 127

to reproduce neuroimaging studies, in particular in clinical research settings, and to 128

provide some recommendations on best practices to facilitate the reproducibility of such 129

studies in the future. This study is part of a larger effort to explore the reproducibility 130

and robustness of PD biomarkers extracted from neuroimaging data, but this study is 131

the first to explore the robustness of fMRI related biomarkers of PD. 132

Materials and Methods 133

Our study consisted of two steps: 134

• Phase 1: a first reproduction attempt without contacting the authors, using only 135

publicly-shared resources available with the original paper. 136

• Phase 2: a second reproduction attempt after contacting the authors, to obtain 137

more accurate information on the original study. 138

This two-step reproduction was meant to assess the challenges of reproducing a 139

study using only publicly available materials and to evaluate the contribution of data 140

and code sharing platforms to results reproducibility. In Phase 1, since the materials 141

used by the authors in the original study were not all publicly available, we were not 142

able to make a proper reproduction of the study, we will thus refer to the attempts 143

made at this step as “replications”, and to the attempt made after contacting the 144

authors (Phase 2) and using original materials and method as “reproduction”. 145
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Dataset 146

As in the original study, we used data available from the Parkinson’s Progression 147

Markers Initiative (PPMI) dataset [27], a robust open-access database providing a large 148

variety of clinical, imaging data and biologic samples to identify biomarkers of PD 149

progression. The PPMI study was conducted in accordance with the Declaration of 150

Helsinki and the Good Clinical Practice (GCP) guidelines after approval of the local 151

ethics committees of the participating sites. We signed the Data Use Agreement and 152

submitted an online application to access the data. More information about study 153

design, participant recruitment and assessment methods can be found in [27]. We note 154

that access to such data does not permit us to share such data on our own. Moreover, 155

unlike code repositories with version control numbering, most data repositories are not 156

version controlled, making re-retrieval of data years later thorny. 157

Summary of experiments 158

Reproducing an analysis can be challenging due to (1) the lack of specific information 159

on analysis pipelines, software versions, or specific parameter values, (2) the presence of 160

confusing terms in the available information, (3) the evolution of the software and data 161

materials used in the original study. Our study consisted of 5 global steps: cohort 162

selection, image pre-processing, imaging features computation, choice of input features 163

and model choice and reporting. We used the information available in the original paper 164

and for some parts of the analysis, we also had access to the code shared by the authors 165

on GitHub (e.g. for feature computation and machine learning models). Though the 166

authors also made their contact information plainly available, in Phase 1, we wished to 167

work independently of any author contact. Under this scenario, we had to make 168

informed guesses due to the 3 types of challenges stated above, which resulted in a high 169

number of possible workflows. To evaluate the effect of each variation at each step, we 170

defined a default replication workflow to which each variation was compared to. At each 171

step, if a variation of the workflow was tested, the other steps were implemented as in 172

the default one. This default workflow was the most likely according to the code shared 173

along with the paper. Fig 1 summarizes the different variations tested and the default 174

workflow. 175

Cohort selection 176

The cohort reported in [1] was composed of the largest set of PPMI available at the 177

time, and consisted in 82 PD participants with rs-fMRI and MDS-UPDRS scores 178

obtained during the same visit. MDS-UPDRS Part III (motor examination) was 179

conducted when patients were under the effect of PD medication. Of these 82 180

participants, 53 participants also had MDS-UPDRS scores available at Year 1 after 181

imaging, 45 at Year 2, and 33 at Year 4. 182

Replication cohort 183

In Phase 1, we first attempted to exactly reproduce the cohort of [1] using only the 184

information available in the code shared on GitHub and the paper. Based on this 185

information, we filtered the PPMI database using 4 criteria: 186

• Participants belong to the “Parkinson’s disease” cohort, as defined in PPMI. 187

• Participants have an fMRI acquisition and a MDS-UPDRS score, with 188

MDS-UPDRS Part III conducted ON-medication (“PAG NAME” different from 189

“NUPDRS3” in the PPMI score file) computed at the same visit (same visit code 190
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B. 
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pre-processing

C. 
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D. 
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E. 
Model choice 
& reporting

Replication cohort 
(n=102)

Closest-to-original 
cohort (n=82)

Reproduction pipeline 
(AFNI segmentation)

Reproduction pipeline 
(FSL segmentation)

Reproduction pipeline 
(no anatomic priors) fMRIprep pipeline

Z-scoring No Z-scoring ALFF instead of fALFF

All Dominant disease side 
removed

No baseline 
MDS-UPDRS No imaging features Only imaging features 

Report all 
models/parcellations

 Paper’s nested 
cross-validation

Workflow A.1 Default workflow

Workflo
w B.1

Workflow B.2

Workflow B.3

W
orkflow

  C
.1

Workflow C.2

Workflow D.1
Workflow D.2

Workflow D.3
Workflow D.4

 Paper’s best models 
only

Workflow E.1

Workflow E.2

Original cohort (n=82)

Authors derivatives

W
orkflow

  0

Workflow  0

Fig 1. Summary of the different workflows implemented to reproduce and replicate the results of [1] and explore their
robustness to different analytic conditions. Bold and bordered cells represent the implementation of the default replication
workflow at each step, this whole workflow is labeled Default workflow and is represented using a plain bold line. The
different replication workflows (Phase 1) are represented in dashed lines: all steps different from the variation follow the
default workflow and each workflow corresponds to one variation from the default one. The reproduction workflow obtained
with derived data provided by authors of [1] (Phase 2) is represented with a point-style line.

- Workflow 0 - reproduction using authors derivatives.

Replication with variations of cohort selection (A):
- Workflow A.1 - default workflow with replication cohort.

Replication with variations of pre-processing pipeline (B):
- Workflow B.1 - default workflow with FSL segmentation,
- Workflow B.2 - default workflow without structural priors,
- Workflow B.3 - fMRIprep pipeline.

Replication with variations of feature computation (C):
- Workflow C.1 - default workflow with no Z-scoring,
- Workflow C.2 - default workflow with ALFF.

Replication with variations of input features (D):
- Workflow D.1 - default workflow with no dominant disease side,
- Workflow D.2 - default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - default workflow with no imaging features,
- Workflow D.4 - default workflow with only imaging features.

Replication with variations in model choice and reporting (E):
- Workflow E.1 - default workflow with paper’s nested cross-validation,
- Workflow E.2 - default workflow with only paper’s best model reporting.
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in PPMI database). Thus, only participants with valid values for MDS-UPDRS 191

Part III score were included in the cohort. 192

• Participants and visits were also filtered depending on the type of fMRI 193

acquisition. We queried the database with the exact same information as in the S1 194

Table of the original paper (field strength = 3T, scanner manufacturer = Siemens, 195

pulse sequence = 2D EPI, TR = 2400ms, TE = 25ms). 196

• We also filtered the database to keep only participants for which the visit date 197

and archive date of the image was set before January 1st, 2020 (more than a year 198

before the original study publication) since without contacting the authors we had 199

somewhat imprecise information about the date the authors accessed the database. 200

Note that the choice of this date was made to reproduce as closely as possible the 201

condition of the original database filtering, but other filters could have been used. 202

This query involved both fMRI metadata obtained using a utility functions from the 203

Python packages livingpark-utils v0.9.3 and ppmi downloader v0.7.4 and the 204

MDS-UPDRS-III file from the PPMI database. 205

Since the PPMI database does not permit querying the database at any prior time 206

point, we queried the database at the then current time. Specifically, we queried the 207

PPMI database on August 21st, 2023 and we included the participants selected using 208

these filters in the Baseline time point of our replication cohort. To find the 209

participants who also had a score available at Year 1, Year 2, or Year 4 follow-up, we 210

looked for the visit date associated with the MDS-UPDRS score at Baseline and 211

searched for participants that also had a score at 365 days (1 year) +/- 60 days (2 212

months), 2 × 365 days (2 years) +/- 60 days (2 months) and 4 × 365 days (4 years) +/- 213

60 days (2 months). This method was also used by the original authors to search for 214

their cohort at Year 1, Year 2, and Year 4 follow-up. 215

Closest-to-original cohort 216

During Phase 2, after contacting the authors (KPN and AAM), the exact participant 217

and visit list used at Baseline was provided to us. We queried the PPMI database using 218

this list and compared with our replication cohort. 219

The 82 participants of the original Baseline cohort were all included in our 220

replication cohort. For 4 of them, the visit used in our replication cohort was different 221

from the one used in the original cohort. For two participants, we used an earlier visit 222

than the authors: V06 (2 years) instead of V10 (4 years) and BL (baseline) instead of 223

V04 (1 year). For the last two participants that had different visits selected in the 224

replication cohort, images of the visits used by the original authors were not available in 225

the PPMI database when we queried it. We assumed that this issue resulted from the 226

update of the PPMI database in September 2021, and that there is no way to query 227

prior versions of the database, and that the original authors are not allowed to share the 228

original images they obtained when they accessed the database. 229

The 82 participants of the original cohort that were also included in our replication 230

cohort were used to build a “closest-to-original” cohort to compare with the original 231

cohort. The authors also provided the participant identifiers included at Year 1, Year 2 232

and Year 4, but we did not have the exact visit used at these time points. Thus, for 233

each time point, we searched for the participants involved in our replication cohort for 234

this time point that were in the list provided by the authors. Several participants from 235

the list provided by the authors were not found in our cohorts. When checking the 236

UPDRS-III files for these missing participants, we found the potential visit used by the 237

authors, but these did not meet the criteria set to select the valid UPDRS-III scores (i.e. 238

“PAG NAME” was equal to “NUPDRS3” for these visits, but these were discarded when 239
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selecting only ON medication scores). For one participant missing in the Year 2 time 240

point, we have not found any visit 2 years +/- 2 months after the Baseline visit. The 241

visit selected for this participant was different in our cohort compared to the original 242

authors cohort due to missing images, which could explain the reason for not finding 243

back this participant for the Year 2 time point. Table 1 summarizes the cohort selection 244

process. 245

Criterions N

PPMI global query - Baseline 102

Participants belonging to the list provided by the authors at Baseline 82

Participants not belonging to the corresponding session list 4
Original session after the one obtained with PPMI query 2
Image of original session not available anymore in PPMI 2

PPMI global query - Year 1 67

Participants belonging to the list provided by the authors at Year 1 51

Participants not belonging to original list 2
PAG NAME was NUPDRS3 2

PPMI global query - Year 2 61

Participants belonging to the list provided by the authors at Year 2 41

Participants not belonging to original list 4
PAG NAME was NUPDRS3 3
Absence of corresponding score at follow-up time point 1

PPMI global query - Year 4 46

Participants belonging to the list provided by the authors at Year 4 30

Participants not belonging to original list 3
PAG NAME was NUPDRS3 3

Table 1. Summary of cohort selection procedure. PPMI global query corresponds to
the replication cohort, highlighted in blue. Participants belonging to the list provided
by the authors composed the closest-to-original cohort, highlighted in green.

Image pre-processing 246

We downloaded functional images from the PPMI database manually for all participants 247

selected in the replication cohort by using the image identifiers corresponding to the 248

participants and visits selected. We also downloaded T1w images corresponding to the 249
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participants and visits selected in the replication cohort. If multiple T1w images were 250

available for a participant at a given visit, we selected the one with the smallest 251

identifier number (1st one in the meta-data table). Imaging data from the PPMI online 252

database were available in DICOM format. We converted them into the NIfTI format 253

and we reorganized the dataset to follow the Brain Imaging Data Structure (BIDS) [28] 254

(RRID:SCR 016124) using HeuDiConv v0.13.1 [29] (RRID:SCR 017427) on Docker 255

v20.10.16. 256

Default reproduction pipeline 257

In Phase 1, to pre-process the data, we tried to build a pipeline reproducing the one 258

described by the authors in [1] without contacting them for any additional information 259

or code (which has since been provided). The paper mentions that fMRI images were 260

first realigned to the mean volume with affine transformations to correct for 261

inter-volume head motion, using the MCFLIRT tool in the FSL toolbox [30] 262

(RRID:SCR 002823). Then, images were brain-masked using AFNI 3dAutomask [31] 263

(RRID:SCR 005927). Non-linear registration was performed directly to a common EPI 264

template in MNI space using the Symmetric Normalization algorithm in ANTS [32] 265

(RRID:SCR 004757). For denoising, motion-related regressors computed using 266

ICA-AROMA [33] were concatenated with the nuisance regressors from affine head 267

motion parameters computed with MCFLIRT and mean timeseries of white matter and 268

cerebrospinal fluid. These nuisance signals were regressed out of the fMRI data in one 269

step (i.e. all confounds concatenated in a single matrix and regressed from voxels 270

timeseries). 271

Using this information, we built the closest-possible pipeline to this description. 272

More details will be given below regarding the choices that we made to build this 273

pipeline. We implemented this pipeline — referred to as the default workflow — using 274

Nipype v1.8.6 (RRID:SCR 002502) [34], FSL v6.0.6.1, AFNI v23.3.01 and ANTs v2.3.4. 275

We executed the pipeline with a custom-built Docker image available on Dockerhub 276

https://hub.docker.com/repository/docker/elodiegermani/nguyen-etal-2021/ 277

general and built using NeuroDocker [35] with base image fedora:36 and a miniconda 278

v23.5.2-0 [36] environment with Python v3.10. All pre-processing, feature computation 279

and model training were run using homemade Boutiques descriptors using Docker 280

v20.10.16 and Boutiques v0.5.25 [37]. Boutiques descriptors for image processing and 281

model training are available in Zenodo [38,39]. 282

In this default workflow, functional images were first realigned to the middle volume 283

using FSL MCFLIRT, using affine registration (6 degrees of freedom), b-spline 284

interpolation and mutual information cost function. The motion-corrected images were 285

then skull-stripped using AFNI 3dAutomask with default parameters (clip level fraction 286

of 0.5). Following this, ANTs symmetric normalization algorithm was used to normalize 287

images to the MNI template. First, rigid, affine, and symmetric normalization 288

transformations from native to MNI space were computed using the first volume of the 289

brain-extracted functional images as source image and the MNI152NLin6Asym 290

template, with a 2mm resolution as reference. The exact MNI template used for 291

registration was not mentioned in the original paper. The choice of this particular 292

template for our pipeline was due to the use of ICA-AROMA after registration. Indeed, 293

to run ICA-AROMA in the MNI space or without FSL registration transform matrices, 294

images must be in FSL’s default MNI space, which is the MNI152NLin6Asym [40]. We 295

downloaded this EPI template from C-PAC: 296

https://github.com/FCP-INDI/C-PAC/blob/main/CPAC/resources/templates. We 297

applied the computed transformations to functional images using ANTs also with 298

B-Spline non linear registration. 299

For denoising, we regressed out several nuisance signals from the fMRI data, as in 300
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the original study. The 6 affine motion parameters computed using MCFLIRT were 301

used as regressors. In addition, we ran ICA-AROMA v0.4.3-beta on data already 302

registered in MNI space to extract motion-related components. All the components 303

classified as motion-related were added as regressors to each participants. 304

For white-matter (WM) and cerebrospinal fluids (CSF) signals, there was no 305

information about the method used by the authors to compute these signals in the 306

original paper. Thus, we implemented three different methods to build the default 307

workflow but also to compare the impact of pre-processing pipelines on the results of 308

the study. In the default workflow, we arbitrarly chose to use AFNI to compute these 309

regressors. We used the structural T1w images downloaded from PPMI and ran several 310

analysis steps: brain extraction using 3dSkullstrip, segmentation using 3dSeg with 311

defaults parameters, 3dCalc to extract the mask for WM and CSF, 3dResample to 312

resample the masks to the functional image using nearest-neighbors interpolation and 313

3dMaskave to extract timeseries of voxels inside the WM and CSF masks. Then, we 314

computed the mean timeseries across these voxels for WM and CSF and added these 315

signals as nuisance regressors. 316

Variations of the default workflow 317

As mentioned in the previous section, we had to make guesses to build the pipeline for 318

the default workflow. For some of these guesses, other valid alternatives would have 319

been possible. In particular, for the extraction of WM and CSF, which could have been 320

made with another software package and/or method. Thus, we also compared this 321

workflow with two other methods to extract WM and CSF signals. The first method 322

(pipeline B.1 - default workflow with FSL segmentation) used tools from FSL instead of 323

AFNI to extract structural-derived masks. In this pipeline, BET was used to remove 324

non-brain tissues from structural images, then the images were segmented using FAST 325

to extract WM and CSF masks. The masks were resampled to functional images using 326

affine registration implemented in FLIRT, and mean timeseries inside each mask were 327

extracted using FSL’s ImageMeants function in Nipype. 328

The second method (pipeline B.2 - default workflow without structural priors) did 329

not involve image segmentation. We used mask templates available in FSL and Nilearn: 330

MNI152 T1 2mm VentricleMask from FSL for CSF, and WM brain-mask in MNI152 331

template resolution 2mm in Nilearn v0.10.2 [41] (RRID:SCR 001362) for WM. The 332

masks were resampled to the functional images using a nearest neighbors interpolation 333

in Nilearn, and mean timeseries inside each mask were also computed using Nilearn. 334

In all pipelines, the nuisance signals were regressed from the functional images in 335

MNI space using FSL RegFilt. The denoised images were then used to compute the 336

imaging features passed as input to the machine learning models. 337

Other pipelines variations 338

To explore the robustness of the original results to variations in the workflow, we also 339

analyzed the functional and structural images using fMRIprep v23.0.2 [42] 340

(RRID:SCR 016216), a robust pre-processing pipeline that requires minimal user input, 341

and which implements pre-processing steps that are different from the ones used in the 342

default workflow and its variations. This allowed us to see how impactful the changes in 343

image pre-processing pipelines could be in this study. We used default parameters for 344

fMRIprep, except for the reference template that we set to MNI152NLin6Asym with a 345

resolution of 2mm to be able to run ICA-AROMA afterwards [40]. 346

Final preprocessed functional images in MNI space were then passed as input to 347

ICA-AROMA to obtain motion-related components. The 6 motion regressors, WM and 348

CSF mean timeseries extracted by fMRIprep were concatenated to the timeseries of the 349
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motion-related components identified by ICA-AROMA and regressed out from the 350

pre-processed images using FSL RegFilt, as in the default workflow. This pipeline is 351

referred to as B.3 - fmriprep pipeline. 352

Quality control 353

We implemented quality control checks at different steps of each pipeline. The purpose 354

of these controls was to explore quality of data, but we did not exclude any participant 355

due to data low quality, as this step was not performed in the original paper. 356

For each participant, we controlled the quality of functional pre-processing (motion 357

correction, brain masking, and registration to MNI space) by superposing the 358

pre-processed functional volume at each time point to an MNI-space brain mask, and 359

visually inspecting a pre-defined image slice for incorrect registration or masking. We 360

also visually inspected the 6 motion parameters identified during motion correction 361

(rotation and translation in the x, y and z directions). We also computed the frame-wise 362

displacement (FD) of head position as done in [43], calculated as the sum of the 363

absolute volume-to-volume values of the 6 translational and rotational motion 364

parameters converted to displacements on a 50 mm sphere (multiplied by 2 × π × 50). 365

We explored these values using the threshold used in [44] for the lenient strategy: 366

identification of participants with mean FD > 0.55mm. Segmentations masks for WM 367

and CSF obtained with the 2 different workflow variations were also visually inspected 368

for failed segmentations. For the fMRIprep pipeline, we validated the quality of the 369

processing using the log files produced by the pipeline, since these produce the same 370

outputs as the quality control steps mentioned above. 371

Imaging features computation 372

Whole-brain maps computation 373

In the original study, mean regional values of z-scored fALFF and ReHo maps were used 374

as input features to the machine learning models, in addition to several clinical and 375

demographic features. fALFF and ReHo were computed on the denoised fMRI data 376

using C-PAC [45] (RRID:SCR 000862). Voxel-wise ReHo was computed using Kendall’s 377

coefficient of concordance between each voxel and its 27-voxel neighborhood. For ALFF 378

and fALFF, linear de-trending and band-pass filtering were first applied to each voxel at 379

0.01–0.1 Hz, then the standard deviation of the signal was computed to obtain ALFF 380

whole-brain maps. These maps were divided by the standard deviation of the unfiltered 381

signal to obtain whole-brain fALFF maps. Z-scores maps for ReHo and fALFF were 382

calculated at the participant-level. 383

For each workflow, we used the original code used by the authors, available at 384

https://github.com/DeepLearningForPrecisionHealthLab/Parkinson-Severit 385

y-rsfMRI/blob/master/ppmiutils/rsfmri.py. We followed the exact same steps as 386

in the original paper to compute the raw ReHo and fALFF maps. However, a mask file 387

was needed in the authors’ code to compute the features. We thus applied AFNI 388

3dAutomask on the denoised fMRI data to obtain a brain mask for each participant. 389

The initial code shared by the authors did not include any z-scoring of the 390

whole-brain maps for fALFF and ReHo, thus we used FSL’s ImageMaths function to 391

compute the z-score maps. Non z-scored maps (C.1 - default workflow with no Z-scoring) 392

were also saved and set as input to the models for comparison. We also considered 393

ALFF instead of fALFF as input measure (C.2 - default workflow with ALFF ) as the 394

authors also mentioned having tested this feature. We note that for the second step of 395

the experiment (i.e. after a reproduction attempt using only publicly-available materials, 396

by contacting the authors), the authors of [1] have supplied us with all derived maps. 397
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Regional features extraction 398

In the original paper, regional features were extracted from the ReHo and fALFF 399

whole-brain maps using three different parcellations. These included the 100-ROI 400

Schaefer [46] functional brain parcellation, modified with an additional 35 striatal and 401

cerebellar ROIs, and the 197-ROI and 444-ROI versions of the Bootstrap Analysis of 402

Stable Clusters (BASC) atlas [47]. These parcellations were used to compute the mean 403

regional ReHo or fALFF values for each participant and performance of the machine 404

learning models were compared between the parcellations. For our first attempts at 405

re-implementing the workflow, we did not have access to the modified version of the 406

Schaefer atlas used by the original authors. Thus, we derived a similar custom atlas by 407

using the 100-ROI Schaefer atlas available in Nilearn, the probabilistic cerebellar atlas 408

available in FSL, from [48], and the Oxford-GSK-Imanova connectivity striatal atlas 409

from [49], also available in FSL. The cerebellar and striatal atlases were respectively 410

composed of 28 and 7 ROIs, which was consistent with the 35 ROIs mentioned in the 411

original paper. We merged the ROIs from the Schaefer, cerebellar and striatal atlas in 412

this order to build a custom 135-ROI atlas which we used to extract regional features. 413

The three atlases were resampled to the whole-brain ReHo and fALFF maps using 414

Nilearn and a nearest-neighbor interpolation, as done by the authors. Mean regional 415

values for each imaging feature and parcellation were also extracted using Nilearn. 416

We obtained from the authors the custom atlas used in the original analyses. We 417

found some slight differences between the cerebellar and striatal regions in the two 418

atlases, e.g. in terms of size of the regions or division in subregions. We compared the 419

mean regional values for the corresponding regions in the two atlases using paired 420

two-sample t-tests. Among the 82 participants at baseline, 19 had significantly different 421

values at p < 0.05 for fALFF and none at p < 0.01. Considering these small differences, 422

we decided to report the results only using our atlas. Comparison of the two atlases is 423

available in Supplementary Fig 1. 424

Input features 425

Clinical and demographic features 426

In addition to imaging features, to better mirror clinical practices, the authors 427

endeavored to integrated several clinical and demographic features as additional inputs 428

to the machine-learning models. Clinical features included disease duration, symptom 429

duration, dominant symptom side, Geriatric Depression Scale (GDS), Montreal 430

Cognitive Assessment (MoCA), and presence of tremor, rigidity, or postural instability 431

at Baseline. Baseline MDS-UPDRS score was also included as a feature when training 432

models to predict outcomes at Year 1, Year 2, and Year 4. Demographic features 433

included age, sex, ethnicity, race, handedness, and years of education. 434

We searched for the mentioned input features using the study files in the PPMI 435

database, as done by the authors (see https://github.com/DeepLearningForPrecis 436

ionHealthLab/Parkinson-Severity-rsfMRI/blob/master/ppmiutils/dataset.py). 437

For each feature, we searched for the corresponding columns in the study files and used 438

the same character encoding method as the authors. The different features used and the 439

methods to search and encode them for input to the models are shown in 440

Supplementary Table 1. 441

To evaluate the robustness of the findings to different analytical conditions, we also 442

compared the results obtained with different sets of features. In workflow D.4 - default 443

workflow with only imaging features, we trained models using only imaging features 444

(regional measures of fALFF and ReHo), i.e., without clinical or demographic features. 445

In workflow D.3 - default workflow with no imaging features, we removed imaging 446
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features and trained models only on clinical and demographic features. Following an 447

update of the PPMI database, the feature for dominant disease side was deprecated and 448

only available as an archive file in the version of the database we had access to. We 449

included the feature in the default workflow and removed it in another replication 450

workflow, to assess the impact of this feature (D.1 - default workflow with no dominant 451

disease side). We did not contact the authors for the values of these features that they 452

had downloaded, though they did factor prominently into their results, in order to 453

better understand the relevance of the database update. 454

For models trained to predict MDS-UPDRS scores at Year 1, Year 2, and Year 4, 455

Baseline MDS-UPDRS score was included as feature. However, due to the potential 456

large effect of including this variable on the results, we trained a model with all features 457

except this one and compared the performance of prediction models with and without 458

the feature (D.2 - default workflow with no Baseline MDS-UPDRS ). 459

Outcome measurement 460

In [1], the authors used the above-mentioned imaging, clinical, and demographic 461

features to predict MDS-UPDRS total scores. The MDS-UPDRS score consists of 4 462

parts with 51 items, each item values from 0 to 5. To compute the total scores, we 463

summed the values of the 4 different parts available in PPMI study files. We used: 464

MDS-UPDRS part Ia entered by a rater (PPMI column “NP1RTOT”), part Ib for the 465

patient questionnaire (column “NP1PTOT”), part II (“NP2TOT”), part III 466

(“NP3TOT”) and part IV (“NP4TOT”). Missing values in “NP4TOT” columns were 467

replaced with zeros, as done by the authors. There were no participants with missing 468

values for the other parts of the score. 469

Model selection and performance evaluation 470

We trained and optimized separate machine learning models to predict MDS-UPDRS 471

scores from either ReHo or fALFF features, along with clinical and demographic 472

features. Four machine learning models architectures were implemented using the latest 473

version of scikit-learn at the time of this experiment, v1.3.0 [41], and were tested for 474

each target-imaging feature (fALFF or ReHo) combination: ElasticNet regression, 475

Support Vector Machine (SVM) with a linear kernel, Random Forest with a decision 476

tree kernel, and Gradient Boosting with a decision tree kernel. We recognize that this 477

version of scikit-learn is likely newer than that used by the authors in 2022 and that we 478

could download a prior version of scikit-learn, but did not because we wish to evaluate 479

the relevancy of machine learning source code update. Each parcellation was also 480

implemented, which resulted in 12 different combinations of model and parcellation per 481

imaging feature and time point. All models were trained using our newer version of 482

scikit-learn, we used the set of hyperparameters available in the authors code to train 483

and optimize the models. 484

For hyperparameter optimization (1) and performance estimation (2), the authors 485

used a nested cross-validation scheme, i.e., each model architecture × hyperparameter 486

× parcellation combination was evaluated using (1) a 10-fold cross-validation inner-loop 487

applied to the n-1 participants in the cohort and from which the combination with the 488

lowest root mean squared error (RMSE) was selected, (2) a leave-one-out (LOO) 489

cross-validation outer-loop where each iteration trained the selected model on all the 490

participants in the cohort except one, and tested the model on the remaining held-out 491

participant. To evaluate the impact of the evaluation pipeline on the results, we 492

implemented a different nested cross-validation loop for model selection and evaluation 493

for the default workflow. Fig 2 illustrates the different methods implemented. We 494

evaluated the performance of each combination of model × parcellation separately: the 495
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10-fold cross-validation inner-loop was used to select the set of hyperparameters (e.g. 496

maximum tree depth for Random Forests) with the lowest RMSE, this set was used to 497

train a model on all except one participants in the outer-loop and we tested the model 498

on the held-out participant. Thus, we obtained performance estimates for each model × 499

parcellation combination. 500

Outer-loop
Leave-One-Out

Inner-loop
10-fold 

1

2
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4
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8

9

10
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Training set
Testing set 
(held-out participant)
Validation set

Selection of best 
hyper-parameters 

for each model x parcellation
(Default workflow)

Selection of best parcellation 
x model x hyper-parameters

(Workflow E.1)

Selection of best 
hyper-parameters only for 

paper’s best model x 
parcellation

(Workflow E.2) 

Mean RMSE across 10-folds

Train selected model Evaluate performance on 
held-out participant

Fig 2. Workflow of model selection and performance evaluation. This workflow
represents one iteration of the outer-loop with Leave-One-Out cross-validation and is
iterated over all the dataset to estimate mean performance.

We also reported results obtained using the exact nested cross-validation scheme 501

explained in the paper (E.1 - Workflow with paper’s nested cross-validation), i.e., the 502

performance on each outer-fold is assessed with the best model × hyperparameter × 503

parcellation combination found on the 10-fold cross-validation of the inner-loop and 504

averaged across outer-folds. Finally, as authors reported only the best performing model 505

and parcellation for each imaging feature type and time point, we also reported the 506

results we would have obtained had we only used the best model and parcellation 507

reported in the paper (E.2 - Workflow with only paper’s best model reporting). 508

Evaluation metrics 509

As in the original paper, performance metrics included the coefficient of determination 510

(R2), which represents the percentage of variance explained by the model, and the root 511

mean squared error (RMSE), which represent the root mean squared difference between 512

true and predicted values, as implemented in scikit-learn. 513

We defined a null performance to compare our R2 values to using permutation test. 514

We fixed the model and parcellation scheme with ElasticNet and Schaefer atlas. This 515

model and parcellation scheme were chosen as these were the most identified as best 516

performing models across all time points and features in the original study [1]. We ran 517

1,000 permutations on the target labels and obtained performance for each feature and 518

time point. At each permutation, we performed a nested cross-validation with 5-folds 519

cross-validation as inner-loop and outer-loop. We optimized the hyper-parameter set of 520
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the model as done with the “real” models in the inner-loop and evaluated performance 521

on the outer-loop. R2 values obtained using the different workflows were compared to 522

this null performance to check if the models did not learn to predict only the average 523

value. 524

We also compared the R2 values obtained with our different workflows with the 525

original ones reported in [1]. We set a threshold of 0.15 to identify the workflows that 526

were leading to important differences with the original ones. This threshold was chosen 527

as it represents the lowest R2 reported across all experiments in the original study [1]. 528

This means that this lowest reported R2 value was different from chance level with a 529

threshold of 0.15. Thus, if we would have a difference higher than 0.15 compared to the 530

original results, it would also mean that we would possibly obtain chance results. 531

Moreover, this threshold was considered sufficiently high for the original authors to say 532

that the model was making good predictions. Thus, we kept this threshold to compare 533

the performance of our models with the original ones. 534

To evaluate the models’ ability to classify high versus low severity participants, as it 535

was performed in the original study [1], a threshold was set to separate the participants 536

and each model’s predictions were thresholded post-hoc. This threshold was computed 537

by using the average of the median MDS-UPDRS score at each of the four time points. 538

In [1], the threshold was 35. We computed this threshold the same way for the 539

replication cohort and for the closest-to-original cohort. We obtained a value of 36 for 540

the replication cohort and 35 for the closest-to-original one. Authors also mentioned 541

having found no significant difference (p >0.05) between the high and low-severity 542

groups in motor predominance (Part III score as a percentage of total score) at each 543

time point. With our thresholds, we ran two sample t-tests between high and low 544

severity groups in the two cohort and did not find any significant difference with 545

α = 0.05 either in any cohort or time point. Performance metrics for this secondary 546

classification outcome included area under the receiver operating characteristic curve 547

(AUC), positive predictive value (PPV), negative predictive value (NPV), specificity, 548

and sensitivity. 549

Authors derivatives 550

At the second step of the study (Phase 2), authors shared with us the derived data used 551

in the original study (i.e. whole-brain fALFF and ReHo maps for the original cohort). 552

We applied the input features selection (clinical and demographics) and machine 553

learning model training and selection to these data and computed the results for the 554

Workflow 0. While we could also have asked the authors for their original image 555

processing pipeline, the retrieval of the exact version of the pipeline and software 556

packages is challenging. The direct use of derived data allowed us to verify the 557

reproduction of these steps and to get more information on the potential factors of 558

variations in the results (e.g., suppressing differences in cohort selection and imaging 559

processing, while retaining some potential differences in the version of scikit-learn). 560

Feature importance 561

As in [1], we measured feature importance in the models trained for each time point and 562

imaging feature (fALFF or ReHo). For the ElasticNet and SVM models, we used the 563

coefficients of the trained models to determine feature importance, since coefficients of 564

higher magnitude indicate more important features in these two models. The sign of the 565

coefficient was indicative of whether the feature was positively or negatively associated 566

with the prediction target. For Random Forest and Gradient Boosting models, we used 567

impurity-based feature importance coupled with univariate linear correlation to 568
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determine the direction of the association. Feature importance was computed on each 569

iteration of the outer-loop and the median importance was reported for each feature. 570

To name the imaging features, we used the same method as the authors of [1]: the 571

centroid of each feature’s ROI was computed, if the feature was located in a ROI of the 572

Automated Anatomical Labeling (AAL) atlas [50], this label was allocated to the ROI. 573

If not, we searched for the nearest ROI of the AAL atlas. Authors also sent us their 574

ROI labels. However, since we decided to use the reproduced Schaefer atlas, we used the 575

reproduced labels in the figures for consistency. 576

Results 577

Cohort selection 578

Using the method described above, we built two cohorts from the PPMI database: the 579

replication cohort and the closest-to-original cohort. 580

Table 2 shows the demographics and Baseline clinical characteristics of the 581

replication and closest-to-original cohorts compared to the original cohort reported in [1]. 582

The replication cohort was composed of respectively 102, 67, 61 and 46 participants for 583

time points Baseline, Year 1, Year 2, and Year 4. The closest-to-original cohorts at the 584

same time points were composed of respectively 82, 51, 41 and 30 participants. 585

Compared to the original cohort, our replication cohort showed similar demographics 586

characteristics at each time point, except at Year 4 where our replication cohort showed 587

a higher age on average than in the original cohort (66.2 ± 10.1 years compared to 59.5 588

± 11.0). Regarding clinical variables, mean MoCA score, GDS total score and 589

Hoehn-Yahr stage were similar between the two cohorts at all time points. However, we 590

found higher mean disease durations in the replication cohort than in the original one at 591

all time points, for instance at Baseline with (866.9 days ± 598.7 days) in replication vs 592

(770 days ± 565 days) in original. We also observed lower baseline mean MDS-UPDRS 593

scores in the replication cohort for all time points except Baseline, in particular for Year 594

2 with a mean baseline score of 35.2 ± 16.1 compared to 40.2 ± 18.2 in the original 595

cohort. For the two time points Year 2 and Year 4 where we mostly found differences, 596

even if mean Baseline scores in the replication cohort differed from the original ones, 597

mean MDS-UPDRS scores at prediction time point were more similar to the original 598

one. At Year 4, however, we also found a higher mean MDS-UPDRS score at prediction 599

time point (30.7 ± 13.9) than in the original cohort. 600

The closest-to-original cohort exhibited almost the same characteristics as the 601

original one at Baseline. For subsequent time points, we found some differences, in 602

particular at Year 2 and at Year 4: participants were older in the closest-to-original 603

cohort than in the original study at Year 4 (63.8 ± 11.0 in the closest to original cohort 604

compared to 62.1 ± 9.8 in the original), Baseline mean MDS-UPDRS score was lower 605

for Year 2 (40.2 ± 18.2 in original, 35.2 ± 16.1 in closest-to-original) and Year 4 (34.9 ± 606

15.7 in original, 26.1 ± 11.4 in closest-to-original) and mean MDS-UPDRS score at 607

prediction time point was similar to the original cohort except at Year 4. 608

For time points Year 1, Year 2, and Year 4, we were not able to find all the 609

participants that were included in the original cohort: the patients included in our 610

closest-to-original cohorts represented respectively 96% (Year 1), 91% (Year 2) and 91% 611

(Year 4) of the patients included in the original cohort. However, only represented 76% 612

(Year 1), 67% (Year 2), and 65% (Year 4) of the replication cohort was composed of 613

patients of the original cohort. 614

Fig 3 compares the distribution of MDS-UPDRS scores in our two cohorts with the 615

one in the original cohort reported in Fig S1 in [1]. Distributions of MDS-UPDRS 616

scores at Baseline were similar between our two cohorts but seemed different from the 617
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Baseline Year 1 Year 2 Year 4

Orig. Repro. Closest Orig. Repro. Closest Orig. Repro. Closest Orig. Repro. Closest

% Caucasian 95.1 95.1 93.9 94.4 94.0 94.1 97.8 95.1 95.1 97.0 97.8 96.7

% African-American 2.4 2.0 2.4 1.9 1.5 0.0 0 1.6 0.0 0 0.0 0.0

% Asian 3.7 2.9 3.7 5.6 4.5 5.9 4.4 3.3 4.9 3.0 2.2 3.3

% Hispanic 1.2 1.0 0.0 0 1.5 0.0 0 1.6 0.0 0 0.0 0.0

% Male 67.0 66.7 67.1 68.5 65.7 68.6 82.2 80.3 85.4 75.8 67.4 73.3

% right-handed 89.0 89.2 89.0 85.2 85.1 84.3 88.9 90.2 90.2 87.9 84.8 86.7

Mean age, years 62.1 ±
9.8

62.0 ±
9.5

62.1 ±
9.7

61.9 ±
10.3

62.2 ±
9.9

63.0 ±
10.4

63.6 ±
9.2

64.7 ±
9.1

65.9 ±
9.4

59.5 ±
11.0

66.2 ±
10.1

63.8 ±
11.0

Mean years of educa-
tion

15.6 ±
3.0

15.6 ±
2.8

15.7 ±
2.9

15.1 ±
3.2

15.5 ±
2.9

15.4 ±
2.9

15.1 ±
3.3

15.4 ±
2.8

15.5 ±
3.0

15.0 ±
3.4

15.3 ±
3.0

15.2 ±
3.4

Mean disease du-
ration at Baseline,
days

770 ±
565

866.9 ±
598.7

760.3 ±
559.2

808 ±
576

904.1 ±
614.5

808.5 ±
580.0

771 ±
506

867.5 ±
516.3

732.0 ±
462.8

532 ±
346

746.6 ±
624.6

464.6 ±
294.9

Mean MDS-UPDRS
at Baseline

33.9 ±
15.8

34.5 ±
15.6

33.9 ±
16.1

38.0 ±
20.9

33.4 ±
15.1

34.1 ±
15.4

40.2 ±
18.2

35.0 ±
15.1

35.2 ±
16.1

34.9 ±
15.7

30.7 ±
13.9

26.1 ±
11.4

Mean MDS-UPDRS
at timepoint

- - - 39.2 ±
21.6

40.7 ±
24.5

39.9 ±
22.0

40.9 ±
18.5

40.0 ±
18.7

40.7 ±
18.7

35.9 ±
16.5

41.5 ±
19.8

34.2 ±
16.2

Mean MoCA at
Baseline

26.7 ±
2.8

26.5 ±
3.0

26.4 ±
2.8

26.9 ±
3.2

27.0 ±
2.9

26.7 ±
3.1

26.7 ±
3.5

27.0 ±
2.5

26.5 ±
2.4

27.5 ±
2.3

26.8 ±
3.2

27.4 ±
2.6

Mean GDS at Base-
line

5.4 ±
1.4

5.4 ±
1.4

5.4 ±
1.5

5.4 ±
1.6

5.5 ±
1.8

5.5 ±
1.9

5.4 ±
1.2

5.5 ±
1.3

5.6 ±
1.3

5.4 ±
1.7

5.8 ±
1.8

5.6 ±
1.7

Mean Hoehn-Yahr
stage

1.8 ±
0.5

1.7 ±
0.5

1.7 ±
0.5

1.8 ±
0.5

1.8 ±
0.6

1.7 ±
0.5

1.8 ±
0.5

1.9 ±
0.5

1.9 ±
0.5

1.7 ±
0.5

1.9 ±
0.5*

1.8 ±
0.5

Number of subject 82 102 82 53 67 51 45 61 41 33 46 30

Table 2. Demographic and clinical variables for the different cohorts. Orig. = original paper cohort. Repli. = replication cohort. Closest =
closest-to-original cohort. Values are reported in percentages of the cohort or in mean values ± standard deviation. Bold text refers to features for which
a meaningful difference was observed compared to the original cohort.
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original cohort one. The observed difference between the original and closest-to-original 618

distributions might result from the fact that different sessions were used for 4 of the 619

participants in the closest-to-original cohort compared to the original one. At Year 1, 620

however, the closest-to-original cohort presented an MDS-UPDRS score distribution 621

more similar to the original one than the replication one, suggesting that the differences 622

at Baseline did not originate in differences in MDS-UPDRS score calculations. We 623

found no significant difference between the distribution of MDS-UPDRS scores in the 624

replication and closest-to-original cohort neither at Baseline nor at Year 1 using 625

Kolmogorov-Smirnov distribution testing. 626

Image quality control 627

After running all the pre-processing pipelines, we checked the resulting images and 628

looked for potential pipeline failures. Regarding registration, all participants brains 629

were correctly registered to the MNI space after visual inspection. Brain masking was 630

also successful for most of the participants, except for 2 in which we found a small 631

artifact in the inter-hemispheric area. Given the low magnitude of this artefact and its 632

location, we decided to keep these two participants in the study. 633

Most participants of the study showed high movement parameters. Indeed, out of 634

102, 80 showed at least one time point with a frame-wise displacement superior to 635

0.5mm. The mean frame-wise displacements across all time points for each participant 636

are reported in Supplementary Tables. The mean frame-wise displacement across time 637

points and participants was of 0.258. However, since the authors in [1] did not remove 638

high-motion volumes within participants, that removing volumes entirely can disrupt 639

some derived values, and that completely removing participants with high-motion 640

volumes would highly decrease our cohort’s sample size, we chose to keep all 641

participants and all volumes. 642

Regarding segmentation masks, after visual inspection no significant artifact was 643

found for any participants using AFNI segmentation in default workflow. For some 644

participants, small distortions were found in particular close to brain extremities 645

(inter-hemispheric area or close to the skull in occipital and parietal regions). Using FSL 646

segmentation however, we found brain masking issues that had impacts on segmentation 647

quality. We used BET using default parameters to skullstrip images before 648

segmentation and since we chose to explore the impact of different default 649

implementations of pipelines, we did not exclude the segmentations for any participant 650

nor segmentation workflow. 651

With the fMRIprep pipeline, observations were similar regarding movement 652

parameters and registration. There was no large artefact in the segmentation masks. 653

Performance of the default workflow 654

The first objective of this study was to re-implement the models described in [1] and to 655

compare their performance with the one in the original study. In the default workflow, 656

we implemented the default choices described in Fig 1: closest-to-original cohort, image 657

pre-processing pipeline with AFNI segmentation, z-scoring of whole-brain fALFF and 658

ReHo maps, use of all demographic, clinical and imaging features described in the 659

original paper, and the model selection method derived from the authors’ code. 660

We trained 12 models per time point (Baseline, Year 1, Year 2, Year 4) and imaging 661

feature (fALFF or ReHo), corresponding to 4 machine learning models × 3 brain 662

parcellations. We reported for each imaging feature and time point the performance of 663

the 12 models in Table 3. 664

Chance levels were computed using permutation tests as described in the Evaluation 665

metrics section. We obtained R2 values that represented the chance prediction 666
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Fig 3. Distribution of MDS-UPDRS scores reported in the original paper’s cohort (top:
Fig S1 extracted from [1]), the replication cohort (middle) and the closest-to-original
cohort (bottom).

performance at different time point for fALFF and ReHo. These values are also 667

presented in Table 3. 668

Using the default workflow, we obtained prediction scores different but relatively 669

consistent with the results of [1], for all models × parcellation combination. At Baseline, 670

our best model performed better than chance and we obtained a R2 value close to the 671

one reported in the original paper with the best model. However, the best-performing 672

models were different from those reported in the original study: instead of Schaefer 673

atlas and Gradient Boosting for both fALFF and ReHo features, we found for fALFF 674

the Gradient Boosting Regressor with BASC197 atlas, with R2=0.205 (original 675

R2=0.242) and ElasticNet and Schaefer for ReHo with R2=0.124 (original R2=0.304). 676

At Year 1, the performance of our models was better than reported in the original 677

study, with an increase of the R2 of 0.16 and 0.08 for fALFF and ReHo respectively. For 678

other time points (Year 2 and Year 4), results were slightly different from those reported 679

in [1] but overall consistent. These differences were not constant between ReHo and 680

fALFF at Year 2, but were similar at Year 4: for fALFF, we obtained higher R2 scores 681

than in the original study at Year 2 and at Year 4 (0.529 and 0.397 compared to 0.463 682

and 0.152 in the original paper); for ReHo, we obtained lower R2 scores than in the 683

original ones at Year 2 (0.344 instead of 0.471) and higher R2 scores at Year 4 (0.312 684

compared to 0.255 in the original study). For these two time points, the mean 685

MDS-UPDRS scores at Baseline were significantly different between the original cohort 686
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and our closest-to-original cohort, which might explain these differences in performance. 687

In this context, the results observed remained similar in terms of effect size and 688

replication remained satisfactory. 689

At each time point, the best model x parcellation combination performed better 690

than chance-level. Some of the combinations led to very low performance, for instance 691

SVM with Schaefer atlas at Year 2. At every time point and with every feature (except 692

at Year 1 with fALFF), at least one combination gave a performance lower than chance. 693

Authors derivatives 694

In Fig 4, we can see that using authors derivatives and thus, the original cohort, we 695

achieve performance that are very close to the original ones, except at Year 4 for which 696

performances are higher. This informs us on the quality of the reproduction of the 697

clinical and demographic features selection, but also on the machine learning models 698

training and selection. 699

Robustness to workflow variations 700

We assessed the performance of the different models for each time point and feature for 701

different variations of the default workflow (which itself, corresponds to a replication of 702

the original workflow) (Fig 4). 703

Workflow A.2, in which we trained the different models on the replication cohort 704

instead of the closest-to-original one, showed only small differences in R2 values with the 705

default workflow, except for fALFF at Year 1 and ReHo at Year 4. Indeed, performance 706

was slightly lower at Year 1 for fALFF and higher at Year 4 for ReHo, with raw effect 707

size above 0.15. At Year 1, the replication cohort was composed of 16 more participants 708

than the closest-to-original cohort and exhibited a lower mean MDS-UPDRS score at 709

Baseline compared to the original cohort. At Year 4, we also found differences in term 710

of sample size, age of participants and Baseline MDS-UPDRS score between the 711

replication cohort, the original one and the closest-to-original one. These differences 712

might explain the variations between performance of models, even if R2 values remained 713

better-than-chance for Year 1 and close to other performance obtained with different 714

variations. Best performance of workflow A.2 remained better than chance-level. 715

Performance of models trained with variations in pre-processing pipeline (workflows 716

B.1, B.2 and B.3 ) was similar to those of the default workflow, with R2 absolute 717

difference with the default workflow below 0.15 except at Year 4 with fALFF in which 718

the B.2 workflow (no structural segmentation) led to lower R2 values and at baseline 719

with fMRIprep pipeline (B.3 workflow). For these, the best performance achieved was 720

better than chance. 721

Regarding the impact of feature computation variations (workflows C.1 and C.2 ), we 722

found better performance at Baseline for workflows C.2 - default workflow with ALFF 723

in which the best model × parcellation combination led to a better R2 value than the 724

one reported in the original study (0.325 vs 0.242 in the original paper). We also 725

observed this phenomenon with the C.1 workflow in which we used non z-scored ReHo 726

maps: we found a higher performance than the one obtained with the default workflow 727

and reported in the original study (R2 = 0.374). For these two variations, R2 728

differences with default remained lower than 0.1. At Year 1 and Year 4 with fALFF 729

however, the use of ALFF instead of fALFF (workflow C.2 ) led to lower performance 730

(R2 mean absolute difference above 0.15). This observation was not found at Year 2. 731

For Year 1 and Year 2 predictions, the set of input features (workflows D.) had a 732

large impact on the performance of these models. In particular, models trained without 733

Baseline MDS-UPDRS score (D.2) and with only imaging features (D.4) showed lower 734

R2 values for fALFF and for ReHo at Year 1 and Year 2 (R2 absolute difference above 735
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Time Feature Type ElasticNet SVM GradientBoosting RandomForest

schaefer basc197 basc444 schaefer basc197 basc444 schaefer basc197 basc444 schaefer basc197 basc444

Baseline fALFF Orig. 0.242

Repli. 0.04 -0.035 -0.045 -0.718 -0.241 -0.182 -0.039 0.205 0.061 -0.024 0.068 0.02

Null -0.041

ReHo Orig. 0.304

Repli. 0.124 0.057 0.117 -0.3 -0.4 -0.152 -0.102 0.028 0.027 0.024 0.022 0.099

Null -0.036

Year 1 fALFF Orig. 0.558

Repli. 0.453 0.717 0.5 0.519 0.216 0.185 0.622 0.575 0.506 0.369 0.499 0.444

Null -0.079

ReHo Orig. 0.453

Repli. 0.535 0.434 0.512 0.04 -0.094 -0.01 0.36 0.261 0.289 0.442 0.392 0.393

Null -0.077

Year 2 fALFF Orig. 0.463

Repli. 0.529 0.277 0.285 -0.031 0.108 -0.413 -0.19 0.08 0.01 0.138 0.206 0.09

Null -0.101

ReHo Orig. 0.471

Repli. 0.344 0.191 0.287 -0.915 -0.741 -0.051 -0.03 0.001 -0.033 0.267 0.121 0.251

Null -0.094

Year 4 fALFF Orig. 0.152

Repli. 0.397 0.115 0.351 0.196 -0.134 -0.296 0.08 0.411 -0.355 0.079 0.338 0.01

Null -0.129

ReHo Orig. 0.255

Repli. 0.072 0.09 -0.175 -0.12 -0.23 -0.139 -0.017 0.312 0.041 -0.007 0.02 0.0

Null -0.141

Table 3. Predictive performance achieved for each MDS-UPDRS time point and each imaging feature type, computed through leave-one-out
cross-validation using the default workflow (“Repli.”). Metric: R2, coefficient of determination. Green text corresponds to original performance reported
in [1]; Blue text corresponds to best performance achieved using the default workflow; Red text corresponds to chance level computed using permutation
test.
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0.2), which suggests that Baseline MDS-UPDRS played a central role in the prediction 736

of MDS-UPDRS at follow-up visits compared to imaging features. It also explains why 737

variations in the extraction of imaging features (pre-processing or computation) only 738

had a lower impact on the performance for these two time points. 739

Overall, at Year 1 and Year 2, performance seemed to be driven mostly by clinical 740

and demographic features, in particular by MDS-UPDRS Baseline scores. At Baseline 741

and Year 4, other variations related to image features (pre-processing and feature 742

computation) were associated with larger changes in performance. For all workflows, 743

time points and feature, best performing model x parcellation combination always 744

exhibited better than chance performance. 745

Model choice and performance reporting 746

Table 4 compares the results obtained using different model selection and evaluation 747

methods. Using the nested cross-validation described in the paper (Workflow E.1 ), we 748

obtained lower results than the original ones and than the ones obtained with our best 749

models for all time points (for instance, R2 = 0.049vs0.205 with our best model for 750

prediction with fALFF at Baseline). Using this method, the models at Year 1 and Year 751

2 were still well performing compared to other time point, for both ReHo and fALFF, 752

with particularly high R2 values (between around 0.4 and 0.6) obtained using any 753

reporting method. 754

Results computed using the same model and parcellation as the best performing 755

combinations in the original paper (Table 2 from [1]) (Workflow E.2 ) also had lower 756

performance than in the original study, for all time points (e.g. R = −0.102 for 757

prediction with ReHo at Baseline). However, as observed for nested cross-validation, the 758

performance obtained with these models at Year 1 and Year 2 was still high and close to 759

the ones obtained with our best models. We speculate that the effect size detected with 760

models at these time points was large and thus, tended to be more reproducible across 761

optimization schemes. 762

In [1], authors also report the model’s ability to classify high- versus low-future 763

severity subjects. The performance obtained for this task was consistent with the 764

observation made on R2 values: models with high performance in terms of R2 were 765

usually good at distinguishing high and low severity patients (e.g., AUC of 0.805 and 766

0.767 for prediction at Year 1 with respectively fALFF and ReHo using the default 767

workflow). 768

Feature importance 769

To further explore the reproducibility and replicability of findings in [1], we measured 770

feature importance for the ReHo and fALFF imaging features and the default workflow, 771

across all time points. Fig 5 and 6 compare the feature importances obtained with the 772

default workflow to the ones reported in the original study. 773

Feature importance showed relatively few overlap between the ones obtained using 774

our default workflow and those reported in the original study, especially for imaging 775

features, at all time points. Note that the same mask Schaefer atlas that was used by [1] 776

was not used here. For instance, for fALFF at Baseline, the left postcentral region was 777

identified as the most important feature for prediction in our study and was not 778

identified in the original study. For ReHo, we found no important imaging feature that 779

was similar to the ones detected in the original study. However, for some brain regions 780

for which an imaging feature was identified as an important feature, hemispheric 781

opposites or sub-parts of the same global regions were identified in our models 782

compared to the original detected features. For instance, the middle cingulum was 783

identified in our Baseline model with ReHo but in the left hemisphere instead of the 784
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Time point Feature Type R2 RMSE AUC PPV NPV Spec. Sens.

Baseline fALFF Original 0.242 14.006 0.668 60.0% 74.0% 75.5% 58.1%

Default 0.205 14.26 0.584 51.7% 66.0% 71.4% 45.5%

Workflow E.1 0.049 15.6 0.514 42.3% 60.7% 69.4% 33.3%

Workflow E.2 -0.039 16.31 0.493 39.4% 59.2% 59.2% 39.4%

ReHo Original 0.304 13.415 0.674 59.4% 75.0% 73.5% 61.3%

Default 0.124 14.98 0.716 63.9% 78.3% 73.5% 69.7%

Workflow E.1 -0.164 17.26 0.528 43.8% 62.0% 63.3% 42.4%

Workflow E.2 -0.102 16.8 0.493 39.3% 59.3% 65.3% 33.3%

Year 1 fALFF Original 0.558 14.256 0.753 70.4% 80.0% 71.4% 79.2%

Default 0.717 11.6 0.805 75.9% 86.4% 73.1% 88.0%

Workflow E.1 0.569 14.3 0.786 73.3% 85.7% 69.2% 88.0%

Workflow E.2 0.453 16.11 0.69 62.9% 81.2% 50.0% 88.0%

ReHo Original 0.453 15.861 0.753 70.4% 80.0% 71.4% 79.2%

Default 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%

Workflow E.1 0.483 15.67 0.726 70.4% 75.0% 69.2% 76.0%

Workflow E.2 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%

Year 2 fALFF Original 0.463 13.426 0.765 78.6% 76.5% 68.4% 84.6%

Default 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%

Workflow E.1 0.478 13.35 0.669 69.2% 66.7% 55.6% 78.3%

Workflow E.2 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%

ReHo Original 0.471 13.322 0.739 75.9% 75.0% 63.2% 84.6%

Default 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%

Workflow E.1 0.272 15.76 0.607 63.3% 63.6% 38.9% 82.6%

Workflow E.2 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%

Year 4 fALFF Original 0.152 14.957 0.636 64.7% 62.5% 62.5% 64.7%

Default 0.411 12.19 0.833 91.7% 77.8% 93.3% 73.3%

Workflow E.1 0.242 13.83 0.733 73.3% 73.3% 73.3% 73.3%

Workflow E.2 -0.134 16.92 0.633 66.7% 61.1% 73.3% 53.3%

ReHo Original 0.255 14.015 0.699 73.3% 66.7% 75.0% 64.7%

Default 0.312 13.18 0.667 72.7% 63.2% 80.0% 53.3%

Workflow E.1 -0.044 16.23 0.567 60.0% 55.0% 73.3% 40.0%

Workflow E.2 -0.23 17.62 0.6 63.6% 57.9% 73.3% 46.7%

Table 4. Performance reported using different model selection and evaluation methods. “Original” is the performance
reported in the Original study [1]. “Default” is the performance obtained with the model × parcellation that obtained
the best performance with our default workflow. “Workflow E.1” is the performance obtained when using the nested
cross-validation scheme described in the paper (i.e. optimizing model × parcellation in the inner fold). “Workflow E.2”
is the performance obtained with the model and parcellation reported in the paper.
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right one in the original paper. For this model, regions of the frontal cortex were also 785

detected as important in the original paper, but those we found were very close or were 786

part of the same lobe/region (e.g. frontal supero-orbital and middle in original, frontal 787

inferior in ours). Regions identified for fALFF and ReHo were also different at Baseline, 788

consistently with the findings of [1]. 789

For other time points, the main feature of importance was the Baseline 790

MDS-UPDRS score for both fALFF and ReHo and other features had a lower 791

importance value, in particular at Year 1 and at Year 2. This observation was also 792

supported by the performance of models that did not include the Baseline 793

MDS-UPDRS score in their feature set: these models showed lower performance at 794

these two time points compared to the default models (p < 0.01). Note that, as shown 795

in Fig 6 and 5, similar R2 is attained, though through different sets of features. 796

Discussion 797

Summary 798

We investigated the reproducibility and replicability of the predictive models of PD 799

progression described in [1]. Using the default workflow, i.e., with a cohort closest to the 800

one described in [1] and a workflow with the fewer possible variations from the original 801

one, the performance of our best models was better than chance (R2 > 0). For both 802

ReHo and fALFF, we found lower performance than the one reported in the original 803

study at Baseline with our default workflow. The performance were higher than in the 804

original study at Year 1, Year 2 and Year 4. These values remained close to those 805

reported in the original study and performance were better than chance, supporting the 806

predicting capability of the model reported in the original paper. Thus, using a cohort 807

and methods adapted from [1], we were able to train several machine learning models 808

that predicted Parkinson’s disease progression (MDS-UPDRS scores at Baseline, Year 1, 809

Year 2, and Year 4) with a performance higher than chance and with values comparable 810

to those reported in the original study for most models. On these criteria, we could 811

conclude that the replication of the default workflow was successful. 812

When training the models using a workflow reproducing the authors 813

publicly-available code and the derived data computed by the authors at the time of the 814

original study (fALFF and ReHo whole-brain maps provided at Phase 2), and thus, 815

making a true reproduction, we found close performance to the original ones, except at 816

Year 4 with fALFF, where the default workflow found higher predictability. This 817

confirms the quality of the workflow reproduction for the clinical and demographics 818

feature selection and for the machine learning part. Note that, since we used clinical 819

and demographic features available in the PPMI database at the time of this study 820

when training models with derived data, the difference of selected session in each cohort 821

(in particular at Year 4) might also explain the higher predictability observed at that 822

time point during Phase 2 when traning models with derived data. Other factors such 823

as differences in scikit-learn version or differences in cross-validation schemes and 824

hyperparameter selections might have impacted the results of Phase 2 experiments. 825

Differences in performance with our default workflow could be explained by 826

variations in the pre-processing and imaging features computation pipelines. These 827

could also be explained by differences between cohorts since we had difficulties to 828

exactly reproduce the cohort filtering process of the original study: i.e. our 829

reproduction cohort contains, at baseline, 4 participants with different sessions than the 830

original ones, which also impacts follow-up time points cohorts, and potentially the 831

performance of the models. These differences could be related to the evolution of the 832

PPMI database in which sessions were added and removed since the authors queried it 833
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Fig 4. Performance of models trained for prediction at each time point, using fALFF or ReHo, with variations in the
workflow. Boxes represent the performance (R2 values) of the 12 models (4 models × 3 parcellations). Green horizontal
dashed lines show the R2 value reported in the original study for the corresponding time point and feature. Red horizontal
dashed lines show the chance-level computed using permutation test. Raw effect sizes (d) are computed as absolute
difference between the mean R2 performance with default workflow and mean R2 performance with other variations. Only
large differences (above threshold d = 0.15) are reported.
- Workflow 0 - reproduction using authors derivatives.
- Workflow A.1 - variation of the default workflow with replication cohort.
- Workflow B.1 - variation of the default workflow with FSL segmentation,
- Workflow B.2 - variation of the default workflow without structural priors,
- Workflow B.3 - variation of the fMRIprep pipeline.
- Workflow C.1 - variation of the default workflow with no Z-scoring,
- Workflow C.2 - variation of the default workflow with ALFF.
- Workflow D.1 - variation of the default workflow with no dominant disease side,
- Workflow D.2 - variation of the default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - variation of the default workflow with no imaging features,
- Workflow D.4 - variation of the default workflow with only imaging features.
- Workflow E.1 - variation of the default workflow with paper’s nested cross-validation,
- Workflow E.2 - variation of the default workflow with only paper’s best model reporting.
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Fig 5. Predictive features learned by the best performing models to predict MDS-UPDRS score at each time point for the
original study (left - extracted from [1]) and the default workflow (right) using ReHo. Features with low importance were
not shown. Red bars indicate a positive association and blue bars indicate a negative association. Stars (*) represent the
presence of this feature in the original study and the default workflow.
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Fig 6. Predictive features learned by the best performing models to predict MDS-UPDRS score at each time point for the
original study (left - extracted from [1]) and the default workflow (right) using fALFF. Features with low importance were
not shown. Red bars indicate a positive association and blue bars indicate a negative association. Stars (*) represent the
presence of this feature in the original study and the default workflow.
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for the original study. 834

In addition, using our default workflow, we found feature importance values that 835

differed —for some predictions— from the ones found by the authors. This is entirely 836

plausible for multivariate machine learning models, and does not preclude the other set 837

of features from not also being useful (e.g. if default gets 0.717, it could be that the 838

features from original are still informative of outcome). This step was complex to 839

replicate since our best performing model x parcellation combination did not match the 840

ones reported in the original paper at several time points, which questions the 841

comparability of the features. When fitting a machine learning model, similar 842

performance can be achieved by different sets of features, which explains why feature 843

importance values might be inconsistent across models. 844

When introducing specific variations in the workflow, we managed to obtain results 845

that were more similar to the original ones than our default ones, in particular when 846

changing the feature computation method at Baseline. Some changes in the default 847

workflow also led to lower performance, for instance at Year 1 and at Year 2 when 848

removing Baseline MDS-UPDRS score or when using only imaging features. For these 849

time points in particular, variations of the pre-processing pipeline (workflows B.), 850

feature computation (workflows C.) and model choice and reporting (workflows E.) had 851

little impact on the performance of the models compared to other time points. We 852

speculate that imaging features were of low importance in the models prediction for 853

these time points compared to other time points (Baseline and Year 4) for which 854

variations on image computation (pre-processing or feature) had a larger impact. 855

Without variations (i.e. with the default workflow), performance of models at Baseline 856

and Year 4 time points was already low, which also suggests that effect sizes detected by 857

models were small and that these models were underpowered [19,51], making them 858

more sensitive to variations. Discussing the predictiveness of the extracted signals for 859

the target outcomes found in the original study is out of the scope of this study. We 860

focus on evaluating the impact of workflow variations in the prediction performance of 861

the models. 862

In the original study, authors also reported performance of the models evaluated on 863

an external dataset (Table 2 of [1]) and with Leave-One-Site-Out cross-validation 864

(LOSO CV) in the outer-loop compared to Leave-One-Out (LOO CV) in the main 865

study. They found similar performance at Year 1 (R2 over 0.5) with these variations, 866

comparable to the main results in [1] which reported R2 up to 0.558. Performance at 867

other time points was not available for the external validation, but for LOSO CV, 868

models trained for prediction at Year 2 also performed well and those of time point 869

Baseline and Year 4 exhibited lower prediction ability compared to the ones tuned using 870

the LOO CV scheme (main original workflow). This highlights the importance of model 871

selection and performance reporting, which were also featured prominently in [1]. Some 872

models may have not been optimally tuned, and all models do not have equal capability 873

due to their different functioning, leading to lower performance. The low performance 874

obtained with some models do not put into question the other results, as these have 875

been validated on an external dataset by [1]. 876

When using the replication cohort in which there are differences in the distribution 877

of the most important feature (MDS-UPDRS score at Baseline) of the Year 1 model, a 878

lower performance was found using fALFF (p < 0.05) and ReHo. This performance 879

remained high and close to the one reported in the original study. Moreover, when 880

removing specific clinical features such as MDS-UPDRS Baseline scores, the 881

performance models at Year 1 and Year 2 significantly dropped. This suggests that the 882

robustness mentioned above was probably dependant on the distribution of these 883

measures. It would be interesting to assess the interaction of variations in both cohorts, 884

imaging features and input features sets to see if the robustness to analytical variations 885
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was also present using the replication cohorts and when increasing the importance of 886

image features in the prediction. 887

Challenges of reproducibility studies 888

In our reproduction attempts, several challenges were encountered, in particular related 889

to cohort selection, fMRI feature pre-processing, and results reporting. To extract the 890

same Baseline cohort as used in [1], we first attempted to query the PPMI database 891

using the information available in the paper and the code publicly available at the start 892

of the reproduction (i.e. without contacting the authors).. This step was unsuccessful 893

since we could not get the same sample size at Baseline (102 instead of 82 in [1]), and 894

we decided to contact the authors who provided us the exact subject and visit list used 895

in the original study. With this list, we were able to build a cohort with the same 896

participants at Baseline. A potential solution to avoid similar difficulties in future 897

reproducibility studies would be to register cohorts obtained from public databases 898

under the same data usage agreements as the original data. In the case of PPMI, a 899

specific section of the online portal could be created to store cohort definitions and 900

associate them with published manuscripts. 901

Even with the original participant identifiers and visit list at Baseline, we could not 902

retrieve the same Baseline cohort in the PPMI database. Our closest-to-original cohort 903

included the 82 original participants, but for 4 of them, a different visit than the original 904

one was used. For 2 of these visits, we intentionally chose to keep the visits selected by 905

our first query to better fit with the description of the cohort in the paper. For the 2 906

other visits, the functional images corresponding to these participants and visits were 907

not available anymore in the PPMI database. Since the PPMI database continuously 908

adds new participant visits, we chose to keep only the visits that were added more than 909

a year before the original study publication, since the original authors did not report 910

the date at which they queried the database. With this filter, the Baseline participants 911

list and the exact same code used to search for follow-up visits, the cohorts obtained for 912

follow-up visits were still dissimilar to the original ones, with more participants and 913

several noteworthy differences in clinical and demographic variables. A first step to 914

solve this particular issue would be to systematically report the date when databases 915

are queried. However, the issues faced when attempting to reproduce the original cohort 916

in fact highlight the need for version control in public databases, using tools such as 917

DataLad [52] that is for instance adopted in the OpenNeuro database [53]. With version 918

control, we would be able to retrieve the data from the database as it existed on the 919

date of the original query. In addition, authors would be able to cite the exact version 920

of the database used, which would importantly facilitate cohort reproductions. 921

Reproducing the fMRI pre-processing and feature computation pipelines described 922

in [1] also raised challenges. First, although authors provided a description of the 923

different pre-processing steps performed and tools used, exact reproductions of 924

neuroimaging pipelines require more detailed information — including specific 925

parameters values, name and version of the standard template used, software versions — 926

given the overall complexity and flexibility of image analysis methods [54]. To build the 927

closest possible pipeline to the one used in [1] without contacting the authors, we had to 928

make informed guesses about important parameters of the analysis. Some of these 929

choices were conditioned by the nature of the neuroimaging pipelines (e.g., the choice of 930

standard template to register functional images was constrained by the use of 931

ICA-AROMA) while other decisions were more arbitrary and led to multiple valid 932

variations (e.g., the computation of WM and CSF mean time-series for which we 933

applied three different variations with different software packages and methods). 934

Reporting guidelines, such as COBIDAS [55], were developed to help document analyses 935

and facilitate reproduction studies. However, to reproduce complete analyses, sharing 936
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the entirety of the code used in the original experiment remains the most valuable 937

information, as it contains a both human and machine-readable description of the exact 938

method employed. In our case the authors did provide all code and their custom atlas 939

when asked. Code-sharing platforms such as GitHub and GitLab are now widely 940

available for this purpose and long-term preservation of these code is supported by 941

archive systems such as Software Heritage [56,57] or Zenodo. We also note that 942

different journals have different requirements regarding what is to be submitted beyond 943

the manuscript. The original paper [1] was published in P&RD which at the time of 944

publication of [1] had minimal expectations beyond the manuscript. The authors met 945

these requirements and beyond, providing a public code repository. Harmonization of 946

such practice across journal would be highly beneficial to help reproduction of studies. 947

The use of a custom-based atlas to parcellate the brain in the original study also 948

created challenges. Future reproducibility studies would benefit from comprehensive 949

descriptions of the methods used to create such custom data, access to the code to 950

create the data, and sharing of the data itself through platforms such as Zenodo, the 951

Open-Science Framework, Figshare, or NeuroVault [58]. Such platforms could also be 952

used for sharing derived data, for instance whole-brain fALFF and ReHo maps. 953

However, Data Usage Agreements often requires that derived data have to be shared 954

under the same conditions. We emphasize again the need for specific platforms in public 955

databases to host data associated with a published manuscript, including cohort 956

descriptions and derived imaging data. 957

The authors of [1] shared code used in the original study, in particular for feature 958

computation (fALFF and ReHo after pre-processing and clinical/demographic features 959

search in PPMI study files) and machine-learning models training. The availability of 960

this code was extremely useful for our reproducibility study, and we warmly 961

acknowledge the authors for taking the time to share reusable code with their analysis. 962

Despite the availability of the code, we still faced some difficulties to reproduce the 963

workflow presented in the original study, due to discrepancies between the methods 964

reported in the paper and the code shared, especially for the imaging feature 965

computation, the cross-validation procedure and the results reports. For instance, we 966

were not able to retrieve the Z-scoring of whole-brain fALFF and ReHo maps mentioned 967

in the paper. This discrepancy was likely due to the update of the C-PAC pipeline used 968

by the authors for pre-processing, in which the documentation still mentioned the 969

possibility to output Z-scored maps even if this option was not implemented anymore in 970

the pipeline. This reiterate the importance of code versioning and reporting software 971

versions. The use of software container engines such as Docker and Singularity in 972

combination with frameworks such as Boutiques [37] or BIDS-Apps [59] facilitates 973

reproduction and reduces the technical work required to find and install the software 974

versions used in the original study. The authors in [1]report that they have begun using 975

both Singularity/Apptainer and Podman for this exact purpose. For more details on the 976

benefits of such software containerization, we refer the readers to [60] in which authors 977

explains how using these particular frameworks can help reproducibility. 978

Regarding model selection and optimization, we highlight the complexity of nested 979

cross-validation schemes and the on-going debate on the choice of rigorous 980

cross-validation procedures [21, 61]. Here again, code sharing is required to describe the 981

exact evaluation method used in the original study. At this level in the analysis, Jupyter 982

notebooks [62] are an interesting option to document code and mix it with data, natural 983

text and figures. Initiatives were recently launched to share reproducible Jupyter 984

notebooks, such as NeuroLibre [63], a platform for sharing re-executable preprints. We 985

created a Jupyter notebook for our study, that we made publicly available at 986

https://github.com/elodiegermani/nguyen-etal-2021. 987

The following box highlights the main recommendations that we propose to facilitate 988
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the reproduction of such studies in the future. 989

Recommendations for more reproducible studies
Cohort & Data

• Creation of specific tools to create and store cohort definitions (participant
lists, image IDs, etc.)

• Version control of public databases to be able to access the database as it
was at a specific date, and cite the exact version of the database used in
the paper

• Share the derived data used in your experiments (using adapted platforms
in compliance with regulations wuch as OSF, Figshare, etc.).

Pipeline & Code

• Improve and respect reporting guidelines such as COBIDAS [55]

• Share the entirety of the code on platforms such as GitHub and on platforms
for long-term preservation such as Software Heritage [57] or Zenodo

• Harmonization of code and data sharing practice across journals

• Use of containerization tools or containerized software packages to facilitate
the retrieval of the exact version used in the study

• For more complex code, use Jupyter Notebooks [62] to facilitate the under-
standability of the code.

990

Beyond the limitations related to the challenges of reproducibility, all limitations 991

identified by the authors of [1], including bias of the PPMI cohort towards Caucasian, 992

the use of small sample sizes in particular for prediction at Year 4 and the impact of 993

medication on MDS-UPDRS scores, are also applicable for our study and are further 994

discussed in the original paper [1]. 995

To conclude, we highlighted the challenges associated with the reproduction of 996

neuroimaging studies. We discussed some of the specific difficulties encountered in our 997

study, as well as numerous success in reproduction, and provided some potential 998

solutions to further facilitate this process in the future, in terms of time cost and 999

adequacy of the reproduction. Nevertheless, given the complexity of the data, software 1000

and analyses required in current neuroimaging studies, reproducing the experiments 1001

made in existing papers remains extremely challenging. 1002

Code availability 1003

All the experiments were run using Python 3.10, under a NeuroDocker image available 1004

on Dockerhub at https: 1005

//hub.docker.com/repository/docker/elodiegermani/nguyen-etal-2021. This 1006

Docker image contains all necessary package and software used to perform the analysis: 1007

The code used to run the experiments is available in a public notebook on GitHub, 1008

and archived in the Software Heritage platform: 1009

swh:1:dir:2823c6f1cabae5865aa5ab4d8724e219d5bf2661. 1010

To comply with PPMI’s Data Usage Agreements that prevent users to re-publish 1011

data, the notebook queries and downloads data directly from PPMI. Since PPMI does 1012
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not have a data access API, we developed our own Python interface to PPMI using 1013

Selenium, a widely-supported Python library to automate web browser navigation. 1014

Using this interface, the notebook downloads PPMI study and imaging files to build the 1015

cohorts and train the ML models. The utility functions to download and manipulate 1016

PPMI data are implemented in LivingPark utils, a Python package available on GitHub 1017

(https://github.com/LivingPark-MRI/livingpark-utils). 1018

Data availability 1019

Data used in the preparation of this article were obtained on August 21st, 2023 from 1020

the Parkinson’s Progression Markers Initiative (PPMI) database 1021

(www.ppmi-info.org/access-dataspecimens/download-data), RRID:SCR 006431. 1022

For up-to-date information on the study, visit www.ppmi-info.org. All data used in 1023

this study, as well as a data dictionary, are free and publicly available at the PPMI 1024

website, upon an online application, the signature of the Data User Agreement and of 1025

the publications policies. 1026

The list of participants and derived data used in this study are available upon 1027

request to corresponding authors, upon an online application to the PPMI website, the 1028

signature of the Data User Agreement and of the publication policies. 1029
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Supplementary materials

Supplementary Figure 1. Comparison of original Schaefer atlas used in [1] and
reproduced atlas obtained from three separate atlas available in FSL.
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Study file Feature Columns Encoding

Demographics Race “RAWHITE”, ”HISPLAT”,
“RAINDALS”, ”RABLACK”,
“RAASIAN”, “RAHAWOPI”,
“RANOS”

7 features, encoded as 1 if the participant was considered from this ethnic origin, 0 if
not.

Sex ”SEX” Encoded as 0 if the participant was a woman, 1 if it was a man.

Handedness ”HANDED” 3 features: ”RIGHT HANDED”, ”LEFT HANDED” and ”AMBIDEXTROUS” with
0 or 1 depending on the handedness of the participant.

Social Years of educa-
tion

”EDUCYRS” Float corresponding to the n. of years of education of the participant.

Age Age ”AGE” Float corresponding to the age of the participant.

Parkinson’s
features

Presence of
tremor, rigidity,
or postural
instability at
baseline

“DXTREMOR”, “DXRIGID”,
“DXBRADY”, “DXPOSINS”

4 features encoded as 0 if the participants didn’t have this symptom, 1 if so. Bradyki-
nesia was not mentioned in the paper but was used in the code, so we added this
feature in our model.

Dominant dis-
ease side

”DOMSIDE” “DOMSIDE” feature column was used and split into 3 features: “DOMSIDE LEFT”,
“DOMSIDE RIGHT” and “DOMSIDE BOTH” with 0 or 1 depending on the dominant
side of disease for the participant.

Symptom dura-
tion and disease
duration

”INFODT”, ”SXDT”,
”PDDXDT”

Symptom duration and disease duration: we respectively computed the number of days
between the columns “INFODT” and ”SXDT” and between the columns “INFODT”
and “PDDXDT”. Dates were first converted to “Month-Year” before computing the
number of days between the two dates.

MoCA scores
file

Baseline MoCA
score

”MCATOT” Integer value corresponding to the score of the participant. Missing values were
replaced by the mean value across other participants. This information was not
mentioned in code or paper.

GDS score
file

Baseline GDS to-
tal score

”GDSSATIS”, ”GDSDROPD”,
”GDSEMPTY”, ”GDSBORED”,
”GDSGSPIR”, ”GDSAFRAD”,
”GDSHAPPY”, ”GDSHLPLS”
,”GDSHOME”, ”GDSMEMRY”,
”GDSALIVE”, ”GDSWRTLS”,
”GDSENRGY”, ”GDSHOPLS”,
”GDSBETER”

We computed the total score by summing all the columns containing “GDS” in the
GDS short version study file. Missing values were replaced by the mean value across
other participants.

Supplementary Table 1. Demographics and clinical features set as input for the machine learning models. For baseline MDS-UPDRS scores included
for prediction at 1 year, 2 years and 4 years, see section Outcome measurement.

S
ep

tem
b

er
13

,
2
024

38/39



Experiments Cohort Image preprocessing ALFF/ReHo
computation

Selection
of input
features

Workflow name

Reproduction Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

Z-score All Reproduction pipeline
closest-to-original cohort

Variations of
cohorts

Ours: n=102 Reproduction with
AFNI segmentation

Z-score All Reproduction pipeline
replication cohort

Variations of
image pre-
processing

Closest-to-
paper: n=82

Reproduction with FSL
segmentation

Z-score All Reproduction pipeline
FSL segmentation

Closest-to-
paper: n=82

Reproduction without
anatomic priors

Z-score All Reproduction pipeline
no anatomic priors

Closest-to-
paper: n=82

fMRIprep pipeline Z-score All fMRIprep pipeline

Variations of
image feature
processing

Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

Not z-scored im-
ages

All Reproduction pipeline
no z-score

Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

ALFF instead of
fALFF, Z-score

All Reproduction pipeline
ALFF

Variations of
sets of input
features

Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

Z-score No dominant
disease side

Reproduction pipeline
no domside

Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

Z-score No baseline
UPDRS

Reproduction pipeline
no UPDRS

Closest-to-
paper: n=82

Reproduction with
AFNI segmentation

Z-score Only imaging
features

Reproduction pipeline
only imaging features

Closest-to-
paper: n=82

/ Z-score No imaging
features

No imaging features

Supplementary Table 2. Terminology of the experiments in the current paper. Blue text denotes cohort or analysis
variations that are closest to the original study, green text indicates variations due to unknown information, while red text
indicates variations that are less similar to the original study.
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