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Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder with a poorly under-
stood physiopathology. In clinical practice, challenges are encountered in the diagnosis
of early stages and in the prediction of the disease progression due to the absence of
established biomarkers. Several biomarkers obtained using neuroimaging techniques such
as functional Magnetic Resonance Imaging (fMRI) have been studied recently. However,
the reliability and generalizability of neuroimaging-based measurements are susceptible
to several different sources of variability, including those introduced by different analysis
methods or population sampling. In this context, an evaluation of the robustness of
such biomarkers is essential. This study is part of a larger project investigating the
replicability of potential neuroimaging biomarkers of PD. Here, we attempt to reproduce
(same data, same method) and replicate (different data or method) the models described
in [1] to predict individual’s PD current state and progression using demographic, clinical
and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We
used the Parkinson’s Progression Markers Initiative dataset (PPMI, ppmi-info.org),
as in [1] and tried to reproduce the original cohort, imaging features and machine
learning models as closely as possible using the information available in the paper and
the code. We also investigated methodological variations in cohort selection, feature
extraction pipelines and sets of input features. Using the reproduction workflow, we
managed to obtain better than chance performance for all our models (R2 > 0), but this
performance remained very different from the ones reported in the original study. The
challenges encountered while reproducing and replicating the original work are likely
explained by the complexity of neuroimaging studies, in particular in clinical settings.
We provide recommendations to facilitate the reproducibility of such studies in the
future, for instance with the use of version control tools, standardization of pipelines
and publication of analysis code and derived data.
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Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder with
more than 10 million people affected in the world. Disease manifestations are heteroge-
neous and their evolution varies between patients, dividing them in different subtypes
and stages [2]. Identification of these stages or subtypes is essential for clinical trials as
well as for clinical practice to track the disease progression, however, there is currently
no established biomarker of disease severity or progression [3, 4].

Neuroimaging techniques are able to capture rich and descriptive information about
brain structure and functional architecture non-invasively. In conjunction with compu-
tational algorithms based on pattern recognition and machine learning, neuroimaging
measures began to emerge as candidate PD biomarkers in the past few years. Among
other imaging modalities, functional Magnetic Resonance Imaging (fMRI), which esti-
mates the blood oxygenation level-dependent (BOLD) effect to represent neural activity,
showed a high potential in identifying specific biomarkers related to PD and its progres-
sion [5]. While disease phenotypes are heterogeneous, neuronal dysfunction patterns
were shown to be highly replicable between patients [6].

Resting-state fMRI (rs-fMRI) features are particularly promising. Region-wise mea-
surements such as regional homogeneity (ReHo) and Amplitude of Low Frequency
Fluctuations (ALFF) were used in several studies to predict PD trajectory or motor sub-
types [7, 8, 9, 1, 10, 11]. ReHo quantifies the connectivity between a voxel and its nearest
neighboring voxels and was shown to be affected by neurodegenerative diseases [12].
ALFF and its normalized form, fractional ALFF (fALFF), measure the power of the low
frequency signals at rest, which mostly consists in spontaneous neuronal activity [13].

However, despite their potential, neuroimaging measures are sensitive to multiple
sources of variability that impact their reliability and may explain why the derived
biomarkers are not well established in clinical and research practice. In particular,
neuroimaging analyses require specific methodological choices at various computational
steps, related to the software tools, the method, and the parameters to use. These choices,
also known as “researchers’ degrees of freedom” [14], might have a large impact on the
results of an experiment and sometimes lead to a lack of agreement when analyzing the
same neuroimaging dataset with different analysis pipelines [15, 16]. For instance, in
task-based fMRI, 70 research teams were asked to analyze the same fMRI dataset using
their usual analysis pipeline and results were substantially variable across teams [16].

Furthermore, neuroimaging results have been shown to be impacted by differences in
hardware architectures or software package versions [17, 18]. This suggests that a single
pipeline evaluation is not sufficient to obtain robust results, though the reliability of
results may be increased when studying their distributions across perturbations.

There are also concerns about the reproducibility of machine learning studies. Indeed,
in a recent study [19], researchers attempted to reproduce several machine learning
experiments, revealing multiple issues which could lead to the non-reproducibility of
findings. These issues can be split in three categories [20]: data leakage, computational
reproducibility, and choice of evaluation metrics. In particular, [21] performed a review
of CNN-based classification of Alzheimer’s subtypes and found a potential data leakage
in half of the 32 surveyed studies due to a wrong data split at the subject-level, a data
split after data augmentation or dimension reduction, transfer learning with models
pre-trained on parts of the test set or the absence of an independent test set. These
data leakage might cause an over-optimistic performance assessment of models and thus,
a lack of reproducibility and replicability of the findings. Evaluation procedures can
also cause the non-reproducibility of findings, due to unsuitable metric choices when
using unbalanced datasets for instance or questionable cross-validation procedures, in
particular with low sample sizes. Random choices in a training procedure, for instance
initial weights or hyper-parameters random selection, which all impact computational
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reproducibility, might also lead to uncontrolled fluctuations in results when using different
random initialization states.

Conflicting terminologies exist for the terms reproducibility and replicability [22].
Here, we define reproducibility as attempts made with the same methods and materials.
Replicability, on the other hand, is tested with different but comparable materials or
methods.

Replicability experiments have shown different degrees of variability between findings
obtained with different analytic conditions. These studies are usually done using healthy
populations and in general research practice (as opposed to clinical research), as in [16].
For clinically-oriented research, however, the topic remains understudied. Such studies
requires a specific attention as they are useful to develop new biomarkers that can
influence treatment development and clinical trial applications. These studies also
often target specific populations of patients with unique characteristics, in particular
for PD for which inter-individual variability is high [23]. Such studies often use small
sample sizes, which has been shown to lead to a lower reproducibility of findings [24, 25].
Reproducibility and replicability of studies in clinical settings is of higher importance to
improve the trustworthiness of new biomarkers and to facilitate their development.

In this paper, we evaluate the reproducibility and replicability of the study in [1],
a clinically-oriented research on a PD population. The study in [1] is of particular
interest as it uses the Parkinson’s Progression Markers Initiative (PPMI) dataset [26],
a large open access dataset to study Parkinson’s disease. Moreover, it investigates the
clinically relevant problem of trying to predict an individual’s current and future disease
severity over up to 4 years and it uses two different rs-fMRI-derived biomarkers: ReHo
and fALFF. In [1], the authors trained several machine learning models using regional
measurements of ReHo or fALFF along with clinical and demographic features to predict
Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
total score at acquisition time and up to 4 years after. They selected n=82 PD patients
by searching for those with rs-fMRI and MDS-UPDRS score at the same visit from the
PPMI database and preprocessed the functional images to extract whole-brain maps of
fALFF and ReHo. They compared three atlases, splitting the brains in different numbers
of regions to extract mean region-wise features which are fed to the machine learning
models. They achieved better than chance performance for prediction at each time point
with both fALFF and ReHo, e.g. r-squared of 0.304 and 0.242 for prediction of current
severity with ReHo and fALFF respectively. Finally, the authors discussed the most
important brain regions for prediction and evaluated the performance of their models on
an external dataset.

Different criteria could be used to conclude on success of the reproduction and
replication of this study: 1) if the models trained on fALFF and ReHo at each time
points showed better than chance performance in terms of r-squared (R2 >0 and R2
>chance-model R2) when tested on the PPMI dataset using the evaluation procedure
proposed in [1] and 2) if these models showed similar performance (R2 greater than 0
and absolute difference between original and reproduction R2 less than 0.2) to those
proposed in the original study. Our main interests were to assess the difficulties and
challenges of reproducing fMRI research experiments, but also to evaluate the impact of
different analytical choices on the results of these experiments. In this paper, we explore
how these choices affect different parts of the analysis:

• Cohort selection and sample size,

• fMRI pre-processing pipeline,

• fMRI feature quantification,

• Choice of input features for machine learning models,
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• Machine learning models choice and results reporting.

We also discuss the difficulties encountered to reproduce neuroimaging studies, in
particular in clinical research settings, and we provide some recommendations on how to
facilitate the reproducibility of such studies in the future.

Materials and Methods

Our study consisted of two steps: a first replication attempt without contacting the
authors, using only publicly-shared resources available with the original paper, and
a second replication attempt after contacting the authors, to obtain more accurate
information on the original study. This two-step reproduction was meant to assess the
challenges of reproducing a study using only publicly available materials and to evaluate
the contribution of data and code sharing platforms to results reproducibility.

Dataset

As in the original study, we used data available from the Parkinson’s Progression Markers
Initiative (PPMI) dataset [26], a robust open-access database providing a large variety
of clinical, imaging data and biologic samples to identify biomarkers of PD progression.
The PPMI study was conducted in accordance with the Declaration of Helsinki and the
Good Clinical Practice (GCP) guidelines after approval of the local ethics committees
of the participating sites. We signed the Data User Agreement and submitted an
online application to access the data. More information about study design, participant
recruitment and assessment methods can be found in [26].

Summary of experiments

Reproducing an analysis can be challenging due to (1) the lack of specific information
on analysis pipelines, software versions, or specific parameter values, (2) the presence
of confusing terms in the available information, (3) the evolution of the software and
data materials used in the original study. Our reproduction study consisted of 5 global
steps: cohort selection, image pre-processing, imaging features computation, choice of
input features and model choice and reporting. We used the information available in
the original paper and for some parts of the analysis, we also had access to the code
shared by the authors on GitHub (e.g. for feature computation and machine learning
models). At each step, we still had to make informed guesses due to the 3 types of
challenges stated above, which resulted in a high number of possible workflows. To
evaluate the effect of each variation at each step, we defined a default workflow to which
the variation was compared to. At each step, if a variation of the workflow was tested,
the other steps were implemented as in the default one. This default workflow was the
most likely according to the code shared along with the paper. Figure 1 summarizes
the different variations tested and the default workflow. In the remainder, we compare
the variations in the workflows based on statistical differences on participants features
for cohort selection and on the models performance for other variations using several
statistic tests implemented using scipy v1.11.2 (RRID:SCR 008058) [27].

Cohort selection

The cohort reported in [1] consisted of 82 PD participants with rs-fMRI and MDS-UPDRS
scores obtained during the same visit. MDS-UPDRS Part III (motor examination) was
conducted when patients were under the effect of PD medication. Of these 82 participants,
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Figure 1. Summary of the different workflows implemented to reproduce the results of [1] and explore their robustness to
different analytic conditions. Bold and bordered cells represent the implementation of the default workflow at each step, this
whole workflow is labeled Default workflow and is represented using a plain bold line. The different variation workflows are
represented in dashed lines: all steps different from the variation follow the default workflow and each workflow corresponds
to one variation from the default one.

Variations of cohort selection (A):
- Workflow A.1 - default workflow with replication cohort.

Variations of pre-processing pipeline (B):
- Workflow B.1 - default workflow with FSL segmentation,
- Workflow B.2 - default workflow without structural priors,
- Workflow B.3 - fMRIprep pipeline.

Variations of feature computation (C):
- Workflow C.1 - default workflow with no Z-scoring,
- Workflow C.2 - default workflow with ALFF.

Variations of input features (D):
- Workflow D.1 - default workflow with no dominant disease side,
- Workflow D.2 - default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - default workflow with no imaging features,
- Workflow D.4 - default workflow with only imaging features.

Variations in model choice and reporting (E):
- Workflow E.1 - default workflow with paper’s nested cross-validation,
- Workflow E.2 - default workflow with only paper’s best model reporting.
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53 participants also had MDS-UPDRS scores available at Year 1 after imaging, 45 at
Year 2, and 33 at Year 4.

Replication cohort

We first attempted to reproduce the cohort of [1] using only the information available in
the code shared on GitHub and the paper. Based on this information, we filtered the
PPMI database using 4 criteria:

• Participants belong to the “Parkinson’s disease” cohort, as defined in PPMI.

• Participants have an fMRI acquisition and a MDS-UPDRS score, with MDS-
UPDRS Part III conducted ON-medication (“PAG NAME” different from “NUP-
DRS3” in the PPMI score file) computed at the same visit (same visit code in
PPMI database). Thus, only participants with valid values for MDS-UPDRS Part
III score were included in the cohort.

• Participants and visits were also filtered depending on the type of fMRI acquisition.
We queried the database with the exact same information as in the S1 Table of
the original paper (field strength = 3T, scanner manufacturer = Siemens, pulse
sequence = 2D EPI, TR = 2400ms, TE = 25ms).

• We also filtered the database to keep only participants for which the visit date
and archive date of the image was set before January 1st, 2020 (more than a year
before the original study publication) since we had no information about the date
the authors accessed the database.

This query involved both fMRI metadata obtained using a utility functions from
the Python packages livingpark-utils v0.9.3 and ppmi downloader v0.7.4 and the MDS-
UPDRS-III file from the PPMI database.

We queried the PPMI database on August 21st, 2023 and we included the participants
selected using these filters in the Baseline time point of our replication cohort. To find
the participants who also had a score available at Year 1, Year 2, or Year 4 follow-up, we
looked for the visit date associated with the MDS-UPDRS score at Baseline and searched
for participants that also had a score at 365 days (1 year) +/- 60 days (2 months), 2 ×
365 days (2 years) +/- 60 days (2 months) and 4 × 365 days (4 years) +/- 60 days (2
months). This method was also used by the original authors to search for their cohort
at Year 1, Year 2, and Year 4 follow-up.

Closest-to-original cohort

After contacting the authors, the exact participant and visit list used at Baseline was
provided to us. We queried the PPMI database using this list and compared with our
replication cohort.

The 82 participants of the original Baseline cohort were all included in our replication
cohort. For 4 of them, the visit used in our replication cohort was different from the
one used in the original cohort. For two participants, we used an earlier visit than the
authors: V06 (2 years) instead of V10 (4 years) and BL (baseline) instead of V04 (1
year). For the last two participants that had different visits selected in the replication
cohort, images of the visits used by the original authors were not available in the PPMI
database when we queried it. We assumed this issue resulted from the update of the
PPMI database in September 2021.

The 82 participants of the original cohort that were also included in our replication
cohort were used to build a “closest-to-original” cohort to compare with our original
cohort. The authors also provided the participant identifiers included at Year 1, Year 2
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and Year 4, but we did not have the exact visit used at these time points. Thus, for
each time point, we searched for the participants involved in our replication cohort for
this time point that were in the list provided by the authors. Several participants from
the list provided by the authors were not found in our cohorts. When checking the
UPDRS-III files for these missing participants, we found the potential visit used by the
authors, but these did not meet the criteria set to select the valid UPDRS-III scores (i.e.
“PAG NAME” was equal to “NUPDRS3” for these visits, but these were discarded when
selecting only ON medication scores). For one participant missing in the Year 2 time
point, we have not found any visit 2 years +/- 2 months after the Baseline visit. The
visit selected for this participant was different in our cohort compared to the original
authors cohort due to missing images, which could explain the reason for not finding
back this participant for the Year 2 time point. Table 1 summarizes the cohort selection
process.

Criterions N

PPMI global query - Baseline 102

Participants belonging to the list provided by the authors at Baseline 82

Participants not belonging to the corresponding session list 4
Original session after the one obtained with PPMI query 2
Image of original session not available anymore in PPMI 2

PPMI global query - Year 1 67

Participants belonging to the list provided by the authors at Year 1 51

Participants not belonging to original list 2
PAG NAME was NUPDRS3 2

PPMI global query - Year 2 61

Participants belonging to the list provided by the authors at Year 2 41

Participants not belonging to original list 4
PAG NAME was NUPDRS3 3
Absence of corresponding score at follow-up time point 1

PPMI global query - Year 4 46

Participants belonging to the list provided by the authors at Year 4 30

Participants not belonging to original list 3
PAG NAME was NUPDRS3 3

Table 1. Summary of cohort selection procedure. PPMI global query corresponds to
the replication cohort, highlighted in blue. Participants belonging to the list provided
by the authors composed the closest-to-original cohort, highlighted in green.
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Image pre-processing

We downloaded functional images from the PPMI database manually for all participants
selected in the replication cohort by using the image identifiers corresponding to the
participants and visits selected. We also downloaded T1w images corresponding to
the participants and visits selected in the replication cohort. If multiple T1w images
were available for a participant at a given visit, we selected the one with the smallest
identifier number (1st one in the meta-data table). Since imaging data from the PPMI
online database were available in DICOM format, we converted them into the NIfTI
format and we reorganized the dataset to follow the Brain Imaging Data Structure
(BIDS) [28] (RRID:SCR 016124) using HeuDiConv v0.13.1 [29] (RRID:SCR 017427) on
Docker v20.10.16.

Default reproduction pipeline

To pre-process the data, we started by building a pipeline reproducing the one described
by the authors in [1]. The paper mentions that fMRI images were first realigned to the
mean volume with affine transformations to correct for inter-volume head motion, using
the MCFLIRT tool in the FSL toolbox [30] (RRID:SCR 002823). Then, images were
brain-masked using AFNI 3dAutomask [31] (RRID:SCR 005927). Non-linear registration
was performed directly to a common EPI template in MNI space using the Symmetric
Normalization algorithm in ANTS [32] (RRID:SCR 004757). For denoising, motion-
related regressors computed using ICA-AROMA [33] were concatenated with the nuisance
regressors from affine head motion parameters computed with MCFLIRT and mean
timeseries of white matter and cerebrospinal fluid. These nuisance signals were regressed
out of the fMRI data in one step (i.e. all confounds concatenated in a single matrix and
regressed from voxels timeseries).

Using this information, we reproduced the closest-possible pipeline to this description.
We implemented this pipeline — referred to as the default workflow — using Nipype
v1.8.6 (RRID:SCR 002502) [34], FSL v6.0.6.1, AFNI v23.3.01 and ANTs v2.3.4. We
executed the pipeline with a custom-built Docker image available on Dockerhub https://

hub.docker.com/repository/docker/elodiegermani/nguyen-etal-2021/general

and built using NeuroDocker [35] with base image fedora:36 and a miniconda v23.5.2-
0 [36] environment with Python v3.10. All pre-processing, feature computation and
model training were run using custom Boutiques descriptors using Docker v20.10.16 and
Boutiques v0.5.25 [37]. Boutiques descriptors for image processing and model training
are available in Zenodo [38, 39].

In this default reproduction workflow, functional images were first realigned to the
middle volume using FSL MCFLIRT, using affine registration (6 degrees of freedom), b-
spline interpolation and mutual information cost function. The motion-corrected images
were then skull-stripped using AFNI 3dAutomask with default parameters (clip level
fraction of 0.5). Following this, ANTs symmetric normalization algorithm was used to
normalize images to the MNI template. First, rigid, affine, and symmetric normalization
transformations from native to MNI space were computed using the first volume of the
brain-extracted functional images as source image and the MNI152NLin6Asym template,
with a 2mm resolution as reference. The exact MNI template used for registration
was not mentioned in the original paper. The choice of this particular template for
our reproduction was due to the use of ICA-AROMA after registration. Indeed, to
run ICA-AROMA in the MNI space or without FSL registration transform matrices,
images must be in FSL’s default MNI space, which is the MNI152NLin6Asym [40]. We
downloaded this EPI template from C-PAC: https://github.com/FCP-INDI/C-PAC/b
lob/main/CPAC/resources/templates. We applied the computed transformations to
functional images using ANTs also with B-Spline non linear registration.
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For denoising, we regressed out several nuisance signals from the fMRI data, as in the
original study. The 6 affine motion parameters computed using MCFLIRT were used
as regressors. In addition, we ran ICA-AROMA v0.4.3-beta on data already registered
in MNI space to extract motion-related components. All the components classified as
motion-related were added as regressors to each participants.

For white-matter (WM) and cerebrospinal fluids (CSF) signals, the original paper
did not contain any information about the method used by the authors to compute these
signals. Thus, we implemented three different methods to try to reproduce the original
workflow but also to compare the impact of pre-processing pipelines on the performance
of the machine learning models and thus, the results of the study. In the default
workflow, we chose to use AFNI to compute these regressors. We used the structural T1w
images downloaded from PPMI and ran several analysis steps: brain extraction using
3dSkullstrip, segmentation using 3dSeg with defaults parameters, 3dCalc to extract the
mask for WM and CSF, 3dResample to resample the masks to the functional image using
nearest-neighbors interpolation and 3dMaskave to extract timeseries of voxels inside the
WM and CSF masks. Then, we computed the mean timeseries across these voxels for
WM and CSF and added these signals as nuisance regressors.

Variations of the reproduction pipeline

We also compared this workflow with two other methods to extract WM and CSF signals.
The first method (pipeline B.1 - default workflow with FSL segmentation) used tools
from FSL instead of AFNI to extract structural-derived masks. In this pipeline, BET
was used to remove non-brain tissues from structural images, then the images were
segmented using FAST to extract WM and CSF masks. The masks were resampled to
functional images using affine registration implemented in FLIRT, and mean timeseries
inside each mask were extracted using FSL’s ImageMeants function in Nipype.

The second method (pipeline B.2 - default workflow without structural priors) did
not involve image segmentation. We used mask templates available in FSL and Nilearn:
MNI152 T1 2mm VentricleMask from FSL for CSF, and WM brain-mask in MNI152
template resolution 2mm in Nilearn v0.10.2 [41] (RRID:SCR 001362) for WM. The
masks were resampled to the functional images using a nearest neighbors interpolation
in Nilearn, and mean timeseries inside each mask were also computed using Nilearn.

In all reproduction pipelines, the nuisance signals were regressed from the functional
images in MNI space using FSL RegFilt. The denoised images were then used to compute
the imaging features passed as input to the machine learning models.

Other pipelines variations

To explore the robustness of the original results to variations in the workflow, we also ana-
lyzed the functional and structural images using fMRIprep v23.0.2 [42] (RRID:SCR 016216),
a robust pre-processing pipeline that requires minimal user input. We used default param-
eters for fMRIprep, except for the reference template that we set to MNI152NLin6Asym
with a resolution of 2mm to be able to run ICA-AROMA afterwards [40].

Final preprocessed functional images in MNI space were then passed as input to
ICA-AROMA to obtain motion-related components. The 6 motion regressors, WM and
CSF mean timeseries extracted by fMRIprep were concatenated to the timeseries of
the motion-related components identified by ICA-AROMA and regressed out from the
pre-processed images using FSL RegFilt, as in the reproduction pipeline. This pipeline
is referred to as B.3 - fmriprep pipeline.
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Quality control

We implemented quality control checks at different steps of the pipelines. The purpose
of these controls was to explore quality of data, but we did not exclude any participant
due to data low quality, as this step was not performed in the original paper.

For each participant, we controlled the quality of functional pre-processing (motion
correction, brain masking, and registration to MNI space) by superposing the pre-
processed functional volume at each time point to an MNI-space brain mask, and
visually inspecting a pre-defined image slice for incorrect registration or masking. We
also visually inspected the 6 motion parameters identified during motion correction
(rotation and translation in the x, y and z directions). We also computed the frame-
wise displacement (FD) of head position as done in [43], calculated as the sum of the
absolute volume-to-volume values of the 6 translational and rotational motion parameters
converted to displacements on a 50 mm sphere (multiplied by 2 × π × 50). We explored
these values using the threshold used in [44] for the lenient strategy: identification
of participants with mean FD > 0.55mm. Segmentations masks for WM and CSF
obtained with the 2 different workflow variations were also visually inspected for failed
segmentations. For the fMRIprep pipeline, we validated the quality of the processing
using the log files produced by the pipeline, since these produce the same outputs as the
quality control steps mentioned above.

Imaging features computation

In the original study, mean regional values of z-scored fALFF and ReHo were used
as input features to the machine learning models, in addition to several clinical and
demographic features. fALFF and ReHo were computed on the denoised fMRI data
using C-PAC [45] (RRID:SCR 000862). Voxel-wise ReHo was computed using Kendall’s
coefficient of concordance between each voxel and its 27-voxel neighborhood. For ALFF
and fALFF, linear de-trending and band-pass filtering were first applied to each voxel at
0.01–0.1 Hz, then the standard deviation of the signal was computed to obtain ALFF
whole-brain maps. These maps were divided by the standard deviation of the unfiltered
signal to obtain whole-brain fALFF maps. Z-scores maps for ReHo and fALFF were
calculated at the participant-level.

For our reproduction, we used the original code used by the authors, available at
https://github.com/DeepLearningForPrecisionHealthLab/Parkinson-Severit

y-rsfMRI/blob/master/ppmiutils/rsfmri.py. We followed the exact same steps as
in the original paper to compute the raw ReHo and fALFF maps. However, a mask
file was needed in the authors’ code to compute the features. We thus applied AFNI
3dAutomask on the denoised fMRI data to obtain a brain mask for each participant.

The code shared by the authors did not include any z-scoring of the whole-brain
maps for fALFF and ReHo, thus we used FSL’s ImageMaths function to compute the
z-score maps. Non z-scored maps (C.1 - default workflow with no Z-scoring) were also
saved and set as input to the models for comparison. We also considered ALFF instead
of fALFF as input measure (C.2 - default workflow with ALFF ) as the authors also
mentioned having tested this feature.

In the original paper, regional features were extracted from the ReHo and fALFF
whole-brain maps using three different parcellations. These included the 100-ROI
Schaefer [46] functional brain parcellation, modified with an additional 35 striatal and
cerebellar ROIs, and the 197-ROI and 444-ROI versions of the Bootstrap Analysis of
Stable Clusters (BASC) atlas [47]. These parcellations were used to compute the mean
regional ReHo or fALFF values for each participant and performance of the machine
learning models were compared between the parcellations. For the reproduction, we
did not have access to the modified version of the Schaefer atlas used by the original
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authors. Thus, we derived a similar custom atlas by using the 100-ROI Schaefer atlas
available in Nilearn, the probabilistic cerebellar atlas available in FSL, from [48], and
the Oxford-GSK-Imanova connectivity striatal atlas from [49], also available in FSL.
The cerebellar and striatal atlases were respectively composed of 28 and 7 ROIs, which
was consistent with the 35 ROIs mentioned in the original paper. We merged the ROIs
from the Schaefer, cerebellar and striatal atlas in this order to build a custom 135-ROI
atlas which we used to extract regional features.

The three atlases were resampled to the whole-brain ReHo and fALFF maps using
Nilearn and a nearest-neighbor interpolation, as done by the authors. Mean regional
values for each imaging feature and parcellation were also extracted using Nilearn.

Input features

Clinical and demographic features

In addition to imaging features, the authors used several clinical and demographic
features as input to the machine-learning models. Clinical features included disease
duration, symptom duration, dominant symptom side, Geriatric Depression Scale (GDS),
Montreal Cognitive Assessment (MoCA), and presence of tremor, rigidity, or postural
instability at Baseline. Baseline MDS-UPDRS score was also included as a feature when
training models to predict outcomes at Year 1, Year 2, and Year 4. Demographic features
included age, sex, ethnicity, race, handedness, and years of education.

We searched for the mentioned input features using the study files in the PPMI
database, as done by the authors (see https://github.com/DeepLearningForPrecis

ionHealthLab/Parkinson-Severity-rsfMRI/blob/master/ppmiutils/dataset.py).
For each feature, we searched for the corresponding columns in the study files and used
the same character encoding method as the authors. The different features used and the
methods to search and encode them for input to the models are shown in Supplementary
Table S1.

To evaluate the robustness of the findings to different analytical conditions, we also
compared the results obtained with different sets of features. In pipeline D.4 - default
workflow with only imaging features, we trained models using only imaging features
(regional measures of fALFF and ReHo), i.e., without clinical or demographic features.
In pipeline D.3 - default workflow with no imaging features, we removed imaging features
and trained models only on clinical and demographic features. Following an update
of the PPMI database, the feature for dominant disease side was deprecated and only
available as an archive file in the version of the database we had access to. We included
the feature in the default workflow and removed it in another variation workflow, to
assess the impact of this feature (D.1 - default workflow with no dominant disease side).
For models trained to predict MDS-UPDRS scores at Year 1, Year 2, and Year 4, Baseline
MDS-UPDRS score was included as feature. However, due to the potential large effect
of including this variable on the results, we trained a model with all features except this
one and compared the performance of prediction models with and without the feature
(D.2 - default workflow with no Baseline MDS-UPDRS ).

Outcome measurement

In [1], the authors used the above-mentioned imaging, clinical, and demographic features
to predict MDS-UPDRS total scores. The MDS-UPDRS score consists of 4 parts with 51
items, each item values from 0 to 5. To compute the total scores, we summed the values of
the 4 different parts available in PPMI study files. We used: MDS-UPDRS part Ia entered
by a rater (PPMI column “NP1RTOT”), part Ib for the patient questionnaire (column
“NP1PTOT”), part II (“NP2TOT”), part III (“NP3TOT”) and part IV (“NP4TOT”).
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Missing values in “NP4TOT” columns were replaced with zeros, as done by the authors.
There were no participants with missing values for the other parts of the score.

Model selection and performance evaluation

We trained and optimized separate machine learning models to predict MDS-UPDRS
scores from either ReHo or fALFF features, along with clinical and demographic fea-
tures. Four machine learning models architectures were implemented using scikit-learn
v1.3.0 [41] and were tested for each target-imaging feature (fALFF or ReHo) combination:
ElasticNet regression, Support Vector Machine (SVM) with a linear kernel, Random
Forest with a decision tree kernel, and Gradient Boosting with a decision tree kernel.
Each parcellation was also implemented, which resulted in 12 different combinations of
model and parcellation per imaging feature and time point.

For hyperparameter optimization (1) and performance estimation (2), authors used
a nested cross-validation scheme, i.e., each model architecture × hyperparameter ×
parcellation combination was evaluated using (1) a 10-fold cross-validation inner-loop
applied to the n-1 participants in the cohort and from which the combination with
the lowest root mean squared error (RMSE) was selected, (2) a leave-one-out (LOO)
cross-validation outer-loop where each iteration trained the selected model on all the
participants in the cohort except one, and tested the model on the remaining held-
out participant. To evaluate the impact of the evaluation pipeline on the results, we
implemented a different nested cross-validation loop for model selection and evaluation
for the default workflow. Figure 2 illustrates the different methods implemented. We
evaluated the performance of each combination of model × parcellation separately: the
10-fold cross-validation inner-loop was used to select the set of hyperparameters (e.g.
maximum tree depth for Random Forests) with the lowest RMSE, this set was used to
train a model on all except one participants in the outer-loop and we tested the model
on the held-out participant. Thus, we obtained performance estimates for each model ×
parcellation combination.

We also reported results obtained using the exact nested cross-validation scheme
explained in the paper (E.1 - Workflow with paper’s nested cross-validation), i.e., the
performance on each outer-fold is assessed with the best model × hyperparameter ×
parcellation combination found on the 10-fold cross-validation of the inner-loop and
averaged across outer-folds. Finally, as authors reported only the best performing model
and parcellation for each imaging feature type and time point, we also reported the
results we would have obtained had we only used the best model and parcellation
reported in the paper (E.2 - Workflow with only paper’s best model reporting).

All models were trained using scikit-learn, we used the set of hyperparameters
available in the authors code to train and optimize the models.

Evaluation metrics

As in the original paper, performance metrics included the coefficient of determination
(R2), which represents the percentage of variance explained by the model, and the root
mean squared error (RMSE), as implemented in scikit-learn.

We defined a null performance to compare our R2 values to using permutation test.
We fixed the model and parcellation scheme with ElasticNet and Schaefer atlas. We ran
1000 permutations on the target labels and obtained performance for each feature and
timepoint. At each permutation, we performed a nested cross-validation with 5-folds
cross-validation as inner-loop and outer-loop. We optimized the hyper-parameter set of
the model as done with the “real” models in the inner-loop and evaluated performance
on the outer-loop. R2 values obtained using the different workflows were compared to
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Figure 2. Workflow of model selection and performance evaluation. This workflow
represents one iteration of the outer-loop with Leave-One-Out cross-validation and is
iterated over all the dataset to estimate mean performance.

this null performance to check if the models did not learn to predict only the average
value.

To evaluate the models’ ability to classify high versus low severity participants,
a threshold was set to separate the participants and each model’s predictions were
thresholded post-hoc. This threshold was computed by using the average of the median
MDS-UPDRS score at each of the four time points. In [1], the threshold was 35. We
computed this threshold the same way for the replication cohort and for the closest-
to-original cohort. We obtained a value of 36 for the replication cohort and 35 for the
closest-to-original one. Authors also mentioned having found no significant difference
(p >0.05) between the high and low-severity groups in motor predominance (Part III
score as a percentage of total score) at each time point. With our thresholds, we ran
two sample t-tests between high and low severity groups in the two cohort and did
not find any significant difference with α = 0.05 either in any cohort or time point.
Performance metrics for this secondary classification outcome included area under the
receiver operating characteristic curve (AUC), positive predictive value (PPV), negative
predictive value (NPV), specificity, and sensitivity.

Feature importance

As in [1], we measured feature importance in the models trained for each time point and
imaging feature (fALFF or ReHo). For the ElasticNet and SVM models, we used the
coefficients of the trained models to determine feature importance, since coefficients of
higher magnitude indicate more important features in these two models. The sign of the
coefficient was indicative of whether the feature was positively or negatively associated
with the prediction target. For Random Forest and Gradient Boosting models, we
used impurity-based feature importance coupled with univariate linear correlation to
determine the direction of the association. Feature importance was computed on each
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iteration of the outer-loop and the median importance was reported for each feature.
To name the imaging features, we used the same method as the authors of [1]: the

centroid of each feature’s ROI was computed, if the feature was located in a ROI of the
Automated Anatomical Labeling (AAL) atlas [50], this label was allocated to the ROI.
If not, we searched for the nearest ROI of the AAL atlas.

Results

Cohort selection

Using the method described above, we built two cohorts from the PPMI database: the
replication cohort and the closest-to-original cohort.

Table 2 shows the demographics and Baseline clinical characteristics of the replication
and closest-to-original cohorts compared to the original cohort reported in [1]. The
replication cohort was composed of respectively 102, 67, 61 and 46 participants for time
points Baseline, Year 1, Year 2, and Year 4. The closest-to-original cohorts at the same
time points were composed of respectively 82, 51, 41 and 30 participants.

Compared to the original cohort, our replication cohort showed similar demographics
characteristics at each time point, except at Year 4 where our replication cohort showed
a significantly higher age on average than in the original cohort (p < 0.01). Regarding
clinical variables, mean MoCA score, GDS total score and Hoehn-Yahr stage were similar
between the two cohorts at all time points. However, we found higher mean disease
durations in the replication cohort than in the original one at all time points, for instance
at Baseline with (866.9 days ± 598.7 days) in replication vs (770 days ± 565 days) in
original. This difference was not significant at threshold p < 0.05. We also observed
lower mean MDS-UPDRS scores at Baseline in the replication cohort for all time points
except Baseline, with significant difference at Year 2 (p < 0.05) only. For these two time
points, even if mean Baseline scores in the replication cohort significantly differed from
the original ones, mean MDS-UPDRS scores at prediction time point were more similar
to the original one. At Year 4, however, we also found a higher mean MDS-UPDRS
score at prediction time point than in the original cohort, but this difference was not
significant at p < 0.05.

The closest-to-original cohort exhibited almost the same characteristics as the original
one at Baseline. For subsequent time points, we found some differences, in particular at
Year 2 and at Year 4: participants were older in the closest-to-original cohort than in
the original study at Year 4 (p < 0.05), Baseline mean MDS-UPDRS score was lower
(significant for Year 2 and Year 4 at p < 0.05 and p < 0.01 respectively) and mean
MDS-UPDRS score at prediction time point was similar to the original cohort except at
Year 4.

These differences for the Year 1, Year 2, and Year 4 cohorts could be related to the
evolution of the PPMI database in which sessions were added and removed since the
authors queried it for the original study. For these time points, we were not able to
find back all the participants that were included in the original cohort: the patients
included in our closest-to-original cohorts represented respectively 96% (Year 1), 91%
(Year 2) and 91% (Year 4) of the patients included in the original cohort. However, only
represented 76% (Year 1), 67% (Year 2), and 65% (Year 4) of the replication cohort was
composed of patients of the original cohort.

Figure 3 compares the distribution of MDS-UPDRS scores in our cohorts with the
one in the original cohort reported in Figure S1 in [1]. Distributions of MDS-UPDRS
scores at Baseline were similar between our two cohorts but seemed different from the
original cohort one. The observed difference between the original and closest-to-original
distributions might result from differences in MDS-UPDRS score calculations, or from
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Baseline Year 1 Year 2 Year 4

Orig. Repro. Closest Orig. Repro. Closest Orig. Repro. Closest Orig. Repro. Closest

% Caucasian 95.1 95.1 93.9 94.4 94.0 94.1 97.8 95.1 95.1 97.0 97.8 96.7

% African-American 2.4 2.0 2.4 1.9 1.5 0.0 0 1.6 0.0 0 0.0 0.0

% Asian 3.7 2.9 3.7 5.6 4.5 5.9 4.4 3.3 4.9 3.0 2.2 3.3

% Hispanic 1.2 1.0 0.0 0 1.5 0.0 0 1.6 0.0 0 0.0 0.0

% Male 67.0 66.7 67.1 68.5 65.7 68.6 82.2 80.3 85.4 75.8 67.4 73.3

% right-handed 89.0 89.2 89.0 85.2 85.1 84.3 88.9 90.2 90.2 87.9 84.8 86.7

Mean age, years 62.1 ±
9.8

62.0 ±
9.5

62.1 ±
9.7

61.9 ±
10.3

62.2 ±
9.9

63.0 ±
10.4

63.6 ±
9.2

64.7 ±
9.1

65.9 ±
9.4

59.5 ±
11.0

66.2 ±
10.1**

63.8 ±
11.0*

Mean years of educa-
tion

15.6 ±
3.0

15.6 ±
2.8

15.7 ±
2.9

15.1 ±
3.2

15.5 ±
2.9

15.4 ±
2.9

15.1 ±
3.3

15.4 ±
2.8

15.5 ±
3.0

15.0 ±
3.4

15.3 ±
3.0

15.2 ±
3.4

Mean disease du-
ration at Baseline,
days

770 ±
565

866.9 ±
598.7

760.3 ±
559.2

808 ±
576

904.1 ±
614.5

808.5 ±
580.0

771 ±
506

867.5 ±
516.3

732.0 ±
462.8

532 ±
346

746.6 ±
624.6

464.6 ±
294.9

Mean MDS-UPDRS
at Baseline

33.9 ±
15.8

34.5 ±
15.6

33.9 ±
16.1

38.0 ±
20.9

33.4 ±
15.1

34.1 ±
15.4

40.2 ±
18.2

35.0 ±
15.1*

35.2 ±
16.1*

34.9 ±
15.7

30.7 ±
13.9

26.1 ±
11.4**

Mean MDS-UPDRS
at timepoint

- - - 39.2 ±
21.6

40.7 ±
24.5

39.9 ±
22.0

40.9 ±
18.5

40.0 ±
18.7

40.7 ±
18.7

35.9 ±
16.5

41.5 ±
19.8

34.2 ±
16.2

Mean MoCA at
Baseline

26.7 ±
2.8

26.5 ±
3.0

26.4 ±
2.8

26.9 ±
3.2

27.0 ±
2.9

26.7 ±
3.1

26.7 ±
3.5

27.0 ±
2.5

26.5 ±
2.4

27.5 ±
2.3

26.8 ±
3.2

27.4 ±
2.6

Mean GDS at Base-
line

5.4 ±
1.4

5.4 ±
1.4

5.4 ±
1.5

5.4 ±
1.6

5.5 ±
1.8

5.5 ±
1.9

5.4 ±
1.2

5.5 ±
1.3

5.6 ±
1.3

5.4 ±
1.7

5.8 ±
1.8

5.6 ±
1.7

Mean Hoehn-Yahr
stage

1.8 ± 0.5 1.7 ± 0.5 1.7 ± 0.5 1.8 ± 0.5 1.8 ± 0.6 1.7 ± 0.5 1.8 ± 0.5 1.9 ± 0.5 1.9 ± 0.5 1.7 ± 0.5 1.9 ±
0.5*

1.8 ± 0.5

Number of subject 82 102 82 53 67 51 45 61 41 33 46 30

Table 2. Demographic and clinical variables for the different cohorts. Orig. = original paper cohort. Repli. = replication cohort. Closest =
closest-to-original cohort. Values are reported in percentages of the cohort or in mean values ± standard deviation. Significance testing was performed
using two sample t-test between the original cohort and the replication and closest cohort respectively. Bold text represent features showing a significant
difference, * represent significance at p < 0.05 and ** at p < 0.01.
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the fact that different sessions were used for 4 of the participants in the closest-to-original
cohort compared to the original one. At Year 1, however, the closest-to-original cohort
presented a MDS-UPDRS score distribution more similar to the original one than the
replication one, suggesting that the differences at Baseline did not originate in differences
in MDS-UPDRS score calculations. We found no significant difference between the
distribution of MDS-UPDRS scores in the replication and closest-to-original cohort
neither at Baseline nor at Year 1 using Kolmogorov-Smirnov distribution testing.

Image quality control

After running the pre-processing pipelines, we checked the resulting images and looked for
potential pipeline failures. Regarding registration, all participants brains were correctly
registered to the MNI space after visual inspection. Brain masking was also successful
for most of the participants, except for 2 in which we found a small artifact in the
inter-hemispheric area. Given the low magnitude of this artefact and its location, we
decided to keep these two participants in the study.

Most participants of the study showed high movement parameters. Indeed, out
of 102, 80 showed at least one time point with a frame-wise displacement superior to
0.5mm. However, since the authors in [1] did not remove high-motion volumes within
participants, and that completely removing participants with high-motion volumes would
highly decrease our cohort’s sample size, we chose to keep all participants and all volumes.

Regarding segmentation masks, after visual inspection no significant artifact was
found for any participants using AFNI segmentation in default workflow. For some
participants, small distortions were found in particular close to brain extremities (inter-
hemispheric area or close to the skull in occipital and parietal regions). Using FSL
segmentation however, we found brain masking issues that had impacts on segmentation
quality. We used BET using default parameters to skullstrip images before segmentation
and since we chose to explore the impact of different default implementations of pipelines,
we did not exclude the segmentations for any participant nor segmentation workflow.

With the fMRIprep pipeline, observations were similar regarding movement parame-
ters and registration. There was no large artefact in the segmentation masks.

Performance of the default workflow

The first objective of this study was to reproduce the models described in [1] and to
compare their performance with the one in the original study. In our default workflow,
we implemented the default choices described in Figure 1: closest-to-original cohort,
image pre-processing pipeline with AFNI segmentation, z-scoring of whole-brain fALFF
and ReHo maps, use of all demographic, clinical and imaging features described in the
original paper, and the model selection method derived from the authors’ code.

We trained 12 models per time point (Baseline, Year 1, Year 2, Year 4) and imaging
feature (fALFF or ReHo), corresponding to 4 machine learning models × 3 brain
parcellations. We reported for each imaging feature and time point the performance of
the 12 models in Table 3.

Chance levels were computed using permutation tests as described in the Evaluation
metrics section. We obtained R2 values that represented the chance prediction perfor-
mance at different time point for fALFF and ReHo. These values are also presented in
Table 3.

Using the default workflow, we obtained different performance for all models ×
parcellation combination. The best performance across these combination was different
from those reported in [1] at all time point. At Baseline, our best model performed better
than chance but we did not manage to reach a R2 value close to the one reported in the
original paper with any model or feature. Moreover, the best-performing models were
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Figure 3. Distribution of MDS-UPDRS scores reported in the original paper’s cohort
(top: Figure S1 extracted from [1]), the replication cohort (middle) and the closest-to-
original cohort (bottom).

different from those reported in the original study: instead of Schaefer atlas and Gradient
Boosting for both fALFF and ReHo features, we found for fALFF the Gradient Boosting
Regressor with BASC197 atlas, with R2=0.205 (original R2=0.242) and ElasticNet and
Schaefer for ReHo with R2=0.124 (original R2=0.304).

At Year 1, the performance of our models was better than reported in the original
study, with an increase of the R2 of 28% and 18% for fALFF and ReHo respectively. For
other time points (Year 2 and Year 4), results were also different from those reported
in [1]. These differences were not constant between ReHo and fALFF at Year 2, but
were similar at Year 4: for fALFF, we obtained higher R2 scores than in the original
study at Year 2 and at Year 4 (0.529 and 0.397 compared to 0.463 and 0.152 in the
original paper); for ReHo, we obtained lower R2 scores than in the original ones at Year
2 (0.344 instead of 0.471) and higher R2 scores at Year 4 (0.312 compared to 0.255 in the
original study). For these two time points, the mean MDS-UPDRS scores at Baseline
were significantly different between the original cohort and our closest-to-original cohort,
which might explain these differences in performance.

At each time point, the best model x parcellation combination performed better than
chance-level. Some of the combinations led to very low performance, for instance SVM
with Schaefer atlas at Year 2. At every time point and with every feature (except at
Year 1 with fALFF), at least one combination gave a performance lower than chance.
Average performance across model and parcellation combinations were sometimes very
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close to chance-level. This highlight the importance of model selection and performance
reporting.

Robustness to workflow variations

We assessed the performance of the different models for each time point and feature for
different variations of the analysis workflow (Figure 4).

Workflow A.2, in which we trained the different models on the replication cohort
instead of the closest-to-original one, showed only small differences in R2 values with the
default workflow, except for fALFF at Year 1 and ReHo at Year 4. Indeed, performance
was slightly lower at Year 1 for fALFF and higher at Year 4 for ReHo, with raw effect size
above 0.15. At Year 1, the replication cohort was composed of 16 more participants than
the closest-to-original cohort and exhibited a lower mean MDS-UPDRS score at Baseline
compared to the original cohort. At Year 4, we also found differences in term of sample
size, age of participants and Baseline MDS-UPDRS score between the replication cohort,
the original one and the closest-to-original one. These differences might explain the
variations between models performance, even if R2 values remained better-than-chance
for Year 1 and close to other performance obtained with different variations. Best model
performance of workflow A.2 remained better than chance-level.

Performance of models trained with variations in pre-processing pipeline (workflows
B.1, B.2 and B.3 ) was similar to those of the default workflow, with R2 absolute
difference with the default workflow below 0.15 except at Year 4 with fALFF in which
the B.2 workflow (no structural segmentation) led to lower R2 values and at baseline
with fMRIprep pipeline (B.3 workflow). For these, best performance was better than
chance but not the average performance across model and parcellation combination.

Regarding the impact of feature computation variations (workflows C.1 and C.2 ), we
found better performance at Baseline for workflows C.2 - default workflow with ALFF in
which the best model × parcellation combination led to a better R2 value than the one
reported in the original study (0.325 vs 0.242 in the original paper). We also observed
this phenomenon with the C.1 workflow in which we used non z-scored ReHo maps:
we found a higher performance than the one obtained with the default workflow and
reported in the original study (R2 = 0.374). For these two variations, R2 differences with
default remained lower than 0.1. At Year 1 and Year 4 with fALFF however, the use of
ALFF instead of fALFF (workflow C.2 ) led to lower performance (R2 mean absolute
difference above 0.15 and average performance below chance level). This observation
was not found at Year 2.

For Year 1 and Year 2 predictions, the set of input features (workflows D.) had a
large impact on the performance of these models. In particular, models trained without
Baseline MDS-UPDRS score (D.2) and with only imaging features (D.4) showed lower R2
values with for fALFF and for ReHo at Year 1 and Year 2 (R2 absolute difference above
0.2), which suggests that Baseline MDS-UPDRS played a central role in the prediction
of MDS-UPDRS at follow-up visits compared to imaging features. It also explains why
variations in the extraction of imaging features (pre-processing or computation) only
had a lower impact on the performance for these two time points.

Overall, at Year 1 and Year 2, performance seemed to be driven mostly by clinical
and demographic features, in particular by MDS-UPDRS Baseline scores. At Baseline
and Year 4, other variations related to image features (pre-processing and feature
computation) were associated with larger changes in performance. For all workflows,
time points and feature, best performing model x parcellation combination always
exhibited better than chance performance.
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Time Feature Type ElasticNet SVM GradientBoosting RandomForest

schaefer basc197 basc444 schaefer basc197 basc444 schaefer basc197 basc444 schaefer basc197 basc444

Baseline fALFF Orig. 0.242

Repli. 0.04 -0.035 -0.045 -0.718 -0.241 -0.182 -0.039 0.205 0.061 -0.024 0.068 0.02

Null -0.041

ReHo Orig. 0.304

Repli. 0.124 0.057 0.117 -0.3 -0.4 -0.152 -0.102 0.028 0.027 0.024 0.022 0.099

Null -0.036

Year 1 fALFF Orig. 0.558

Repli. 0.453 0.717 0.5 0.519 0.216 0.185 0.622 0.575 0.506 0.369 0.499 0.444

Null -0.079

ReHo Orig. 0.453

Repli. 0.535 0.434 0.512 0.04 -0.094 -0.01 0.36 0.261 0.289 0.442 0.392 0.393

Null -0.077

Year 2 fALFF Orig. 0.463

Repli. 0.529 0.277 0.285 -0.031 0.108 -0.413 -0.19 0.08 0.01 0.138 0.206 0.09

Null -0.101

ReHo Orig. 0.471

Repli. 0.344 0.191 0.287 -0.915 -0.741 -0.051 -0.03 0.001 -0.033 0.267 0.121 0.251

Null -0.094

Year 4 fALFF Orig. 0.152

Repli. 0.397 0.115 0.351 0.196 -0.134 -0.296 0.08 0.411 -0.355 0.079 0.338 0.01

Null -0.129

ReHo Orig. 0.255

Repli. 0.072 0.09 -0.175 -0.12 -0.23 -0.139 -0.017 0.312 0.041 -0.007 0.02 0.0

Null -0.141

Table 3. Predictive performance achieved for each MDS-UPDRS time point and each imaging feature type, computed through leave-one-out cross-
validation. Metric: R2, coefficient of determination. Green text corresponds to original performance reported in [1]; Blue text corresponds to best
performance achieved during replication; Red text corresponds to chance level computed using permutation test.19/34



Model choice and performance reporting

Table 4 compares the results obtained using different model selection and evaluation
methods. Using the nested cross-validation described in the paper (Workflow E.1 ), we
obtained lower results than the original ones and than the ones obtained with our best
models for all time points (for instance, R2 = 0.049vs0.205 with our best model for
prediction with fALFF at Baseline). Using this method, the models at Year 1 and Year 2
were still well performing compared to other time point, for both ReHo and fALFF, with
particularly high R2 values (between around 0.4 and 0.6) obtained using any reporting
method.

Results computed using the same model and parcellation as the best performing
combinations in the original paper (Table 2 from [1]) (Workflow E.2 ) also had lower
performance than in the original study, for all time points (e.g. R = −0.102 for
prediction with ReHo at Baseline). However, as observed for nested cross-validation, the
performance obtained with these models at Year 1 and Year 2 was still high and close to
the ones obtained with our best models. We speculate that the effect size detected with
models at these time points was large and thus, tended to be more reproducible across
optimization schemes.

In [1], authors also report the model’s ability to classify high- versus low-future
severity subjects. The performance obtained for this task was consistent with the
observation made on R2 values: models with high performance in terms of R2 were
usually good at distinguishing high and low severity patients (e.g., AUC of 0.805 and
0.767 for prediction at Year 1 with respectively fALFF and ReHo using the default
workflow).

Feature importance

To further explore the reproducibility and replicability of findings in [1], we measured
feature importance for the ReHo and fALFF imaging features and the default reproduc-
tion workflow, across all time points. Figure 5 and 6 compare the feature importances
obtained with the default workflow to the ones reported in the original study.

Feature importance showed relatively few overlap between the ones obtained using
our models and those reported in the original study, especially for imaging features, at all
time points. For instance, for fALFF at Baseline, the left postcentral region was identified
as the most important feature for prediction in our study and was not identified in the
original study. For ReHo, we found no important imaging feature that was similar to the
ones detected in the original study. However, for some brain regions for which an imaging
feature was identified as an important feature, hemispheric opposites or sub-parts of
the same global regions were identified in our models compared to the original detected
features. For instance, the middle cingulum was identified in our Baseline model with
ReHo but in the left hemisphere instead of the right one in the original paper. For this
model, regions of the frontal cortex were also detected as important in the original paper,
but those we found were very close or were part of the same lobe/region (e.g. frontal
supero-orbital and middle in original, frontal inferior in ours). Regions identified for
fALFF and ReHo were also different at Baseline, consistently with the findings of [1].

For other time points, the main feature of importance was the Baseline MDS-UPDRS
score for both fALFF and ReHo and other features had a lower importance value,
in particular at Year 1 and at Year 2. This observation was also supported by the
performance of models that did not include the Baseline MDS-UPDRS score in their
feature set: these models showed lower performance at these two time points compared
to the default models (p < 0.01).
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Figure 4. Performance of models trained for prediction at each time point, using fALFF or ReHo, with variations in the
workflow. Boxes represent the performance (R2 values) of the 12 models (4 models × 3 parcellations). Black horizontal
dashed lines show the R2 value reported in the original study for the corresponding time point and feature. Red horizontal
dashed lines show the chance-level computed using permutation test. Raw effect sizes (d) are computed as absolute difference
between the mean R2 performance with default workflow and mean R2 performance with other variations. Only large
differences (above threshold d = 0.15) are reported.
- Workflow A.1 - default workflow with replication cohort.
- Workflow B.1 - default workflow with FSL segmentation,
- Workflow B.2 - default workflow without structural priors,
- Workflow B.3 - fMRIprep pipeline.
- Workflow C.1 - default workflow with no Z-scoring,
- Workflow C.2 - default workflow with ALFF.
- Workflow D.1 - default workflow with no dominant disease side,
- Workflow D.2 - default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - default workflow with no imaging features,
- Workflow D.4 - default workflow with only imaging features.
- Workflow E.1 - default workflow with paper’s nested cross-validation,
- Workflow E.2 - default workflow with only paper’s best model reporting.
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Time point Feature Type R2 RMSE AUC PPV NPV Spec. Sens.

Baseline fALFF Original 0.242 14.006 0.668 60.0% 74.0% 75.5% 58.1%

Default 0.205 14.26 0.584 51.7% 66.0% 71.4% 45.5%

Workflow E.1 0.049 15.6 0.514 42.3% 60.7% 69.4% 33.3%

Workflow E.2 -0.039 16.31 0.493 39.4% 59.2% 59.2% 39.4%

ReHo Original 0.304 13.415 0.674 59.4% 75.0% 73.5% 61.3%

Default 0.124 14.98 0.716 63.9% 78.3% 73.5% 69.7%

Workflow E.1 -0.164 17.26 0.528 43.8% 62.0% 63.3% 42.4%

Workflow E.2 -0.102 16.8 0.493 39.3% 59.3% 65.3% 33.3%

Year 1 fALFF Original 0.558 14.256 0.753 70.4% 80.0% 71.4% 79.2%

Default 0.717 11.6 0.805 75.9% 86.4% 73.1% 88.0%

Workflow E.1 0.569 14.3 0.786 73.3% 85.7% 69.2% 88.0%

Workflow E.2 0.453 16.11 0.69 62.9% 81.2% 50.0% 88.0%

ReHo Original 0.453 15.861 0.753 70.4% 80.0% 71.4% 79.2%

Default 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%

Workflow E.1 0.483 15.67 0.726 70.4% 75.0% 69.2% 76.0%

Workflow E.2 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%

Year 2 fALFF Original 0.463 13.426 0.765 78.6% 76.5% 68.4% 84.6%

Default 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%

Workflow E.1 0.478 13.35 0.669 69.2% 66.7% 55.6% 78.3%

Workflow E.2 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%

ReHo Original 0.471 13.322 0.739 75.9% 75.0% 63.2% 84.6%

Default 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%

Workflow E.1 0.272 15.76 0.607 63.3% 63.6% 38.9% 82.6%

Workflow E.2 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%

Year 4 fALFF Original 0.152 14.957 0.636 64.7% 62.5% 62.5% 64.7%

Default 0.411 12.19 0.833 91.7% 77.8% 93.3% 73.3%

Workflow E.1 0.242 13.83 0.733 73.3% 73.3% 73.3% 73.3%

Workflow E.2 -0.134 16.92 0.633 66.7% 61.1% 73.3% 53.3%

ReHo Original 0.255 14.015 0.699 73.3% 66.7% 75.0% 64.7%

Default 0.312 13.18 0.667 72.7% 63.2% 80.0% 53.3%

Workflow E.1 -0.044 16.23 0.567 60.0% 55.0% 73.3% 40.0%

Workflow E.2 -0.23 17.62 0.6 63.6% 57.9% 73.3% 46.7%

Table 4. Performance reported using different model selection and evaluation methods. “Original” is the performance
reported in the Original study [1]. “Default” is the performance obtained with the model × parcellation that obtained
the best performance during reproduction. “Workflow E.1” is the performance obtained when using the nested cross-
validation scheme described in the paper (i.e. optimizing model × parcellation in the inner fold). “Workflow E.2” is the
performance obtained with the model and parcellation reported in the paper.
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Discussion

Summary

We investigated the reproducibility and replicability of the predictive models of PD
progression described in [1]. Using the default reproduction workflow, i.e., with methods
and cohorts closest to the ones described in [1], the performance of our best models was
better than chance (R2 > 0). However, the models performance were in some cases
slightly different from the ones reported in the original study. For both ReHo and fALFF,
we found lower performance than the one reported in the original study at Baseline with
our default workflow. This performance was also higher than in the original study at
Year 1, Year 2 and Year 4. These values remained however close to those reported in
the original study. Thus, using a cohort and methods adapted from [1], we were able to
train several machine learning models that predicted Parkinson’s disease progression
(MDS-UPDRS scores at Baseline, Year 1, Year 2, and Year 4) with a performance higher
than chance and with values comparable to those reported in the original study for
most models. On these criteria, we could conclude that the replication experiment was
successful.

Taking into account other criteria than model performance comparison, the success
of the reproduction is less clear. For instance, we could not compare our reproduction
workflow with the original one, neither with code (in particular for the pre-processing)
nor derivatives data such as pre-processed images or whole-brain fALFF or ReHo maps.
Thus, we were not able to verify if we correctly reproduced this pipeline, in either of our
variations. Moreover, we were not able to retrieve the features identified as important by
the authors during feature importance evaluation. This step was complex to reproduce
since our best performing model x parcellation combination did not match the ones
reported in the original paper at several time points, which questions the comparability
of the features. In addition, we did not have access to the exact same atlas used in the
original paper for the Schaefer parcellation, and we also did not have access to the labels
used by the authors to name the regions. We attempted to reproduce the region names
using the method described in [1], but we could not be certain that our regions matched
the original ones.

When introducing specific variations in the workflow, we managed to obtain results
that were more similar to the original ones, in particular when changing the feature
computation method at Baseline. Some changes in the default workflow also led to lower
performance, for instance at Year 1 and at Year 2 when removing Baseline MDS-UPDRS
score or when using only imaging features. For these time points in particular, variations
of the pre-processing pipeline (workflows B.), feature computation (workflows C.) and
model choice and reporting (workflows E.) had little impact on the performance of the
models compared to other time points. We speculate that imaging features only were of
low importance in the models prediction for these time points compared to other time
points (Baseline and Year 4) for which variations on image computation (pre-processing
or feature) had a larger impact. Without variations (i.e. with the default workflow),
performance of models at Baseline and Year 4 time points was already low, which also
suggests that effect sizes detected by models were small and that these models were
underpowered [51, 52], making them more sensitive to variations.

In the original study, authors also reported performance of the models evaluated
on an external dataset (Table 2 of [1]) and with Leave-One-Site-Out cross-validation
(LOSO CV) in the outer-loop compared to Leave-One-Out (LOO CV) in the main study.
They found similar performance at Year 1 (R2 over 0.5) with these variations compared
to the main results. Performance at other time points was not available for the external
validation, but for LOSO CV, models trained for prediction at Year 2 also performed
very well and those of time point Baseline and Year 4 exhibited lower prediction ability
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Figure 5. Predictive features learned by the best performing models to predict MDS-UPDRS score at each time point for
the original study (left - extracted from [1]) and the default workflow (right) using ReHo. Features with low importance
were not shown. Red bars indicate a positive association and blue bars indicate a negative association. Stars (*) represent
the presence of this feature in the original study and the reproduction.
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Figure 6. Predictive features learned by the best performing models to predict MDS-UPDRS score at each time point for
the original study (left - extracted from [1]) and the default workflow (right) using fALFF. Features with low importance
were not shown. Red bars indicate a positive association and blue bars indicate a negative association. Stars (*) represent
the presence of this feature in the original study and the reproduction.
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compared to the ones tuned using the LOO CV scheme (main original workflow). These
two comparisons are consistent with our observations on the robustness to image features
variations of models at Year 1 and Year 2 and the high sensitivity of models at Baseline
and Year 4.

When using a different cohort with distinctions in the distribution of the most
important feature (MDS-UPDRS score at Baseline) of the Year 1 model, a lower
performance was found using fALFF (p < 0.05) and ReHo. This performance remained
high and close to the one reported in the original study. Moreover, when removing
specific clinical features such as MDS-UPDRS Baseline scores, the performance models
at Year 1 and Year 2 significantly dropped. This suggests that the robustness mentioned
above was probably dependant on the distribution of these measures. It would be
interesting to assess the interaction of variations in both cohorts, imaging features and
input features sets to see if the robustness to analytical variations was also present using
the replication cohorts and when increasing the importance of image features in the
prediction.

Challenges of reproducibility studies

In our reproducibility study, several challenges were encountered, in particular related
to cohort selection, fMRI feature pre-processing, and results reporting. To extract the
same Baseline cohort as used in [1], we first attempted to query the PPMI database
using the information available in the paper and the code shared by the authors. This
step was unsuccessful since we could not get the same sample size at Baseline (102
instead of 82 in [1]), and we decided to contact the authors who provided us the exact
subject and visit list used in the original study. With this list, we were able to build
a cohort with the same participants at Baseline. A potential solution to avoid similar
difficulties in future reproducibility studies would be to register cohorts obtained from
public databases under the same data usage agreements as the original data. In the
case of PPMI, a specific section of the online portal could be created to store cohort
definitions and associate them with published manuscripts.

Even with the original participant identifiers and visit list at Baseline, we could not
retrieve the same Baseline cohort in the PPMI database. Our closest-to-original cohort
included the 82 original participants, but for 5 of them, a different visit than the original
one was used. For 3 of these visits, we intentionally chose to keep the visits selected by
our first query to better fit with the description of the cohort in the paper. For the 2
other visits, the functional images corresponding to these participants and visits were
not available anymore in the PPMI database. Since the PPMI database continuously
adds new participant visits, we chose to keep only the visits that were added more than
a year before the original study publication, since the original authors did not report
the date at which they queried the database. With this filter, the Baseline participants
list and the exact same code used to search for follow-up visits, the cohorts obtained
for follow-up visits were still dissimilar to the original ones, with more participants and
several noteworthy differences in clinical and demographic variables. A first step to
solve this particular issue would be to systematically report the date when databases
are queried. However, the issues faced when attempting to reproduce the original cohort
in fact highlight the need for version control in public databases, using tools such as
DataLad [53] that is for instance adopted in the OpenNeuro database [54]. With version
control, authors would be able to cite the exact version of the database used, which
would importantly facilitate cohort reproductions.

Reproducing the fMRI pre-processing and feature computation pipelines described
in [1] also raised challenges. First, although authors provided a description of the different
pre-processing steps performed and tools used, exact reproductions of neuroimaging
pipelines require more detailed information — including specific parameters values,
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name and version of the standard template used, software versions — given the overall
complexity and flexibility of image analysis methods [55]. To reproduce the pipeline
used in [1], we had to make informed guesses about important parameters of the analysis.
Some of these choices were conditioned by the nature of the neuroimaging pipelines
(e.g., the choice of standard template to register functional images was constrained by
the use of ICA-AROMA) while other decisions were more arbitrary and led to multiple
valid variations (e.g., the computation of WM and CSF mean time-series for which
we applied three different variations with different software packages and methods).
Reporting guidelines, such as COBIDAS [56], were developed to help document analyses
and facilitate reproduction studies. However, to reproduce complete analyses, sharing
the entirety of the code used in the original experiment remains the most valuable
information, as it contains a both human and machine-readable description of the exact
method employed. Code-sharing platforms such as GitHub and GitLab are now widely
available for this purpose and long-term preservation of these code is supported by
archive systems such as Software Heritage [57, 58] or Zenodo.

The use of a custom-based atlas to parcellate the brain in the original study also
created challenges. Future reproducibility studies would benefit from comprehensive
descriptions of the methods used to create such custom data, access to the code to
create the data, and sharing of the data itself through platforms such as Zenodo, the
Open-Science Framework, Figshare, or NeuroVault [59]. Such platforms could also be
used for sharing derived data, for instance whole-brain fALFF and ReHo maps. However,
Data Usage Agreements often requires that derived data have to be shared under the
same conditions. We emphasize again the need for specific platforms in public databases
to host data associated with a published manuscript, including cohort descriptions and
derived imaging data.

The authors of [1] shared code used in the original study, in particular for feature
computation (fALFF and ReHo after pre-processing and clinical/demographic features
search in PPMI study files) and machine-learning models training. The availability of
this code was extremely useful for our reproducibility study, and we warmly acknowledge
the authors for taking the time to share reusable code with their analysis. Despite the
availability of the code, we still faced some difficulties to reproduce the results presented
in the original study, due to discrepancies between the methods reported in the paper
and the code shared, especially for the imaging feature computation, the cross-validation
procedure and the results reports. For instance, we were not able to retrieve the Z-scoring
of whole-brain fALFF and ReHo maps mentioned in the paper. This discrepancy was
likely due to the update of the C-PAC pipeline used by the authors for pre-processing, in
which the documentation still mentioned the possibility to output Z-scored maps even if
this option was not implemented anymore in the pipeline. This reiterate the importance
of code versioning and reporting software versions. The use of software container engines
such as Docker and Singularity in combination with frameworks such as Boutiques [37]
or BIDS-Apps [60] facilitates reproduction and reduces the technical work required to
find and install the software versions used in the original study.

Regarding model selection and optimization, we highlight the complexity of nested
cross-validation schemes and the on-going debate on the choice of rigorous cross-validation
procedures [61, 20]. Here again, code sharing is required to describe the exact evaluation
method used in the original study. At this level in the analysis, Jupyter notebooks [62]
are an interesting option to document code and mix it with data, natural text and
figures. Initiatives were recently launched to share reproducible Jupyter notebooks, such
as NeuroLibre [63], a platform for sharing re-executable preprints. We created a Jupyter
notebook for our study, that we made publicly available at https://github.com/elo

diegermani/nguyen-etal-2021.
To conclude, we highlight the challenges associated with the reproduction of neu-
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roimaging studies. We discussed some of the specific difficulties encountered in our study,
and provided some potential solutions to facilitate this process in the future, in terms
of time cost and adequacy of the reproduction. Nevertheless, given the complexity of
the data, software and analyses required in current neuroimaging studies, reproducing
existing papers remains extremely challenging.
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