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ABSTRACT

Deep vein thrombosis is a common disease associated with a variety of complications including
post-thrombotic syndrome as a late complication. It is now clear that in addition to classical
deep vein thrombosis triggers such as blood flow disturbance, hypercoagulability, and vessel
wall changes, inflammation has a key role in the pathophysiology of deep vein thrombosis,
and there is a close relationship between inflammation and coagulation. As attested by
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changes in several plasma biomarkers, inflammation may have a significant role in the
development of post-thrombotic syndrome. Here, we review the link between inflammation
and deep vein thrombosis and thus the potential value of anti-inflammatory and/or
anticoagulant drugs in the treatment of deep vein thrombosis and the prevention of post-

thrombotic syndrome.

Introduction

Deep vein thrombosis (DVT) is a relatively common
disease associated with both early and late complications.
Pulmonary embolism is a severe early complication of
DVT, with a high mortality rate. Incident venous throm-
boembolism (VTE, i.e. DVT and pulmonary embolism)
affects about 400,000 people a year [1], and 20-50% of
these patients will develop a late complication, post-
thrombotic syndrome (PTS), within two years [2]. PTS is
a chronic disease, the signs and symptoms of which
include leg swelling, skin changes, pain, and chronic
ulceration [3-5]. Hence, PTS has a major impact on
quality of life - particularly for patients with severe PTS [2].

Treatment with anticoagulants has considerably
improved the acute-phase outcomes for patients with
DVT [6] by preventing thrombus extension, pulmonary
embolism, and the recurrence of DVT. The successive
development of several drug classes, the most recent
being the direct oral anticoagulants (DOACs), has
clearly improved the treated patients’ quality of life
[7], but their use is associated with a significant bleed-
ing risk. Moreover, there are still unmet therapeutic
needs — particularly with regard to the occurrence of
PTS. The acute phase of thrombosis and its clinical
management can have a major impact on the occur-
rence of this late complication of DVT. In particular,
thrombus resolution and vessel wall scarring have a
pivotal role in the pathogenesis of PTS [8].

Better knowledge of the pathophysiology of DVT is
therefore critical for the development of new therapeutic
approaches. It is now clear that in addition to Virchow’s

triad (blood flow disturbance, hypercoagulability, and
vessel wall changes), inflammation has a key role in trig-
gering DVT. Several inflammation-related clinical settings
such as sepsis, systemic infections, cancer, trauma, and
surgery are associated with an increased risk of VTE.
Inflammation might also be involved in the pathophy-
siology of PTS and particularly in the fibrotic vein
injury, incomplete recanalization, and valve incompe-
tence that contribute to pressure increases in the
venous system following DVT [8].

Coagulation activation and inflammation are inti-
mately related because several cellular and plasma-
related factors are involved in both processes. Indeed,
monocytes can display inducible tissue factor and con-
stitute a major source of pro-inflammatory cytokines.
Platelets contain polyphosphates, which act as proi-
nflammatory mediators and contact system activators
[9]. It was recently shown that polymorphonuclear neu-
trophils can produce neutrophil extracellular traps
(NETs), and that the latter are highly prothrombotic
[10].

Here, we review the link between inflammation and
DVT and thus the potential value of anti-inflammatory
and/or anticoagulant drugs in the treatment of DVT
and the prevention of PTS.

Involvement of inflammation in the
pathophysiology of DVT and PTS

In VTE, an inflammatory response is involved in throm-
bus formation, thrombus organization, and the vein
recanalization process.
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Thrombus formation and organization

The endothelium is a key factor in the pathophysiology
of DVT. Under resting conditions, the endothelium
exerts an antithrombotic effect via the surface
expression of several anticoagulant system com-
ponents such as the protein C system receptors (throm-
bomodulin (TM) and endothelial cell protein C
receptor), tissue factor pathway inhibitor, and glycosa-
minoglycans. Moreover, the endothelium has anticoa-
gulant properties and acts as a physical barrier by
preventing contact between the blood and the procoa-
gulant subendothelium. However, endothelium acti-
vation leads to a shift from an anticoagulant
phenotype to a procoagulant phenotype. Several ago-
nists including pro-inflammatory cytokines like tumor
necrosis factor-alpha can activate the endothelium
[11]. Upon activation, endothelial cells express several
adhesion molecules; these include E- and P-selectins
involved in leukocyte rolling, and ICAM-1 and VCAM-
1 leading to firm adhesion and transendothelial leuko-
cyte migration. The adhesion of leukocytes and plate-
lets appears to be essential for thrombosis initiation
and propagation [12], and several ligands, such as
Mac-1 on leukocytes, and GP1b alpha on platelets,
are involved in the recruitment of cell to the site of
injury — as evidenced by a delay in thrombosis in
mice lacking Mac-1 or expressing Mac-1 with a
mutation in GPIb alpha-binding site [13].

In murine models of inferior vena cava thrombosis,
neutrophil infiltration occurs within a few hours
[14,15]. Monocytes and macrophages then extravasate
over the course of the following days. This leukocyte
infiltration is promoted by the very early exposure of
P-selectin - probably from the pool of P-selectin
present in the membrane of the endothelial cells’
Weibel-Palade bodies and platelet alpha granules. E-
selectin is upregulated later, and requires mRNA syn-
thesis [15]. The involvement of these selectins in
thrombus formation has been evidenced by several
means, including the generation of knock-out mice
for P-selectin, E-selectin or both [16], the application
of an antibody against the P-selectin receptor (PSGL-
1) [17], and treatment with a small-molecule inhibitor
[18]. Soluble P-selectin (sP-selectin) circulates in the
plasma, and most of the soluble form originates from
proteolysis of the transmembrane protein. Interest-
ingly, it was recently shown that sP-selectin dimers
can also promote immunothrombosis [19]. Similarly,
soluble ICAM-1 (sICAM-1) is also found in plasma and
reflects the level of endothelial and leukocyte
activation.

Leukocyte infiltration into the vessel wall is associ-
ated with cytokine and chemokine production, which
in turn promotes inflammation, endothelial cell acti-
vation, and coagulation. In fact, pro-inflammatory cyto-
kines can elicit tissue factor (TF) production on the
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endothelium and monocytes, and thus thrombosis
[20]. It has also been reported that TF can be trans-
ferred to platelets in a P-selectin-/PSGL-1 dependent
manner [21], and that fibrin deposition is promoted
when leukocytes bind to adherent platelets through
P-selectin [22]. Moreover, P-selectin and PSLG-1 are
involved in the formation of prothrombotic microparti-
cles [23]. Intense crosstalk between coagulation and
inflammation is likely to amplify these events. Indeed,
coagulation activation leads to the production of
thrombin, FXa, and TF-FVlla, all of which have pro-
inflammatory properties. Via the activation of pro-
tease-activated receptors (PARs), these activated
coagulation factors can lead to endothelial stress [24],
cytokine production, exposure of adhesion molecules
on the activated endothelium, and thus inflammation.

As mentioned above, leukocytes (including neutro-
phils) are rapidly attracted to and retained at the site
of thrombosis. The concept of ‘immunothrombosis’ -
an interaction between the innate immune system
and coagulation activation - has recently emerged
[10]. In particular, it has been shown that neutrophils
can promote thrombosis by releasing NETs. These
structures are mainly composed of decondensed
DNA, citrullinated histones, and neutrophil enzymes,
particularly neutrophil elastase and myeloperoxidase
(MPO). The citrullination of H3 and H4 histones
(giving H3Cit and H4Cit, respectively) is followed by
chromatin decondensation [25].

The process of NET formation (also referred to as
NETosis) can be promote by several stimuli - notably
by circulating pathogens. In this context, NETs contrib-
ute to clot formation and thus immobilization of the
pathogen. However, other NETosis triggers include
cytokines [26] and activated platelets [27]. In addition
to their involvement in combatting infections, NETs
can contribute to platelet activation and thrombus for-
mation in a non-infectious context [12,28]. In vitro, the
perfusion of NETs with platelet suspended in plasma
resulted in platelet activation and thrombus formation
[28]. In a baboon model of iliac vein thrombosis, histo-
logic analysis of the thrombus revealed (i) the presence
of NETs, and (ii) colocalization between NETs and fibrin
strings. This was also observed in a mouse model of
DVT induced by flow restriction in the inferior vena
cava [29]. In humans, several studies have reported
the presence of NETs in venous thrombi. Indeed, histo-
logic analysis of venous thrombi from 11 patients
revealed the presence of neutrophil and H3Cit. These
NETs were particularly present in the growing part of
the thrombus but less so in the organized part [30].
Given that NETs are resistant to fibrinolysis, they
might contribute to the impairment of thrombus resol-
ution in the pathophysiology of PTS. Interestingly, NETs
are degraded by DNAses [31] and dismantled by hepar-
ins; the latter can neutralize the harmful effects of his-
tones released when the NET breaks up [28]. Moreover,
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NETosis is inhibited by aspirin and non-steroidal anti-
inflammatory drugs (NSAIDs) [32].

Lastly, it was recently reported that inorganic poly-
phosphate, a pro-inflammatory mediator present in
platelet dense granules [9], can trigger coagulation
via the contact system - again emphasizing the
strong, reciprocal relationship between coagulation
and inflammation. Indeed, polyphosphates released
during platelet activation may then be bound on the
activated platelet surface; this prompts the formation
of membrane-associated inorganic polyphosphate
nanoparticles able to efficiently activate factor Xli
[33]. It has also recently been shown that polypho-
sphates can contribute to the inflammatory reaction
through various mechanisms — particularly by dampen-
ing the complement classical pathway [34]. Further-
more, inorganic  polyphosphates amplify the
inflammatory properties of both histone 4 and high
mobility group box 1 displayed on endothelial cells
[35]. Lastly, inorganic polyphosphates also reportedly
activate the NF-kB pathway, with the upregulation of
ICAM and VCAM expression and greater adhesion of
monocytes to the endothelium [36].

Thrombus resolution and vessel scarring

Several mechanisms including fibrinolysis and matrix
remodeling are involved in thrombus resolution and
wound healing. The nature and time course of throm-
bus resolution may have a major impact on the occur-
rence of PTS because incomplete recanalization is
associated with more severe PTS [37,38].
Inflammation, particularly through leukocyte recruit-
ment in the thrombus and vessel wall, also has an
important role in thrombus resolution. In addition to
the polymorphonuclear neutrophils’ above-mentioned
role in thrombus formation via NETosis, these cells are
involved in thrombus resolution and vessel wound
healing. Polymorphonuclear neutrophils promote fibri-
nolysis through urokinase release and vessel repair
through the production of collagenase and matrix
metalloproteases-9 (MMP-9), both of which are
involved in tissue remodeling [39]. In a murine model
of stasis DVT induced in mice lacking CXCR2 (the
main receptor for CXC chemokines in mice) [40], the
thrombi were seen to be disorganized, with diminished
leukocyte infiltration, i.e. fewer polymorphonuclear
neutrophils involved in the early step of the thrombus
formation but also fewer monocytes involved later on.
Interestingly, thrombus resolution was also impaired.
Concerning MMPs, the macrophage-derived MMP9
[41] is particularly involved in thrombus resolution. In
a murine model of thrombus resolution, MMP-9
expression was found to be significantly elevated in
the thrombus and in the vessel wall in the days following
DVT [42-44] Interestingly, MMP9 inactivation did not
impact thrombus formation but did have a significant

effect on thrombus resolution and the recovery of
vessel wall elasticity, with greater wall compliance
observed in MMP9 knock-out mice. Inactivation of
MMP9 also resulted in greater macrophage infiltration
into the thrombus and a relative reduction in the
stiffness of collagen and elastin fibers during thrombus
resolution — making MMP9 a potentially valuable thera-
peutic target [45]. Although MMP2 is also involved in
thrombus resolution, it is expressed later than MMP9
[44,46,47]. Inflammation therefore has a significant
impact on post-DVT vessel scarring, vessel recanaliza-
tion, fibrosis, compliance, and, lastly, valve damage
which is another major factor in the pathophysiology
of PTS. Histologic analysis has shown that monocyte
infiltration is also associated with valve damage [48].
Lastly, the increased venous pressures observed in PTS
probably favor leukocyte infiltration into the vessel
wall and contribute to the maintenance of a local pro-
inflammatory environment in the damaged vessel.

Inflammation-related biomarkers of DVT

Given the role of inflammation in thrombus formation,
organization and degradation, researchers have looked
for biomarkers of inflammation with a view to better
understanding the pathophysiology of DVT and to
predict the occurrence and outcome of DVT. A large
number of inflammation-related factors - including
both conventional biomarkers (such as CRP, sP-selectin,
sICAM, IL6 and other cytokines) and more specific
markers (MMPs and NETs) — have therefore been eval-
uated as indicators of thrombus resolution and/or pre-
dictive markers for PTS. The hypothesis was that the
type, intensity and duration of the inflammatory
response during the acute phase of DVT influences
the thrombus resolution rate and thus the develop-
ment of PTS.

Cytokines and soluble adhesion molecules

The most extensively studied conventional biomarkers
of inflammation include CRP and IL6. Plasma levels of
CRP and IL6 are strongly linked, since CRP gene tran-
scription depends significantly on IL6 levels [49]. In a
prospective longitudinal study of 44 patients, CRP and
sP-selectin levels were measured at different times
during DVT and compared with data from 88 age -
and sex-matched healthy controls [49]. At diagnosis,
CRP levels were higher in the patients than in the con-
trols [50]. Although the patients’ CRP levels fell markedly
over time, this difference was still significant at 1 month
(but not at months 3 and 12). In the same cohort of
patients, sP-selectin levels were significantly higher at
DVT onset than in controls and then decreased rapidly
within the first month. Elevated plasma sP-selectin and
CRP levels upon diagnosis of DVT were also observed
by Mosevoll et al. [51] and for sP-selectin by Vandy



et al. [52]. A similar pattern (with elevated CRP, IL6 and
sICAM1 upon diagnosis) was reported in a prospective
study of over 600 patients [53]. Levels of CRP and IL6
were also elevated in a small, prospective study of 73
patients with suspected DVT. Phlebography confirmed
the diagnosis in 44 patients, whereas the 30 with nega-
tive phlebography results then served as controls [54].
CRP levels peaked between days 2 and 3 post-DVT,
and then declined progressively. However, levels were
still higher than in controls at the end of the follow-up
(day 5). As expected, IL6 release occurred slightly
earlier, the levels were the highest upon admission
but then fell progressively to day 5, when they were
still higher than in controls. Although elevated levels
of inflammatory endothelial-derived proteins (such as
P-selectin and von Willebrand factor) are observed
during acute-phase DVT, levels of soluble thrombomo-
dulin (sTM), considered to be a good indicator of endo-
thelial activation, are significantly low (relative to control
values) in patients at DVT onset [55]. This might be due
to consumption during the acute-phase DVT of sTM,
which has clear anticoagulant properties via the acti-
vation of the protein C system.

Taken as a whole, these results show that the acute
DVT-related inflammatory reaction starts early and
then lasts for at least 1 month, as evidenced by the pres-
ence of certain inflammatory biomarkers. One of the
main difference between the above-described studies
relates to the nature of the control group, i.e. healthy
controls vs. patients initially suspected to have DVT;
these two approaches have clear differences [51].

Cytokines and soluble adhesion molecules have also
been evaluated as markers of thrombus resolution.
Interestingly, Jezovnik et al.'s [56] study of 49 patients
with idiopathic DVT found that plasma IL-6 and P-selec-
tin levels are predictive of the vein recanalization rate
4-6 months after the acute event. Similarly, elevated
IL6 and CRP levels upon diagnosis of DVT have been
linked to venous outflow resistance 90 days after the
acute phase; this may in part reflect persistent
outflow obstruction [57]. Many researchers have
sought to evaluate the relationship between inflam-
mation and occurrence of PTS. Some studies have
found that high FVIII levels (also an acute phase
protein) are associated with the occurrence of PTS,
[58] whereas other studies have not observed this
association [59]. The same is true for other markers of
inflammation (e.g. CRP); a significant association
between PTS and the CRP level measured 1 year after
the index DVT was observed in one study [59],
whereas no associations between PTS and CRP or IL6
levels at baseline [4,60] or after 90 days [57] or 18
months of follow-up [60] were observed in other
studies. Similarly, Rabinovich et al. reported that
patients with and without PTS did not differ signifi-
cantly with regard to CRP or IL6 levels [53]. However,
a significant association was observed between high
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plasma sICAM-1 levels and the occurrence of PTS, as
previously observed by Shbaklo et al. [61]. Further
studies are needed to confirm or refute sICAM-1's puta-
tive value as a predictive biomarker of PTS. Indeed,
marked inter-study differences in design (particularly
the time interval between the acute episode and the
biomarker measurement) make it hard to compare
the literature data, and so probably explain the discre-
pancies between these results.

Matrix metalloproteases

Given the MMPs’ role in thrombus resolution, plasma
levels of these enzymes have been investigated as pre-
dictive markers of the incidence of PTS. Although
serum levels of MMP9 are higher in patients with DVT
than in healthy controls [62], this was not the case for
MMP9 or MMP2 when the control group was com-
posed of patients with an unconfirmed diagnosis [51].
In the same study, MMP8 was the only MMP tested
to differ significantly as a function of the diagnosis.
Moreover, patients with PTS had higher levels of
MMP-8. A similar association between plasma levels
of MMP-1 and PTS was reported in the same study.
Further studies are needed to determine whether
MMPs are indeed predictive biomarkers of PTS.

Markers of NETosis

There are few specific biomarkers of NETosis. Indeed,
many researchers refer to NETosis when they have
measured cell-free DNA or circulating MPO levels [63];
in fact, the former may merely reflect cellular necrosis
or apoptosis, and the latter may merely reflect neutro-
phil degranulation. Similarly, elevated levels of circulat-
ing nucleosomes and neutrophil elastase-a1-antitrypsin
complexes have been linked to a 3-fold greater risk of
DVT [64] but are not specific for NETs. Levels of the
NET component H3Cit [65] have been studied, particu-
larly in the context of VTE associated with cancer [66].
Indeed, patients with elevated H3Cit levels experienced
a significantly higher cumulative incidence of VTE than
patients with lower levels. The proportion of MPO/
H3Cit-positive neutrophils - a specific marker of
NETosis — detected by flow cytometry, was also signifi-
cantly higher in patients with DVT than in controls
[67]. However, an association between NETosis-
specific biomarkers and PTS has not been reported.

Pharmacological prevention of PTS by
targeting inflammation

Given (i) the interrelation between coagulation and
inflammation during DVT and (ii) the acute-phase reac-
tion’s impact on thrombus formation, organization and
resolution, it is reasonable to consider inflammation as
a potential target in the treatment of DVT. Inhibition of
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the inflammation that occurs within hours or days of
DVT may also be associated with much longer-term
effects - particularly on the occurrence of PTS.
Indeed, the importance of the early post-DVT period
is emphasized by the finding that the intensity of antic-
oagulation during the first three months, but not there-
after, influences the occurrence of PTS [68].
Accordingly, several anti-inflammatory drugs have
been tested for their ability to reduce the occurrence
of PTS.

Anti-inflammatory drugs

Interestingly, the use of non-aspirin NSAIDs, one of the
main classes of anti-inflammatory drug, was associated
with a 1.8- to 2-fold increase in the risk of VTE [69,70].
However, these results must be interpreted with
caution; in particular, one cannot rule out the possi-
bility that the NSAIDs in these studies were prescribed
for the treatment of underlying illnesses associated
with a higher risk of VTE. Moreover, NSAID treatment
was not associated with the occurrence of PTS.

Statins have pleiotropic effects, including anti-
thrombotic and anti-inflammatory activities [71], and
so have also been considered as an adjuvant treatment
for DVT. Statin treatment was indeed reported to
reduce the occurrence of DVT, [72] although these
results are subject to debate in the literature [73].
Statins have also shown anti-inflammatory effects in
rodent models of thrombosis, as evidenced by
reductions in (i) the levels of several inflammatory bio-
markers (including cytokines, sP-selectin), (ii) neutro-
phil and macrophage infiltrations, and (iii) levels of
H3Cit within the thrombi [74] or the vessel wall [75].
Moreover, the observation of accelerated thrombus
resolution and less DVT-induced vein wall scarring
suggested that statins protect against the onset of
PTS [74]. Lastly, a clinical trial assessed the adjunction
of rosuvastatin to the low-molecular-weight heparin
(LMWH) bemiparin; after 3 months of follow-up, the
CRP level and incidence of PTS were significantly
lower in the patients receiving the adjunct statin treat-
ment [76]. However, these preliminary results must be
confirmed in large clinical trials.

The pivotal role of P-selectin in the pathophysiology
of venous thrombosis has prompted researchers to
evaluate different ways of inhibiting this pathway
[18,77,78]. Indeed, P-Selectin/PSGL-1 inhibition strat-
egy has been assessed in a primate model of iliofe-
moral DVT, albeit with inconclusive results. Although
the antibody was as efficacious as the LMWH enoxa-
parin in treating the animals, this effect was not associ-
ated with a relative decrease in inflammation or better
vein re-opening [79]. However, the use of anti-PSGL-1
antibody should not be associated with an increase
in the bleeding risk although this remains to be
demonstrated. Similarly, inhibiting the interaction

between P-selectin and PSGL-1 with specific aptamers
appeared to reduce the harmful consequences of DVT
on vein wall fibrosis, vein recanalization, and valve
competency - suggesting that this approach had coun-
tered the development of PTS [78]. However, the inhi-
bition of P-selectin has not yet been tested in large-
scale clinical trials.

The impact of anticoagulant use during acute-
phase thrombosis on inflammation

The use of anticoagulants with anti-inflammatory
activities or that target pro-inflammatory coagulation
proteins may also have an impact on DVT-related
inflammation and the subsequent occurrence of PTS.
Heparins reportedly have anti-inflammatory proper-
ties mediated by several mechanisms (for a review, see
[80,81]), and act to reduce the involvement of several
important components, such as histones, L and P-selec-
tin, Mac-1, and PECAM-1, in the inflammatory reaction.
For example, heparins limit neutrophil migration into
tissues. Low-molecular-weight heparins and unfractio-
nated heparin (UFH) are also able to dismantle NETs
[28], protect the endothelial glycocalyx, [82] and limit
NFkB activation in LPS-activated monocytes, resulting
in a relative decrease in pro-inflammatory cytokine pro-
duction [83]. These effects were observed at pharmaco-
logically relevant doses (0.1-1 IU/mL). Lastly, heparins
also impair inflammation through their ability to
inhibit FXa and thrombin, and it has been clearly
shown that both of the latter have pleiotropic, PAR-
mediated pro-inflammatory effects [84]. Indeed, throm-
bin and FXa have many activating effects on endo-
thelial cells - resulting in adhesion molecule
exposure, cytokine production, and increased endo-
thelial permeability. With regard to coagulation, both
UFH and LMWH increase plasma levels of tissue
factor pathway inhibitor [85], which limits TF-FVIla’'s
protease activity and half-life, and thus reduces PAR-
dependent pro-inflammatory effects. The structure-
function relationship underlying the heparins’ anti-
inflammatory activity has not been characterized. In a
cell-based model, both UFH and LMWH had similar
levels of activity [83]. However, in a murine in vivo
model of thrombosis, only LMWH (and not UFH)
decreased inflammation independently of the com-
pounds’ respective anticoagulant activities [86]. Inter-
estingly, the fact that non-anticoagulant heparins
have anti-inflammatory effects [87-89] suggest that
antithrombin binding is not crucial for the mediation
of these effects. In a mouse model of renal ischemia-
reperfusion, administration of pentasaccharide (the
smallest heparin derivative) was associated with a
better outcome and a lower inflammatory response
[90]. Even a modified form which cannot bind antith-
rombin still has anti-inflammatory activity [91].



With regard to PTS, the impact of heparin treatment
during the early phase of thrombosis was evaluated in
the prospective HOME-LITE study of 3 months of treat-
ment with the LMWH tinzaparin vs. long-term treatment
with warfarin. The occurrence of PTS was significantly
lower in the patients treated with tinzaparin [92].
Although several studies found that recanalization [93-
96] was better after long-term treatment with an
LMWH (relative to vitamin K antagonists (VKAs)), Daska-
lopoulos et al. [96] did not evidence a clinical reduction
in PTS when comparing the two treatments.

Given that recurrent DVT is a major risk factor for PTS
[5], correct anticoagulation treatment is a real chal-
lenge. Indeed, a relationship between the quality of
VKA treatment and the development of PTS has been
observed in various studies [3,97,98]. Interestingly, a
significant increase in the incidence of PTS was
observed in patients with subtherapeutic anticoagula-
tion (defined as more than 20% [3] or more than 50%
[97] of their international normalized ratio (INR)
values below 2). However, Galanaud et al. found that
the degree of INR control for patients treated with
VKA was not predictive of PTS [4].

Although no specific anti-inflammatory effects have
been reported for DOACs, the latter target two coagu-
lation factors that both have pro-inflammatory proper-
ties. Hence, one can reasonably expect dabigatran (an
oral direct thrombin inhibitor) to have anti-inflamma-
tory effects. Similarly, use of an oral direct FXa inhibitor
results in limited FXa availability and secondary throm-
bin production - both of which might help to reduce
the inflammation associated with DVT. Recent studies
of the effect of rivaroxaban (an oral FXa direct inhibitor)
on PTS led to conflicting results. A significant reduction
in the incidence of PTS was reported in 61 patients
treated for 6 months with rivaroxaban, when compared
with 39 patients having received overlapping, conven-
tional treatment with LMWH (for 5-7 days) and VKA
[99]. Interestingly, the patients receiving rivaroxaban
in this study also exhibited significantly lower levels
of fibrinogen, an inflammatory marker. In contrast, a
post-hoc analysis of the Einstein DVT study data on
PTS was performed for 335 patients (162 patients
receiving rivaroxaban and 174 receiving enoxaparin/
VKA) only revealed a non-significant trend in the risk
of PTS [100]. These findings (obtained in small patient
populations) need to be strengthened in a large ran-
domized trial. Moreover, it would be of great value to
compare DOACs with LMWH, since heparins are
reported to have numerous direct anti-inflammatory
effects in addition to those mediated by thrombin
and FXa inhibition.

Conclusion

It has now been clearly established that inflammatory
processes are involved in the pathophysiology of DVT
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and may have a significant role in the development
of PTS. Changes in several plasma biomarkers attest
to this inflammatory process, but none has showed
clear clinical value for PTS prediction. The close
relationship between inflammation and coagulation
means that any therapeutic approach that targets
both pathways is of potential value. Whereas several
anti-inflammatory drugs have been evaluated, the
lack of well-designed, large-scale, clinical trials means
that no firm conclusions can yet be drawn. Anticoagu-
lants such as LMWH, which both have anticoagulant
and direct anti-inflammatory potential, might be
good candidates for large-scale clinical evaluation.
When considering physiological coagulation inhibitors,
sTM, which has already been successfully compared
with LMWH in the prevention of DVT in orthopedic
surgery [101], has many anti-inflammatory properties
and might be worth investigating further [102].
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