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Abstract 

Study Objectives: In aging, reduced delta power (0.5-4 Hz) during N2 and N3 sleep has been 

associated with gray matter (GM) atrophy and hypometabolism within frontal regions. Some studies 

have also reported associations between N2-N3 sleep delta power in specific sub-bands and amyloid 

pathology. Our objective was to better understand the relationships between spectral power in delta 

sub-bands during N2-N3 sleep and brain integrity using multimodal neuroimaging. 

Methods: In-home polysomnography was performed in 127 cognitively unimpaired older adults 

(mean age ± SD: 69.0 ± 3.8 years). N2-N3 sleep EEG power was calculated in delta (0.5-4 Hz), slow 

delta (0.5-1 Hz) and fast delta (1-4 Hz) frequency bands. Participants also underwent MRI and 

Florbetapir-PET (early and late acquisitions) scans to assess GM volume, brain perfusion and amyloid 

burden. Amyloid accumulation over ~21 months was also quantified. 

Results: Higher delta power was associated with higher GM volume mainly in fronto-cingular regions. 

Specifically, slow delta power was positively correlated with GM volume and perfusion in these 

regions, while the inverse association was observed with fast delta power. Delta power was neither 

associated with amyloid burden at baseline, nor its accumulation over time, whatever the frequency 

band considered. 

Conclusions: Our results show that slow delta is particularly associated with preserved brain 

structure, and highlight the importance of analysing delta power sub-bands to better understand the 

associations between delta power and brain integrity. Further longitudinal investigations with long 

follow-ups are needed to disentangle the associations between sleep, amyloid pathology and 

dementia risk in older populations. 

Keywords 

Sleep, Slow-Wave; gray matter; atrophy; amyloid; aging; neuroimaging; EEG. 
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Clinical Trial Information 

Name: Study in Cognitively Intact Seniors Aiming to Assess the Effects of Meditation Training (Age-

Well). 

URL: https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1.  

See STROBE_statement_AGEWELL.doc in supplementary file.  

Registration: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: 

NCT02977819. 

 

Statement of Significance 

In older adults, delta power during N2-N3 sleep is associated with several aspects of brain integrity. 

Here, we refined spectral analyses by dividing delta power into slow and fast sub-bands and 

investigated their neural correlates using multimodal neuroimaging. For the first time, we found that 

delta sub-bands correlate with gray matter volume and brain perfusion in an opposite manner 

(positively for slow delta, negatively for fast delta), suggesting that associations with delta previously 

reported were driven by slow delta power. However, we did not observe significant associations with 

amyloid burden at baseline, or its accumulation over time. Future studies should consider analyze 

delta power sub-bands separately to investigate the associations with dementia risk. 

 

 

 

  

https://clinicaltrials.gov/ct2/show/NCT02977819?term=Age-Well&draw=2&rank=1
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Introduction 

Sleep becomes lighter and more fragmented with increasing age [1]. Non-rapid eye movement 

(NREM) sleep is particularly altered by the aging process, especially N3 sleep which is the deepest 

NREM sleep stage [2–4]. Delta power (sometimes referred to as delta activity or slow wave activity) 

corresponds to spectral power computed in the delta frequency band (0.5-4 Hz) on N2 and N3 

epochs combined, or N3 only depending on studies. It is a homeostatically-regulated variable 

considered to reflect neuronal synchronization [5] and has been traditionally used as a proxy of sleep 

depth [6,7], even this is more and more called into question [8,9]. Delta power during N2 and N3 

sleep is known to be reduced in older individuals [2], notably during the first sleep cycles [10]. 

Interestingly, this age-related decrease in delta power is maximal on frontal derivations [11–14], and 

has been associated with gray matter (GM) atrophy [12,14–16] and hypometabolism [17] mostly in 

prefrontal regions. 

Beyond normal aging, recent studies suggest that poor sleep quality is associated with Alzheimer’s 

disease pathophysiological processes, including amyloid-beta (Aβ) deposition [18,19]. Aβ levels 

fluctuate with the sleep-wake cycle, increasing during wake periods and decreasing during sleep [20–

22]. Indeed, cerebrospinal fluid (CSF) inflows during N3 sleep are thought to play a major role in the 

clearance of cerebral toxic waste such as Aβ [23]. Interestingly, CSF inflows are increased during 

periods with high delta power in both mice [24] and humans [25]. Consistently, recent studies have 

linked reduced delta power to increases in CSF Aβ in older adults [26–28], suggesting that the 

disruption of N3 sleep may affect Aβ release and/or clearance.  

However, few studies have investigated the associations between delta power and amyloid burden 

measured using Positron Emission Tomography (PET), and these studies have not provided 

homogeneous results. On the one hand, three studies conducted on partly overlapping samples of 26 

to 32 cognitively unimpaired older individuals have linked the power of delta sub-bands during N3 to 

both prefrontal amyloid burden and accumulation over time [29–31]. More specifically, greater 

prefrontal amyloid burden was associated to lower relative power in the 0.6-1 Hz frequency band 
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[29,30] and to higher relative power in the 1-4 Hz frequency band during N3 [29]. Importantly, 

greater prefrontal amyloid deposition over 3.7 years also correlated with lower relative power in the 

0.6-1 Hz frequency band and higher relative power in the 1-4 Hz frequency band [31]. On the other 

hand, another study conducted in 38 older adults reported no significant association between mean 

cortical amyloid burden and 1-4.5 Hz power during N2 and N3 combined (referred to as N2-N3 sleep 

hereafter) [32]. However, decreased 1-2 Hz power was associated with greater cortical amyloid 

burden, as measured with the averaged standard uptake value ratio over frontal, temporal and 

parietal regions [32]. Of note, spectral power below 1 Hz was not analyzed in this study due to 

hardware limitations. Lastly, a more recent study conducted on a younger and larger cohort of 100 

healthy adults aged between 50 and 70 years has not revealed any significant association between 

amyloid burden and delta power sub-bands (or their ratio) during N2-N3 sleep [33]. Overall, the age-

related decrease in delta power has been associated with reduced GM volume and metabolism in 

frontal areas, but the structural and functional correlates of delta power sub-bands have never been 

investigated so far. In addition, few studies suggest opposite associations between delta power sub-

bands and amyloid burden [29,30,32] or accumulation [31] measured using PET. 

In this context, our objective was to assess the associations between spectral power in delta sub-

bands during both N2-N3 sleep and N3 alone and i) GM volume, perfusion and amyloid burden at 

baseline, and ii) amyloid accumulation over time in a sample of 127 community-dwelling cognitively 

unimpaired older adults. We expected these relationships to differ depending on the frequency band 

considered, such that higher slow delta power would be associated with higher GM volume and brain 

perfusion, and lower amyloid burden and accumulation over time in frontal regions, whereas higher 

fast delta power would be associated with GM atrophy, hypoperfusion and greater amyloid burden 

and accumulation over time in similar regions. 
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Materials & Methods 

Participants 

One hundred and thirty-seven cognitively unimpaired older participants were enrolled in the 

baseline of the Age-Well randomized controlled trial (RCT) of the Medit-Ageing European Project, 

sponsored by the French National Institute of Health and Medical Research (Inserm) [34]. Data were 

acquired between 2016 and 2020. All participants were community-dwelling individuals aged over 65 

years old, and performed in the normal range for their age and education level on standardized 

cognitive tests of a neuropsychological diagnostic battery. Those with contraindications in relation to 

MRI or PET scanning, evidence of a major neurological or psychiatric disorder (including alcohol or 

drug abuse), history of cerebrovascular disease, presence of a chronic disease or acute unstable 

illness, and current or recent medication that may interfere with cognitive functioning were not 

included. At baseline, they underwent a comprehensive neuropsychological assessment, an 

ambulatory polysomnography (PSG) recording, structural MRI and 18F-Florbetapir PET scans and 

Apolipoprotein E (ApoE) genotyping within a maximum interval of 3 months. Then, they were 

randomly assigned to one of the 3 arms of an 18-month intervention (meditation training, non-native 

language training or no intervention group). At follow-up, they repeated structural MRI and 18F-

Florbetapir PET examinations (see below). All participants gave their written informed consent prior 

to the examinations, and the Age-Well RCT was approved by the ethics committee (CPP Nord-Ouest 

III, Caen; trial registration number: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; 

ClinicalTrials.gov Identifier: NCT02977819). 

 

Polysomnography recording 

Participants underwent an ambulatory PSG recording at home using a Siesta® device (Compumedics, 

Australia). Eighty-one participants over 121 (67% of the sample) had a habituation night at the 

beginning of the protocol, which was not included in the analyses. The PSG consisted in recording the 

electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), chin 
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electromyogram (EMG), respiratory movements using thoracic and abdominal belts, respiratory 

airflow using nasal and oral thermistors, and oxygen saturation using a finger pulse oximeter. For the 

EEG recording, we placed 20 electrodes over the scalp according to the international 10-20 system 

(Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, P3, P4, Pz, O1, O2, vertex ground, and a bi-mastoid 

reference), with impedances kept below 5 kΩ. The EEG signal was digitalized at a sampling rate of 

256 Hz, high-pass and low-pass filters were applied, respectively at 0.3 Hz, and 35 Hz. Recordings 

were visually scored in 30-second epochs according to the rules of the American Academy of Sleep 

Medicine [35], allowing the computation of standard sleep parameters and respiratory parameters 

used as covariates in the analyses, including the apnea-hypopnea index (AHI, sum of apneas and 

hypopneas per hour of sleep), the proportion of total sleep time with SpO2 level ≤ 90% and the 

density of respiratory micro-arousals (number of events per hour of sleep).  

Spectral analyses 

Spectral analyses were performed on all artefact-free N2 and N3 sleep epochs using Matlab R2018b 

(Mathworks, Natick, USA) and the free open-source toolbox Sleeptrip (https://github.com/Frederik-

D-Weber/sleeptrip; RRID: SCR_017318) based on FieldTrip functions (http://fieldtriptoolbox.org; 

RRID: SCR_004849) [36]. An independent component analysis (ICA) was carried out for 2 subjects to 

remove ECG artefacts on EEG data, and the resulting EEG signals were visually inspected for quality 

check purposes. Data were then epoched into 5-s bins and those containing manually identified EEG 

artefacts or movement arousals were rejected. Channels with artefacts affecting a majority of the 

recording were also removed. Power spectral analyses were performed on continuous 4-s segments 

(50% overlap) and were tapered using a Hanning window. A fast Fourier Transform was applied. The 

power spectra were averaged across all segments (Welch’s method) and normalized by the effective 

noise bandwidth to obtain power spectral density estimates for the whole data (spectral resolution 

of 0.25 Hz). For each electrode, mean power was calculated in delta (0.5-4 Hz) frequency band, 

normalized by total power to account for potential individual differences in absolute spectral power. 
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As in previous studies, we separated slow (0.5-1 Hz) and fast (1-4 Hz) delta sub-bands using a cut-off 

of 1Hz [29–31,33]. A ratio between slow and fast delta power was also computed. To reduce the 

number of analyses and obtain topographically-specific values, spectral power was averaged on 

several channels as follows: frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, Pz, P4), temporal 

(T3, T4), and occipital (O1, O2). As delta power is particularly reduced in frontal areas with age, we 

focused the main analyses on frontal delta power, and other regions were used for replication 

purposes. Consistently with recent recommendations for sleep research in older adults [37], spectral 

power was computed on N2 and N3 sleep epochs (referred to as N2-N3 sleep hereafter), but 

sensitivity analyses were also performed using N3 epochs only. Finally, as delta power is known to 

decay across sleep cycles during the night, spectral analyses were also performed during the N2-N3 

epochs of the first and second half of night separately (the cut-off point being defined as the epoch 

equally distant from the first and last epochs of sleep). 

Neuroimaging examinations 

All neuroimaging examinations were performed at the Cyceron Center (Caen, France) on the same 

MRI and PET cameras (Philips Achieva 3T and a GE Healthcare Discovery RX VCT 64 PET-CT scanners, 

respectively).  

1) Structural MRI 

High-resolution T1-weighted anatomical images were acquired at baseline and follow-up using a 3D 

fast-field echo sequence (3D-T1-FFE sagittal, repetition time = 7.1 ms, echo time = 3.3 ms, flip angle = 

6°, 180 slices with no gap, slice thickness = 1 mm, field of view = 256 x 256 mm², in-plane resolution= 

1 x 1 x 1 mm3). During the MRI sessions, subjects were equipped with earplugs and their head was 

stabilized with foam pads to minimize head motion. T1-weighted images were segmented using 

FLAIR images (3D-IR sagittal, TR/TE/TI = 4800/272/1650 ms ; flip angle = 40°; 180 slices with no gap; 

slice thickness = 1 mm; field of view = 250 x 250 mm2; in-plane resolution = 0.98 x 0.98 mm2), 

spatially normalized to the Montreal Neurological Institute (MNI) template, modulated using the 
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SPM12 segmentation procedure (http://www.fil.ion.ucl.ac.uk) and smoothed with an 8 mm full-

width at half-maximum (FWHM) Gaussian filter. Images were then masked to exclude non-gray 

matter voxels from the analyses. 

2) PET imaging 

Florbetapir-PET scans were performed at baseline and follow-up to reflect both brain perfusion 

(early acquisition) and amyloid deposition (late acquisition). They were acquired with a resolution of 

3.76 × 3.76 × 4.9 mm3 (field of view = 157 mm). Forty-seven planes were obtained with a voxel size of 

1.95 × 1.95 × 3.27 mm3. A transmission scan was performed for attenuation correction before the 

PET acquisition. Each participant underwent a 10 min PET scan beginning at the intravenous injection 

of ~4 MBq/Kg of Florbetapir, and another 10 min scan beginning 50 min after the injection. Due to an 

injection issue, early and late PET data at baseline were missing for one participant, and late PET data 

at baseline were not available for one participant due to acquisition issues. 

Early Florbetapir-PET was reconstructed from 1 to 5 min. PET images were coregistered on their 

corresponding anatomical MRI and were then normalized to the MNI template using deformation 

parameters derived from the anatomical MRI. Resulting images were scaled using cerebellar GM as a 

reference. A smoothing kernel of 10 mm Gaussian filter was applied and images were masked to 

exclude non-gray matter voxels from the analyses. To determine participants’ amyloid positivity, 

individual global cortical amyloid standardized uptake value ratio (SUVR) was extracted from a 

predetermined neocortical mask (including the entire GM, except the cerebellum, occipital and 

sensory motor cortices, hippocampi, amygdala and basal nuclei) [38]. A similar procedure with white 

matter scaling was also applied on baseline and follow-up images to specifically assess global amyloid 

accumulation over time (estimated with difference between follow-up and baseline SUVR) as this 

procedure is more sensitive to estimate SUVR longitudinal changes [39,40].  

Maps reflecting amyloid percent annual changes (i.e., PET-PAC maps) between baseline and follow-

up were generated for each participant. To do so, a customized DARTEL (Diffeomorphic Anatomical 

Registration through Exponentiated Lie Algebra) template was obtained from baseline MRI scans. For 
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each participant, a pairwise longitudinal registration was computed between baseline and follow-up 

anatomical MRI images, resulting in a midpoint average anatomical MRI image (i.e., anatomical MRI 

average). The anatomical MRI average was segmented into GM, white matter and CSF, and was then 

normalized to the DARTEL template. Baseline and follow-up late Florbetapir-PET images were 1) 

coregistered on the anatomical MRI average, 2) normalized to the DARTEL template by applying the 

deformation parameters from the corresponding anatomical MRI average, and 3) scaled by white 

matter. The resulting PET images were used to create individual PET-PAC maps. PET-PAC maps 

represent the voxel-wise calculation of percent amyloid change over the follow-up period (i.e. the 

difference between follow-up and baseline scaled PET value divided by baseline PET value x 100) 

expressed in annual percent change (i.e. multiplied by 12/number of months between baseline and 

follow-up PET scans). This calculation was performed only on voxels common to both baseline and 

follow-up PET data, identified using a masking procedure. A differential smoothing (8.1 x 8.1 x 7.5 

mm3) was then applied to the PET-PAC maps.  

 

Statistical analyses 

First, we aimed at assessing the neural correlates of N2-N3 sleep delta power in the different 

frequency ranges (i.e., delta, slow and fast delta) at baseline. Thus, voxel-wise multiple regressions 

were performed between natural log values of frontal delta power during N2-N3 sleep and GM 

volume, brain perfusion and amyloid burden at baseline, separately. Regressions between 

neuroimaging data and the ratio between slow and fast delta power were also carried out. All 

analyses were controlled for age, sex, education, ApoE4 status and the AHI. 

Second, we investigated whether baseline delta power in the different frequency ranges was 

associated with longitudinal amyloid changes. Therefore, similar voxel-wise multiple regressions 

were performed between log values of delta power and PET-PAC maps masked to keep only the 

voxels accumulating amyloid. This mask was composed of all significant positive voxels (p < 0.005, 
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uncorrected) in a one-sample t test performed on PET-PAC maps. The same covariates were added in 

the model (i.e., age, sex, education, AHI and ApoE4 status), with the addition of the intervention 

group (i.e., passive control, non-native foreign language training and meditation training, coded 

categorically), as assessing the impact of non-pharmacological interventions on sleep was not the 

aim of the present study. 

Then, sensitivity and specificity analyses were performed to ensure of the robustness of the results. 

We aimed at replicating all main results with (i) N2-N3 sleep delta power values computed on other 

EEG derivations (i.e., central, parietal, temporal and occipital channels), (ii) frontal delta power 

computed on N3 sleep epochs only, and (iii) by adding the presence of the habituation night (coded 

as 0 or 1) as a covariate, to ensure that the absence of a habituation night had no impact. 

Furthermore, we checked whether our main results were replicated when computing spectral power 

during N2-N3 epochs of the first versus second half of the night, to account for the dynamic of delta 

power (and its sub-bands) across sleep cycles. Finally, as the AHI was relatively high in our cohort, we 

performed a series of confirmatory analyses to ensure that this did not impact our results. The 

characteristics of individuals with and without severe sleep apnea were compared using t tests for 

continuous variables and Chi2 for categorical variables (Supplementary Table 1). First, we replicated 

the analyses in a subsample excluding participants with severe sleep apnea, as measured by an AHI ≥ 

30. Second, we repeated the main analyses by controlling for hypoxemia and sleep fragmentation-

related variables (i.e., proportion of total sleep time with SpO2 level ≤ 90% and density of respiratory 

micro-arousals) instead of the AHI alone. 

All neuroimaging analyses were carried out using SPM12, and results were considered significant at a 

p < 0.005 (uncorrected) threshold combined with an analysis-specific minimum cluster size 

(Supplementary Table 2) determined by Monte-Carlo simulations using the AlphaSim program to 

achieve a corrected statistical significance of p < 0.05.  
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Results 

Participants characteristics 

The flowchart of the inclusion process is available in Figure 1 and participants’ characteristics are 

summarized in Table 1. From the 137 participants enrolled in the Age-Well RCT, 127 were included in 

baseline cross-sectional analyses, and 113 in longitudinal analyses after a mean follow-up of 20.7 ± 

0.9 months (Figure 1). At baseline, participants had a mean age of 69.0 ± 3.8 years, 63% of the 

sample were women and 20.6% were amyloid-positive. The distribution of sleep-disordered 

breathing severity among the cohort was as follow: AHI < 15 (n=32), 15 ≤ AHI < 30 (n=59), AHI ≥ 30 

(n=36). The mean ∆ SUVR value, reflecting amyloid accumulation over the follow-up period, was 

0.0039 ± 0.027 (see the distribution in Figure 2). Of note, only 16 of 113 participants (14% of the 

cohort) had an increase of at least 5% of the SUVR over the follow-up period, and only 2 (1.8% of the 

cohort) had an increase of at least 10%.  

Specificity analyses were carried out in participants without severe sleep apnea (i.e., with AHI < 30). 

This group differed from participants with severe sleep apnea (i.e., with AHI ≥ 30) only in terms of 

sex-ratio (p = 0.035), which was controlled for in statistical analyses (Supplementary Table 1). 

 

N2-N3 sleep delta power, GM volume and brain perfusion at baseline 

1) GM volume 

We first assessed voxel-wise associations between frontal delta power and GM volume. Higher delta 

(0.5-4 Hz) power during N2-N3 sleep was associated with higher GM volume mainly in the medial 

orbitofrontal cortex (mOFC), bilateral middle frontal gyrus, anterior and middle cingulate gyri, 

extending to some temporal and posterior cortical areas (e.g., fusiform, lingual, middle and inferior 

temporal gyri) (Figure 3A, Table 2). Furthermore, higher slow delta (0.5-1 Hz) power was associated 

with higher GM volume mainly in the mOFC and anterior cingulate cortex (ACC) (Figure 3B, Table 2). 



 
 

14 

Interestingly, an opposite association was found with fast delta (1-4 Hz), such that higher fast delta 

power was associated with atrophy in the mOFC and bilateral ACC (Figure 3C, Table 2). Consistently, 

lower GM volume in the mOFC and bilateral ACC was also associated with lower ratio between slow 

and fast delta power (Figure 3D, Table 2). Finally, a positive correlation was also found between fast 

delta power and GM volume in the left temporal middle gyrus (Table 2). 

Results were replicated when calculating delta power over central, parietal, temporal or occipital 

channels, except for fast delta, for which only the positive associations with central and temporal 

channels survived the cluster size correction (Supplementary Figure 1). In addition, the same pattern 

of results was obtained when (i) computing delta power only in N3 epochs (Supplementary Figure 2, 

Supplementary Table 3), (ii) excluding participants with severe sleep apnea (Supplementary Figure 

3A), (iii) adding the presence or not of a habituation night as a covariate and (iv) taking into account 

hypoxemia and sleep fragmentation. 

Interestingly, all main associations between spectral power values and fronto-cingulate GM volume 

were replicated when computing spectral power values during N2-N3 epochs of the first or the 

second half of the night (Supplementary Figure 4). 

 

2) Brain perfusion 

We then investigated voxel-wise associations between frontal delta power and brain perfusion. No 

significant association was found between frontal delta power and brain perfusion (Figure 3A). 

However, secondary analyses revealed that parietal and occipital delta power were positively 

associated with perfusion in the right middle frontal gyrus (Supplementary Figure 5).  

When considering delta sub-bands, positive associations were observed between perfusion in the 

mOFC and ACC and slow delta power (0.5-1 Hz) on all derivations (see Table 2 and Figure 3B for 

frontal derivations, and Supplementary Figure 5 for other derivations), such that higher perfusion in 

these regions was related to higher slow delta power. No significant association was found between 

fast delta (1-4 Hz) power and brain perfusion (Figure 3C). However, a lower ratio between slow and 
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fast delta power was associated with lower brain perfusion in the mOFC and bilateral ACC (Figure 3D, 

Table 2). 

Sensitivity and specificity analyses revealed that all results were similar after taking into account 

hypoxemia and sleep fragmentation. Similarly, the pattern of results was confirmed when computing 

delta power on N3 epochs only, except that the cluster associated with the slow/fast ratio did not 

survive the cluster size correction (Supplementary Figure 2, Supplementary Table 3). Likewise, 

results with slow delta were replicated in the subgroup excluding participants with severe sleep 

apnea, and the clusters with the other frequency bands were present but did not survive the cluster 

size correction (Supplementary Figure 3B). Lastly, adding the habituation night as a covariate yielded 

similar results, except for the analysis with fast delta power during N2-N3 sleep in the entire cohort 

that revealed a significant cluster in the mOFC and bilateral ACC (cluster size: 3021 mm3, t-value = 

3.42). Of note, results remained unchanged when computing spectral power values on the first or 

the second half of the night, except that the frontal cluster associated with slow/fast ratio on the first 

half of the night did not survive the cluster size correction (Supplementary Figure 4). 

 

N2-N3 sleep delta power, amyloid burden and accumulation over time 

At baseline, neither delta, slow, fast delta power, nor the slow/fast ratio during N2-N3 or N3 sleep 

were associated with amyloid burden. This absence of association was observed for all EEG 

derivations, when excluding participants without severe sleep apnea (Supplementary Figure 3C), and 

when taking into account the presence of a habituation night or hypoxemia and sleep fragmentation 

in the models.  

Regarding longitudinal analyses, amyloid PAC was neither associated with delta power in the 

different sub-bands, nor with the ratio of slow over fast delta power, during N2-N3 or N3 sleep. 

Again, similar results were obtained regardless of the EEG derivations, when considering only 

participants without severe sleep apnea (Supplementary Figure 3D), and when taking into account 

the presence of a habituation night or hypoxemia and sleep fragmentation in the models. 
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Finally, amyloid burden at baseline and amyloid PAC were not associated with spectral power values 

computed on N2-N3 epochs of the first and the second half of the night (Supplementary Figure 4). 

Discussion 

Our main objective was to investigate the neural correlates of N2-N3 delta power sub-bands in 

cognitively unimpaired older adults, using multimodal neuroimaging. Our results reveal opposite 

associations between delta power sub-bands and brain integrity, with higher slow delta power being 

associated with higher mOFC and ACC volume and perfusion, while higher fast delta power is related 

to lower volume and perfusion in these regions. In contrast, no significant association was found with 

amyloid deposition, even when considering delta power sub-bands or their ratio. 

 

Slow waves, which mainly contribute to delta power, are known to originate from medial prefrontal 

and anterior cingulate areas [41], and to propagate along an antero-posterior axis [42]. They play a 

key role in memory consolidation [43] and in the clearance of cerebral toxic waste such as Aβ [27]. 

Delta power decreases with age [2,10,11,13,16] and this reduction has been associated with 

impaired sleep-dependent memory consolidation [12,14] and a greater risk of cognitive impairment 

[44]. Here, our results support previous studies showing that brain atrophy in regions involved in the 

generation and propagation of slow waves (e.g., fronto-cingulate regions) likely underlies the age-

related decrease in delta power in older adults [14–16]. We also observed an association with brain 

perfusion, which was probably weaker as it was restricted to the right cerebral hemisphere and for 

parietal and occipital channels only, while similar clusters in the left hemisphere were present but 

under the corrected threshold. Some authors suggest that delta power in the slow versus fast sub-

bands may have different physiological properties and play distinct roles [45]. For instance, only 

delta power above 2 Hz usually declines from the first to the second NREM sleep episode of a given 

night [46]. Furthermore, only the fast component of delta power increases after sleep deprivation in 

both mice [47] and humans [48]. To our knowledge, we report for the first time in humans that the 
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links between delta power and frontal GM volume and perfusion vary according to the frequency 

bands considered. Indeed, higher slow delta power (0.5-1 Hz) was associated with higher mOFC and 

ACC volume and perfusion, while an opposite pattern, at least with GM volume, was found with fast 

delta power (1-4 Hz). These findings were replicated when analyzing the first and the second half of 

the nigh separately and suggest that the slower component of delta power is the largest contributor 

of the likely bidirectional positive associations between delta power and GM volume [12,14,16] and 

metabolism [17] previously reported in the literature. Consistently, a higher ratio between slow and 

fast delta power was also associated to higher GM volume and perfusion in the mOFC and ACC. Age-

related structural and/or functional changes in these areas may particularly affect the ability of the 

brain to generate the slowest EEG rhythms during NREM sleep, leading to a shift towards faster delta 

frequencies and an increase of the relative contribution of fast delta power. Of note, we also 

reported an association between higher fast delta power and greater GM volume in the left temporal 

middle gyrus. This association was marginal, considering that no other frequency band and 

neuroimaging modality (e.g., perfusion) correlated with this cluster. Further studies are needed to 

test the robustness of this association. 

We did not observe any significant association between delta sub-band powers and amyloid 

deposition. This result stands at odds with some previous studies showing opposite relationships 

between slow and fast delta powers and amyloid pathology, with greater slow delta power being 

associated with less amyloid burden [29,30,32] and accumulation over time [31], while higher fast 

delta power was related to greater A burden [29] and accumulation over time [31]. In addition, it 

has also been shown that inducing faster delta power for 1 month using optogenetics exacerbates 

amyloid peptide accumulation in a transgenic mice model of Alzheimer’s disease [49]. In our sample, 

we did not replicate previous findings showing that slow delta power is negatively associated with 

amyloid burden [29,30,32], even when considering specifically delta power during N3 sleep. While 

animal studies support robust associations between reduced delta power and greater amyloid 

deposition [50], clinical studies assessing the links between sleep disturbances, including altered N3, 
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and amyloid levels measured using PET-imaging are more heterogeneous. Indeed, a substantial part 

of studies reporting significant associations between sleep and PET-measured amyloid burden have 

used self-reported sleep measures [51–55], and have not always been replicated, even in large 

cohorts [56,57]. Importantly, self-reported sleep parameters are known to frequently differ from 

objective sleep measures, especially in older populations [58–60]. When considering objectively-

measured sleep, the links between N3 and amyloid levels have mainly been demonstrated using CSF 

measures [26–28,61]. Amyloid burden measured using PET (that reflects the accumulation of the 

amyloid peptide over a longer period) has been previously associated with several sleep parameters 

derived from polysomnography including slow delta power [29,30,32], the coupling between sleep 

spindles and a subtype of slow waves [33] and specific subtypes of sleep arousals (depending on 

their propensity to trigger sleep stage transition and the concomitant EMG activity) [62]. Of note, 

studies reporting associations with slow delta power are heterogeneous in terms of the frequency 

band considered (0.6-1 Hz [29,30] or 1-2 Hz [32]), have relatively limited sample size (< 40 

participants), often include highly educated individuals (16 to 17 years of education on average 

[29,30]) and partially overlapping cohorts [29–31]. Importantly, a recent study with a large, yet 

younger sample (n = 100 individuals aged between 50 and 70 years) did not report significant 

associations between delta sub-band powers and amyloid burden [33]. Similarly, we did not find any 

association between PET-measured amyloid burden and delta power or its sub-bands in N3 and N2-

N3 sleep, despite a sample size from 3 to 4 times larger than in studies reporting significant results. 

Several factors may explain these discrepancies in clinical studies, with the main difference across 

cohorts being the proportion of amyloid positive participants. Indeed, 21% of the participants in our 

cohort were amyloid-positive, which is substantially lower compared to previous studies (45% in [32] 

and 61% in [30]). Thus, cohorts with younger participants [33] and/or a lower proportion of amyloid-

positive participants may not have sufficient variability to reveal significant associations between 

amyloid burden and delta power. Similarly, the absence of association between delta sub-band 

powers and amyloid accumulation over time in our cohort is likely due to the fact that our 
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participants exhibited very modest changes in amyloid load over the relatively short 21-month 

follow-up, compared to the 3.7 years follow-up in the only study testing the associations with 

longitudinal amyloid changes [31]. Further longitudinal studies following individuals with higher 

amyloid load over several years are needed to clarify the complex relationship between delta power 

and amyloid pathology. The inclusion/exclusion of participants with sleep-disordered breathing may 

represent another important factor explaining discordant results, as it has been associated with 

greater amyloid burden and changes in GM volume, perfusion and metabolism [63,64]. Previous 

studies investigating the associations between delta sub-bands and amyloid have excluded 

participants with an AHI ≥ 15 [29,31,33], or included a smaller proportion of individuals with sleep-

disordered breathing (13% [32]) than in our sample. As sleep-disordered breathing is highly prevalent 

and underdiagnosed in older individuals, our cohort may be more representative of the general older 

population [65,66]. If in our cohort there was a high proportion of individuals with an AHI ≥ 15 (n=95 

individuals; 75% of the sample), these participants were overall poorly symptomatic, with only 15 

presenting an Epworth Sleepiness Scale score  9, suggestive of excessive daytime sleepiness. In 

addition, we replicated our results after controlling for the AHI or its related effects on oxygen 

saturation and sleep fragmentation, and after excluding participants with severe sleep apnea. We 

therefore believe that sleep-disordered breathing had no major impact on our results, which aligns 

with another study showing no link between amyloid pathology and delta sub-band power, which 

excluded individuals with AHI ≥ 15 [33]. It is possible that differences in lifestyle (e.g., practice of 

physical and/or cognitive activities) and psycho-affective factors between cohorts may explain part 

of the observed differences. 

 

Strengths and limitations 

Our study has several strengths, including the computation of delta power across several frequency 

sub-bands in both N2-N3 and N3 sleep to finely investigate its neural correlates. In addition, we 
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combined four complementary neuroimaging measures (GM volume, brain perfusion, amyloid 

burden and its accumulation over time) in a relatively large sample of cognitively unimpaired 

individuals. Analyses were controlled for important confounders, including the ApoE4 status, sleep 

apnea and its related effects on oxygen saturation and sleep fragmentation. Sensitivity analyses were 

also performed in a subgroup of participants to rule out the possible influence of severe sleep apnea. 

The temporal dynamic of delta power across the night has also been considered by replicating the 

results in NREM epochs of the first and second half of the night separately, even if the dynamic for 

each sleep cycle has not been specifically addressed. However, this study also has limitations. First, 

all participants did not have a habituation night, but we replicated our findings after controlling for 

this variable. Second, the relatively low amyloid burden at baseline and accumulation over time is 

likely to explain the absence of association between delta power and amyloid deposition and 

accumulation. Future studies will need to use longer longitudinal designs in more diverse samples to 

investigate the relationships between spectral power in delta sub-bands and the accumulation of 

amyloid over time. 

Conclusion 

Overall, our results demonstrate that the known links between reduced NREM sleep delta power and 

altered brain integrity in fronto-cingulate regions are mainly driven by the EEG power below 1 Hz. 

Moreover, slow (0.5-1 Hz) and fast (1-4 Hz) delta power show opposite associations with fronto-

cingulate GM volume and perfusion. Importantly, these associations appear to be more specific than 

when using the entire delta frequency band. In addition, we found no significant associations 

between delta power and amyloid burden, regardless of the frequency band used. Further studies 

investigating the links between NREM sleep delta power and brain and cognitive integrity should 

consider analysing slow and fast delta power separately. 
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Figure 1. Flowchart of the inclusion process. 

Abbreviations: AHI (Apnea-Hypopnea Index), CPAP (Continuous Positive Airway Pressure), MRI 

(Magnetic Resonance Imaging), PAC (Percent Annual Change), PET (Positron Emission Tomography). 
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Figure 2. Distribution of ∆ Florbetapir SUVR. 

Histogram showing the distribution of ∆ Florbetapir SUVR reflecting global amyloid accumulation 

over the follow-up (20.7 ± 0.9 months) in the full sample (n = 113). The curve represents the density of 

the distribution. Abbreviations: SUVR (Standard Uptake Value Ratios). 
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Figure 3. Neuroimaging correlates of N2-N3 sleep delta power. 

Results of voxel-wise multiple regressions showing significant associations between frontal delta 

power during N2-N3 sleep and GM volume (magenta), brain perfusion (cyan), as well as their overlap 

(purple). No significant cluster was found with the amyloid burden or amyloid PAC (percent annual 

change). Results are presented at the p < 0.005 (uncorrected) level combined with a minimum cluster 

size to achieve a corrected statistical significance of p < 0.05 after controlling for age, sex, education, 

AHI and ApoE4 status (and intervention group for amyloid PAC). Coordinates are indicated in the MNI 

space. 
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Supplementary Figure 1. Glassbrain projections of voxel-wise regressions between GM volume and 

N2-N3 sleep delta power calculated on different scalp regions.  

Results of voxel-wise multiple regressions showing significant associations between N2-N3 sleep delta 

power on several derivations and GM volume. All significant positive (+ corr, in green) and negative (- 

corr, in red) correlations are displayed (see Table 2). Results are presented at the p < 0.005 

(uncorrected) level combined with a minimum cluster size determined by Monte-Carlo simulations 

using the AlphaSim program to achieve a corrected statistical significance of p < 0.05 after controlling 

for age, sex, education, AHI and ApoE4 status.  
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Supplementary Figure 2. Neuroimaging correlates of N3 delta power. 

Results of voxel-wise multiple regressions showing significant associations between frontal delta 

power during N3 sleep and GM volume (magenta), brain perfusion (cyan), as well as their overlap 

(purple). No significant cluster was found with the amyloid burden or amyloid PAC (percent annual 

change). Results are presented at the p < 0.005 (uncorrected) level combined with a minimum cluster 

size to achieve a corrected statistical significance of p < 0.05 after controlling for age, sex, education, 

AHI and ApoE4 status (and intervention group for amyloid PAC). Coordinates are indicated in the MNI 

space. Two participants had no N3 epoch and were removed from this specific analysis.  
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Supplementary Figure 3. Glassbrain projections of voxel-wise regressions between neuroimaging 

and N2-N3 sleep delta power in participants without severe sleep apnea.  

Results of voxel-wise multiple regressions between frontal delta power during N2-N3 sleep and (A) 

GM volume, (B) brain perfusion, (C) amyloid burden and (D) amyloid PAC over time. All significant 

positive (+ corr, in green) and negative (- corr, in red) correlations are displayed (see Supplementary 

Table 3). Results are presented at the p < 0.005 (uncorrected) level combined with a minimum cluster 

size determined by Monte-Carlo simulations using the AlphaSim program to achieve a corrected 

statistical significance of p < 0.05 after controlling for age, sex, education, AHI and ApoE4 status (and 

intervention group for amyloid PAC). 
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Supplementary Figure 4. Neuroimaging correlates delta power during N2-N3 epochs of the first 

and second half of the night.  

Results of voxel-wise multiple regressions showing significant associations between frontal delta 

power during N2-N3 epochs of the first (left panel) and the second (right panel) half of the night and 

GM volume (magenta), brain perfusion (cyan), as well as their overlap (purple). No significant cluster 

was found for amyloid burden or amyloid PAC (percent annual change). Results are presented at the 

p < 0.005 (uncorrected) level combined with a minimum cluster size to achieve a corrected statistical 

significance of p < 0.05 after controlling for age, sex, education, AHI and ApoE4 status (and 

intervention group for amyloid PAC). Coordinates are indicated in the MNI space.  
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Supplementary Figure 5. Glassbrain projections of voxel-wise regressions between brain perfusion 

and N2-N3 sleep delta power calculated on different scalp regions.  

Results of voxel-wise multiple regressions between N2-N3 sleep delta power on several derivations 

and brain perfusion. All correlations were positive for delta, slow delta and ratio between slow and 

fast delta power (+ corr, in green) and negative for fast delta power (- corr, in red). Results are 

presented at the p < 0.005 (uncorrected) level combined with a minimum cluster size determined by 

Monte-Carlo simulations using the AlphaSim program to achieve a corrected statistical significance of 

p < 0.05, after controlling for age, sex, education, AHI and ApoE4 status. 
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Table 1. Participant characteristics. 

 

 

 

Data are presented as mean ± SD unless indicated otherwise. Of note, one participant had no N3 and 

was removed from the analyses for this specific sleep stage. 

 *: missing data of late PET acquisition at baseline for one participant. 

Abbreviations: AHI (Apnea-Hypopnea Index), ApoE (Apolipoprotein E), BMI (Body Mass Index), GDS 

(Geriatric Depression Scale), MMSE (Mini-Mental State Examination), nb (number), SD (Standard 

Deviation), SUVR (Standard Uptake Value Ratio, with cerebellum GM reference), TST (Total Sleep 

Time), WASO (wake after sleep onset). 

 

  

Variable 
Baseline 
(n = 127) 

Follow-up 
(n = 113) 

Demographic   

Age: years 69.0 ± 3.8 70.4 ± 3.8 
Sex: nb (%) of women 80 (63.0) 71 (62.8) 
Education: years 13.0 ± 3.1 13.3 ± 3.0 
MMSE: total score 29.0 ± 1.0 - 
GDS: total score 1.3 ± 1.8 1.6 ± 1.7 
STAI-B: total score 34.5 ± 7.0 34.0 ± 8.0 

BMI: kg/m2 26.2 ± 4.3 26.2 ± 4.7 
Florbetapir SUVR* 1.24 ± 0.16 1.25 ± 0.17 

Amyloid positive*: nb (%) 26 (20.6) 25 (22.1) 
ApoE 4 carriers: nb (%) 34 (26.8) 30 (26.5) 

Sleep   

Total sleep time: min 360.0 ± 64.6 - 
Sleep efficiency: % 77.0 ± 10.0 - 
Sleep latency: min 20.9 ± 13.8 - 
WASO: min 87.0 ± 47.8 - 
AHI: nb of events per hour 25.3 ± 14.8 - 
N1 sleep: % of TST 13.6 ± 7.3 - 
N2 sleep: % of TST 48.3 ± 8.8 - 
N3 sleep: % of TST 19.8 ± 9.6 - 
REM sleep: % of TST 18.3 ± 5.6 - 
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Table 2. Results of voxel-wise multiple regression analyses between neuroimaging data and frontal 

delta power during N2-N3 sleep. 

 

T-values and MNI coordinates are indicated for the peak of each cluster. Cluster p-values are 

presented at the p < 0.005 (uncorrected) level combined with a minimum cluster size to achieve a 

corrected statistical significance of p < 0.05 after controlling for age, sex, education, AHI and ApoE4 

status. 

Abbreviations: ACC (Anterior Cingulate Cortex), AHI (Apnea-Hypopnea Index), ApoE (Apolipoprotein 

E), B (bilateral), corr (correlation), L (left), MNI (Montreal Neurological Institute), mOFC (medial 

OrbitoFrontal Cortex), R (Right), + (positive correlation), - (negative correlation).   

Frequency 
band 

Corr Brain areas 
Cluster extent 

MNI 
coordinates 

T-values 
Nb of 
voxels 

mm3 x y z 

  GM volume       

Delta  
(0.5-4 Hz) 

+ L pre and post central gyri 
L middle cingulate cortex 
L inferior parietal lobule 
R middle frontal gyrus 
L ACC 
R lingual gyrus 
L fusiform gyrus and L 
hippocampus 
L middle occipital and 
temporal gyri 
B mOFC, R rectus and L ACC 
L middle frontal gyrus 
L lingual gyrus 
R middle and inferior 
temporal gyrus 

979 
1034 
313 
857 
769 
652 
793 

 
645 

 
1968 
447 
452 
338 

3304 
3490 
1056 
2892 
2595 
2201 
2676 

 
2177 

 
6642 
1509 
1526 
1141 

-52 
-9 

-52 
27 
-8 
10 
-32 

 
-39 

 
-6 

-38 
-8 
63 

-4 
-39 
-44 
42 
40 
-75 
-50 

 
-76 

 
21 
20 
-68 
-24 

32 
36 
39 
33 
18 
-6 
-8 
 

30 
 

-15 
44 
-2 

-16 

5.09 
5.02 
4.81 
4.76 
4.62 
4.32 
4.29 

 
4.26 

 
4.24 
3.94 
3.67 
3.66 

Slow delta  
(0.5-1 Hz) 

+ L hippocampus and L 
amygdala 
B ACC and mOFC 

597 
 

1191 

2015 
 

4020 

-18 
 

-4 

-2 
 

26 

-10 
 

-10 

4.54 
 

4.28 

Fast delta 
(1-4 Hz) 

+ L temporal middle gyrus 414 1397 -52 -33 -4 3.92 

- B ACC and mOFC 352 1188 3 32 -8 3.59 

Ratio 
          

          
  + B ACC and mOFC 723 2440 3 32 -8 4.07 

  Brain perfusion       

Slow delta  
(0.5-1 Hz) 

+ B ACC and mOFC 2806 9470 6 38 -2 3.96 

Ratio 
          

          
 + B ACC and mOFC 1119 3777 4 36 -3 3.54 
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Supplementary Table 1. Demographic characteristics and comparison of participants with and 

without severe sleep apnea.  

Variables 
AHI < 30 
subgroup  
(n = 91) 

AHI ≥ 30 
subgroup 
(n = 36) 

 
Effect size 

 

 
pvalue 

Age: years 68.7 ± 3.3 69.7 ± 4.8 0.257† 0.269 

Sex: nb (%) of women 63 (69.2) 17 (47.2) 2.51‡ 0.035 
Education: years 13.1 ± 3.2 12.7 ± 2.8 0.126† 0.498 

MMSE: total score 29.1 ± 1.0 28.8 ± 1.1 0.341† 0.110 

GDS: total score 1.3 ± 1.9 1.1 ± 1.2 0.146† 0.374 

STAI-B: total score 34.7 ± 7.2 34.1 ± 6.6 0.085† 0.652 
BMI: kg/m2 26.0 ± 4.5 26.6 ± 3.7 0.130† 0.474 

Florbetapir SUVR* 1.23 ± 0.14 1.28 ± 0.19 0.289† 0.207 
Amyloid positive*: nb (%) 16 (17.8) 10 (27.8) 0.56‡ 0.313 

ApoE 4 carriers: nb (%) 23 (25.3) 11 (30.6) 0.77‡ 0.701 

 

Data are presented as mean ± SD unless indicated otherwise. Effect sizes were estimated with 

Cohen's d† for continuous variables and with odd-ratio‡ for categorical variables. 
*: missing data of late PET acquisition at baseline for one participant. 

Abbreviations: ApoE (Apolipoprotein E), BMI (Body Mass Index), GDS (Geriatric Depression Scale), 

MMSE (Mini-Mental State Examination), nb (number), SD (Standard Deviation), SUVR (Standard 

Uptake Value Ratio, with cerebellum GM reference).  
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Supplementary Table 2. Determination of minimal cluster sizes for each neuroimaging analyses. 

 

For each multiple regression analysis, minimal cluster size (k voxels) was determined using AlphaSim 

program, in order to achieve a corrected statistical significance of p < 0.05.  

Abbreviations: GM (Gray Matter), PAC (Percent Annual Change). 

Supplementary Table 3. Results of voxel-wise multiple regression analyses between neuroimaging 

data and frontal delta power during N3 sleep. 

  GM 
volume 

Brain 
perfusion 

Baseline 
Amyloid 
burden 

Amyloid PAC 

 

Fu
ll 

sa
m

p
le

 

EEG power during N2-N3 sleep     

Frontal EEG channels     

Delta 291 938 2553 57 

Slow delta 293 1025 2578 55 

Fast delta 262 1089 2630 54 

Ratio slow delta/fast delta 264 1015 2402 61 

Central EEG channels     

Delta 297 888 2621 57 

Slow delta 260 970 2429 57 

Fast delta 267 978 2723 60 

Ratio slow delta/fast delta 266 913 2491 58 

Parietal EEG channels     

Delta 297 961 2755 56 

Slow delta 264 903 2431 57 

Fast delta 304 1113 2746 60 

Ratio slow delta/fast delta 267 1133 2648 63 

Temporal EEG channels     

Delta 250 892 2617 57 

Slow delta 297 907 2549 55 

Fast delta 267 952 2558 55 

Ratio slow delta/fast delta 259 911 2737 62 

Occipital EEG channels     

Delta 259 1128 2560 60 

Slow delta 268 928 2570 60 

Fast delta 298 924 2767 56 

Ratio slow delta/fast delta 263 1058 2669 55 

EEG power during N3 sleep     

Frontal EEG channels     

Delta 245 905 2606 59 

Slow delta 302 1137 2522 53 

Fast delta 302 1137 2444 55 

Ratio slow delta/fast delta 306 1005 2419 59 

Su
b

gr
o

u
p

 o
f 

p
ar

ti
ci

p
an

ts
  

w
it

h
o

u
t 

se
ve

re
 

sl
ee

p
 a

p
n

ea
 EEG power during N2-N3 sleep     

Frontal EEG channels     

Delta 268 905 2819 53 

Slow delta 271 879 2681 53 

Fast delta 276 944 2659 53 

Ratio slow delta/fast delta 269 906 2656 54 
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T-values and MNI coordinates are indicated for the peak of each cluster. Cluster p-values are 

presented at the p < 0.005 (uncorrected) level combined with a minimum cluster size to achieve a 

corrected statistical significance of p < 0.05 after controlling for age, sex, education, AHI and ApoE4 

status.  

Abbreviations: ACC (Anterior Cingulate Cortex), AHI (Apnea-Hypopnea Index), ApoE (Apolipoprotein 

E), B (bilateral), corr (correlation), L (left), MNI (Montreal Neurological Institute), mOFC (medial 

OrbitoFrontal Cortex), R (Right), + (positive correlation), - (negative correlation). 

 

 

 

 

STROBE Statement—checklist of items that should be included in reports of observational 

studies 

 

Frequency 
band 

Corr Brain areas 
Cluster extent 

MNI 
coordinates 

T-values 
Nb of 
voxels 

mm3 x y z 

  GM volume      

Delta  
(0.5-4 Hz) 

+ L inferior parietal cortex 
L superior frontal gyrus 
L middle cingulate cortex 
L middle frontal gyrus 
L middle temporal and occipital 
gyri, angular gyrus 
B rectus and mOFC 
L pre and post central gyri 
L lingual and fusiform gyri 
R frontal superior gyrus 
L hippocampus 
R lingual and fusiform gyri 

266 
247 

1237 
268 
557 

 
621 
368 
334 
473 
545 
503 

898 
834 

4175 
905 

1880 
 

2096 
1242 
1127 
1596 
1839 
1698 

-33 
-18 
-8 

-36 
-42 

 
3 

-50 
-30 
27 
-28 
27 

-48 
22 
-38 
20 
-64 

 
34 
-6 

-54 
42 
-15 
-56 

40 
54 
36 
42 
18 

 
-24 
32 
-6 
32 
-14 
-9 

4.66 
4.51 
4.41 
4.22 
4.15 

 
4.00 
3.98 
3.89 
3.82 
3.76 
3.60 

Slow delta  
(0.5-1 Hz) 

+ L hippocampus and amygdala 
R hippocampus, amygdala and 
putamen 
B ACC and mOFC 

527 
638 

 
728 

1779 
2153 

 
2457 

-18 
34 

 
3 

-2 
-20 

 
33 

-10 
-12 

 
-8 

4.33 
3.88 

 
3.85 

Fast delta 
(1-4 Hz) 

+ L temporal middle gyrus 430 1451 -54 -33 -4 3.86 

- B ACC and R mOFC 399 1347 3 32 -8 3.59 

Ratio 
          

          
 + B ACC and mOFC 566 1910 3 33 -8 3.93 

  Brain perfusion       

Slow delta  
(0.5-1 Hz) 

+ B ACC and mOFC 1777 5997 8 38 4 3.54 
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