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Introduction  
Heart failure (HF) is one of the major health threats of western societies. HF is a clinical syndrome 

arising from different pathophysiological conditions. HF affects up to 10 % of the elderly, in absolute 

numbers more women than men, as reviewed recently.1, 2 The likelihood for developing heart failure 

(HF) across the life course is determined by the interaction between genetic predisposition, a cumu-

lative exposure to cardiovascular risk factors and age-related alterations in cardiac and vascular ana-

tomy and physiology. In this process, sex differences come into play and determine the risk on deve-

loping clinically overt HF.  In most studies and registries, women are more likely to survive than men 

and HF in women frequently occurs at an older age and with less ischemic etiology than men.3-5 

While it remains subject of debate, most evidence points towards the existence of two HF phenotypes, 

each constituting approximately 50% of the total HF population and defined by differences in ejection 

fraction, preserved or reduced.6-8 Recently, a third HF phenotype, named HF with a midrange ejection 

fraction (HFmrEF) has been acknowledged as a new entity within the HF syndrome.9 HFmrEF patients 

comprise approximately 10-20% of the HF population.9 As compared to heart failure with a preserved 

ejection fraction (HFpEF), patients with HFmrEF are younger and more frequently of the male sex.9 A 

recent publication of the PROTECT-1 Study showed that all three HF entities differ from one another 

in both clinical features and biomarker profiles, with HFmrEF exhibiting the most heterogeneous 

profile.10 Whereas biomarkers related to HFpEF were primarily of the inflammatory type and 

biomarkers related to heart failure with a reduced ejection fraction (HFrEF) were mostly associated 

with cardiac stretch, the biomarker profile of HFmrEF comprised both inflammatory and cardiac 

stretch biomarkers.10 This implies that HFmrEF is indeed a mixture between HFpEF and HFrEF and that 

the prevalence of all three HF syndromes is different in men and women. 

Few studies determined the true incidence of HFpEF and HFrEF in women and men, but the available 

evidence suggests that in western populations, HFpEF has a greater prevalence in women and HFrEF 

in men.2, 11-15 Indeed, whereas women are more prone to develop HFpEF , men are more likely to 

develop HFrEF. In fact, the ratio of women to men in prevalence of HFpEF is an astounding 2:1.6-8 It is 

s not clear how frequent a transition from HFpEF to HFrEF occurs in the population and if this is sex-

dependent. More studies are needed here. The evidence that HFrEF in men is mainly due to MI and 
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the evidence that women have a longer life expectancy and HFpEF has a greater prevalence in the 

older age groupsmay contribute to the difference in prevalence between these two HF entities.  

The most important precursor of HF is myocardial hypertrophy (MH), as it occurs in hypertension and 

aortic stenosis, but diabetes, ischemic heart disease, genetic cardiomyopathies, arrhythmia also play 

an important role. Women and men with HF differ in their comorbidities. Aging, over- and under-

nutrition, diabetes, hypertension, salt loading, as well as inflammatory or autoimmune diseases, are 

significant risk factors, which manifest differently between men and women and contribute to HF in a 

sex-dependent manner.16-18 Furthermore, the relationship between sex, comorbidities and 

cardiovascular structure and function differs between women and men with HF.17  

All triggers and comorbidities lead to increased wall stress, MH and/or relative myocardial ischemia 

and finally HF. This may combine with individual susceptibility, due to unfavorable gene variants, 

leading to more or less strong unfavorable responses of the heart. Sex specificity is introduced at the 

level of the triggers, but also of the pathophysiological substrate and the resulting response.  

Hence,in the present review, we will briefly discuss sex differences in the trigger 

conditions/comorbidities before we approach the molecular mechanisms underlying the adaptive and 

maladaptive mechanisms leading to HF from these triggers.  

Sex differences in comorbidities of HF 

Sex differences in hypertension and obesity as risk factors for HF   

One in three adults presents with arterial hypertension based on current guideline definitions In 

European countries and the United States.19, 20 Differences between women and men are well known 

as discussed.2 In younger age and middle age groups hypertension has a significantly lower prevalence 

in women than in men.19 Hypertension is less common in premenopausal women than in men of the 

same age21 but its prevalence increases more steeply after the menopause. This has been linked to the 

loss of inhibition of the renin angiotension system by estrogens after menopause and to obesity. 

Postmenopausally sustained hypertension is frequently preceded by hypertension, eclampsia or 

preeclampsia during pregnancy.22 In the elderly population, hypertension is more common in women 

than men. 

Hypertension contributes to the risk for heart failure in women to a greater extent than in men23, 24 

which is probably due to the greater prevalence in the older age groups and the fact that the women 

get older than men.  

Sex differences in pressure overload : aortic valve stenosis  

Aortic stenosis (AS) is a common cause of MH in the elderly, and affects women and men, as reviewed 

previously.2 In the European populations the prevalence is up to 5 % among subjects aged 70-79 years 

and up to 10 % among subjects > 80 years of age. AS due to a congenital bicuspid valve is 3 times more 

common among men than women25, while degenerative AS is more common among women than men 

with a women:men ratio of 1:0.76.26 AS leads to pressure overload of the heart, similar to 

hypertension.  

In recent studies, we observed that the phenotype of MH differs in women and men with AS. As a 

consequence of AS progression, leading to increasing pressure overload on the left ventricle, 

compensatory changes in left ventricular structure occur. Women develop more concentric MH with 
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well-preserved ejection fraction whereas men go more rapidly to ventricular dilatation and pump 

failure (Fig 1) .27, 28 Men also have more fibrosis in the pressure overloaded heart.28-32 Phenotypic 

differences are associated with survival. If women exhibit the « male » dilated phenotype, their 

survival is significantly lower than those of women with the typical « female » concentric form of 

hypertrophy.29 Lower myocardial function was also found in men compared to women with AS in the 

SEAS and in a smaller study.27, 33 More longitudinal studies are needed to understand the sex 

differences in remodeling.  

 Sex differences in obesity and diabetes  

Obesity is a major risk factor for hypertension, diabetes, and coronary artery disease (CAD) in women 

and men (as reviewed in34). Obesity nowadays presents a major and gender-specific health problem 

due to its dramatic increase in younger women.35 The HF risk introduced by obesity is better assessed 

by the waist-to-hip ratio than by body mass index (BMI)23 due to the negative biological functions of 

visceral fat. Visceral obesity, which is more common in men and postmenopausal women, induces 

hypertension by different sex-dependent mechanisms, such as neurohormonal activation, an increase 

in intra-abdominal pressure, and glomerular and tubular effects. Premenopausal women in general 

develop peripheral adiposity, with predominantly gluteal fat accumulation, which is not associated 

with an equally poor cardiovascular prognosis.36 After the menopause, concentrations of lipoproteins 

as well as body fat distribution shift to a more male pattern, to android obesity, which is linked to 

increased cardiovascular morbidity and risk for type 2 diabetes. Visceral fat and subcutaneous fat differ 

in the distribution of adrenergic and estrogen receptors and in the production of free fatty acids and 

inflammatory mediators which contribute to the development of hepatic insulin resistance.37 A lower 

percentage of visceral fat may be one of the primary metabolic features that underlie the reduced risk 

for cardiovascular disease in premenopausal women.36 Accumulation of visceral abdominal fat is 

accelerated by the menopause and is associated with the above mentioned increase in blood pressure, 

with insulin resistance and with increased cardiovascular risk. 

Diabetes is a stronger risk factors for HF in women than in men.24, 38-40 The interaction between 

diabetes and atherogenic and prohypertrophic mechanisms and cardiovascular risk in women has 

been related to sexual hormones but has not yet been completely understood. However, it has been 

shown that protective sex differences in endothelial function, in nitric oxide (NO) production and in 

the antithrombotic profile in women are abrogated by diabetes.41 A major protective role for female 

sexual hormones in the interplay between insulin and atherosclerosis is suggested by the increased 

risk of young women with polycystic ovarian syndrome, which is characterized by low estrogen and 

relatively high testosterone serum levels, for diabetes and possibly also atherosclerosis.40, 42-44  

Sex differences in ischemic heart disease (IHD)  

It has been pointed out frequently and also recently that in most western societies, CAD develops on 

average 7-10 years later in women compared to men.2 However, manifestations of CAD in younger 

women are increasing.45, 46 This may most likely be due to unfavorable life-style changes over the past 

decades. Acute coronary syndromes (ACS) occur 3-4 times more often in men than women below age 

60, but after 75 yrs women represent the majority of patients. Recently, the number of ACS in younger 

women has significantly increased.45, 46  

Whereas CAD classically focusses on the diseases of the epicardial coronary arteries, the recently 

defined entity IHD includes all damage due to ischemia in the myocardium, regardless whether the 

cause lies in the major coronary arteries, in the microcirculation or in a supply/demand disbalance.47 

IHD not due to atherosclerosis of major coronary arteries is more common in women then in men.  
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Accordingly, acute coronary syndromes (ACS), ST-elevation MI (STEMI) or Non-STEMI without 

epicardial CAD or structural heart disease occur more frequently in women than in men.47, 48 In 

particular, younger women with ACS may present with open coronary arteries, with plaque erosions 

with distal embolization rather than plaque rupture with thrombus formation.49 In Non-STEMI women 

it was recently demonstrated that coronary artery plaque area was associated with myocardial 

ischemia independent of presence of coronary stenosis.50 Not unfrequently, angina or ACS in women 

may be due to coronary microvascular disease (CMD), also called microvascular angina.51, 52 Women 

have more frequently components of pathological vasoreactivity, such as spasm and endothelial 

dysfunction (Figure 2).53-55 IHD seems to lead more frequently to HF in women than in men.  

Sex differences in genetic cardiomyopathies  

Genetic cardiomyopathies due to autosomal gene variations are expected to occur with the same 

prevalence between women and men.56 However, dilated cardiomyopathy and hypertrophic 

cardiomyopathy (HCM) have a greater prevalence in men than in women.57-61 Thus, compensation for 

the genetic defect in these syndromes appears to be more efficient in women than in men. A transition 

from a hypertrophic to a dilated, hypocontractile phenotype has been described in detail in a case 

study of a women with HCM.62 Sudden arrhythmic cardiac death is a frequent thread in HCM and 

sudden death in young athletes is frequently attributed to undiagnosed HCM. Noteworthy, sudden 

cardiac death in young and middle-aged athletes affects almost only men, also if unrelated to HCM.63   

  

Sex differences in arrhythmia  

Women have a higher resting heart rate than men, a shorter sinus node recovery time and stronger 

modulation of heart rate variability, probably reflecting greater parasympathetic influences.56, 64-67 

Women also have longer rate-corrected QT intervals than men and manifest greater lengthening of 

the QT interval as heart rate slows.68 At prolonged QT intervals, women are more susceptible to the 

development of “torsade des pointes”, a rare ventricular tachycardia, which is frequently self-limiting 

but may also degenerate into lethal ventricular fibrillation.67-72 On the other hand, ventricular 

arrhythmias and sudden cardiac death are more common in men than in women in the short QT 

syndromes, e.g. the Brugada syndromes. Moreover, male sex is a strong predictor of risk for atrial 

fibrillation.73-77 These phenotypes can be caused by pathological mechanisms affecting ion channels or 

factors related to regulatory pathways of ion channels in a sex-specific manner. 

 

Sex differences in major adaptive and maladaptive processes in HF 
 

Sex differences in energy metabolism  

Cardiac energy metabolism 

There is a strong link between myocardial metabolism and cardiac function. The heart is among the 

largest energy consumer organ in the body. Energy is stored in the form of adenosine triphosphate 

(ATP) and phosphocreatine (PCr) which is formed by the phosphorylation of creatine from ATP by the 

creatine kinase reaction (CK). The heart consumes around 1 mmole ATP/kg/sec. This means that all 

ATP and PCr content should be renewed every ≈20 sec. Heart muscle is a highly oxidative tissue as it 

produces more than 90% of its energy from mitochondrial respiration. Mitochondria are the site of 
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oxidative phosphorylations (OXPHOS). They are considered as the powerhouse of the cell because they 

produce the majority of energy rich bounds in the form of ATP. A unique feature of mitochondria is 

that they arose more than 1.45 billion years ago from endosymbiosis of ancient proteobacteria. 

Mitochondria contain their own DNA coding for 13 subunits of the respiratory chain and ribosomal and 

transfer RNAs. In mammals, the mitochondrial proteome contains more than 1000 proteins, not 

counting a wide array of splicing and post-translational variants.78 Because most of the mitochondrial 

proteins are encoded by the nuclear genome, mitochondria have tissue-specific structure and function 

rendering them exquisitely well-adapted to the physiology of the host cell. Mitochondria produce 

more than 90% of energy needed for cardiac contraction, and occupy more than 30 % of the cardiac 

cell volume. They are densely packed, organized under the sarcolemma and in rows between 

myofilaments.  

 

There is a strict correlation between cardiac work and oxygen consumption. Therefore, a strong energy 

signaling pathways should exist to ensure the close match between oxygen consumption and energy 

utilization. This is achieved in part by calcium as it regulates myosin and sarcoplasmic reticulum 

ATPases on one hand, and the major mitochondrial dehydrogenases and F0/F1 ATPase on the other.79 

Mitochondrial respiration rate depends almost linearly upon the changes of localized ADP 

concentration in their physiological range. This mechanism of regulation relies on the existence of 

energetic microdomains at sites of energy production and utilization, interconnected by 

phosphotransfer kinases and cell architecture.80, 81 The most important phosphotransfer system is the 

creatine kinase system which is free in the cytosol or bound to intracellular structures involved in 

energy production (mitochondria and glycolytic complexes) and energy utilization in close proximity 

to ATPases (sarcoplasmic reticulum, myofilaments, sarcolemma).  

 

The heart is generally considered as a substrate omnivore with the capacity to oxidize fatty acids, 

carbohydrates, ketone bodies, lactate and even amino acids, the preferred substrate being fatty acids. 

The heart exhibits metabolic flexibility which is its ability to respond to changing workload, substrate 

availability, circulating hormones, coronary flow, fuel metabolism by choosing the right substrate at 

the right moment.82, 83 

 

Adequate cellular energy supply and survival depend on mitochondrial life cycle, which involves 

mitochondrial biogenesis, dynamics, and recycling via mitophagy. Mitochondria proliferate by division 

of preexisting organelles, through a process called mitochondrial biogenesis. It includes mitochondrial 

protein expression and its molecular control, phospholipids synthesis, import of mitochondrial 

proteins and mitochondrial network dynamics. Mitochondrial biogenesis is under the control of the 

nucleus and necessitates the coordination of the two genomes, the nuclear and the mitochondrial 

ones.  

 

The tuning of the mitochondrial protein expression depends on a highly interconnected network 

between coregulators and various DNA-binding transcription factors that regulate a large number of 

nuclear genes encoding mitochondrial proteins. The transcriptional coactivator peroxisome 

proliferator-activated receptor-γ (PPARγ) coactivator-1 (PGC-1α and β) are master regulators of energy 

metabolism at the level of gene transcription. Through their interaction with multiple transcription 

factors they enhance mitochondrial capacity for fatty acid oxidation and oxidative phosphorylation, 

the transcription and replication of mitochondrial DNA, mitochondrial dynamic proteins, and 
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angiogenesis. Among these transcription factors the PPARs and more specifically PPARα plays a major 

role in regulation of proteins involved in lipid oxidation. 

 

Aside from providing most of the energy to the host cell, mitochondria participate in multiple other 

cell functions like ionic homeostasis, production and regulation of ROS, pH regulation, steroid 

hormones synthesis, calcium homeostasis, thermogenesis, lipid and carbohydrate utilization, and cell 

death. 

Sex differences in cardiac energy metabolism 

Cardiac energy metabolism is a place for sexual dimorphism. For example, women have lower 

myocardial glucose extraction fraction and utilization and higher myocardial oxygen consumption 

(MVO2) than men.84 Female mice exhibit lower basal glycogen content85 suggesting sex differences in 

the regulation of glycogen and glycophagy.85, 86 However, cardiac triacylglycerol content does not differ 

between males and females.87  

 

Mitochondria exhibit a strong tissue- and sex- specificity.88 Estrogen and estrogen receptors have been 

implicated in the regulation of mitochondrial function and biogenesis (Fig 2) (for review see 89, 90). A 

cross-talk between the PGC-1/PPAR axis regulating energy metabolism and substrate utilization and 

the estrogen/ERs pathway has important implications for the understanding of sex-differences in 

energy metabolism and pathologies. Different modes of interaction at the transcription level have 

been described (for review see 89, 91). Estrogen responsive elements have been found on the PGC-1α 

promoter.92 Female sex hormones, estrogen and progesterone participate in the structural assembly 

of mitochondria and attenuate stress-induced mitochondrial ROS production while estrogens may also 

modulate mitochondrial ATP synthesis.93 E2 deficiency induces mitochondrial compromise through 

miR-23a-mediated PGC-1alpha downregulation, participating to the menopause-associated left 

ventricular concentric remodeling in females.94  

 

A sexual dimorphism of mitochondrial oxidative capacities is evident in many tissues (Fig 3). However, 

in general the rate of respiration of cardiac mitochondria or homogenates as well as the amount of 

mtDNA/nDNA do not differ between males and females.95-100 Cardiomyocytes from female rats exhibit 

lower mitochondrial content101, but a slightly higher mitochondrial content and mitochondrial size was 

found in mouse female heart.97 Nevertheless, subtle differences have been described. When 

subsarcolemmal and intermyofibrillar mitochondria were studied, it was found that glutamate-malate-

stimulated respiration was lower and ADP/O ratio higher in females.102 A significant sexual dimorphism 

was shown in the expression of cardiac mitochondria genes with increased expression of genes of fatty 

acid metabolism in young females and higher expression levels of genes associated with oxidative 

phosphorylation in old female hearts compared to males.103 This suggests that mitochondria from 

females have higher specific activity than the male ones, and preferentially use lipids.  

 

In the heart, mitochondria are the essential source of production of reactive oxygen species (ROS) as 

well as the most direct target for their damaging effects. Interestingly, as in other tissues, mitochondria 

from female hearts produce less ROS and exhibit lower oxidative damage than males.97, 101, 104 Part of 

these effects could be mediated by estrogens and estrogen receptors present in the cardiomyocytes. 

Indeed, estrogens are able to up-regulate genes involved in the protection against oxidative stress.105 

The enhanced mitochondrial function and lower oxidative stress in rat cardiac muscle could be 

mediated through G-protein coupled estrogen receptors.106 Much less is known of the effects of male 
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hormones on mitochondrial structure and function. Testosterone has been shown to regulate 

myocardial cell growth and the activity of some inner mitochondrial membrane proteins in rodent 

hearts.107 

 

Mitochondrial calcium regulation is an important player in cell fate and cell death. Together with ROS, 

calcium is an inducer of the permeability transition pore (PTP) leading to mitochondrial swelling, 

decreased ATP synthesis and ultimately cell death.108 The capacity of mitochondria to control excess 

calcium is thus of crucial importance. This depends on the balance between calcium uptake along the 

electrochemical gradient and calcium extrusion mechanisms. Female cardiac mitochondria are more 

resistant both in the extent and in the rate of mitochondrial swelling at high calcium concentration109 

and have a greater mitochondrial calcium retention capacity than the male ones.102 These properties 

of female cardiac mitochondria depends on gender modulation of the calcium uniporter.110 Estrogens 

may be involved as it was shown that they protect heart mitochondria from high calcium-induced 

release of cytochrome c.111 

Energy metabolism in hypertrophy and heart failure 

In response to stress, the heart hypertrophies to bear the extra load and normalize the pressure. 

Hypertrophy is accompanied by intracellular and extracellular remodeling that involves 

vascularization, excitation-contraction coupling cytoarchitecture and energy metabolism (for review 

see 112). At first adaptive, some of these switches promotes a more favorable energetic economy, but 

when the stress is prolonged and strong, these adaptive mechanisms become insufficient to maintain 

oxidative metabolism and cardiac performances and participate in the cardiomyocyte failure. 

Metabolic alterations in heart failure encompass augmented energy demand due to the increased 

load, decreased energetic efficiency and diminished energy metabolism leading to energetic imbalance 

of the myocardium.81, 113 

  

Complex changes in gene expression affect all cellular functions including energy metabolism. In 

response to stress, the genetic program is thought to reverse to a more fetal one. In general, a decrease 

in reliance on fatty acid is observed while glucose oxidation is first maintained and then also decreases 

in more severe states leading to loss of metabolic flexibility.82, 113, 114 It is now appreciated that loss of 

metabolic flexibility and mitochondrial dysfunction precede cardiac dysfunction, indicating that 

metabolic remodeling is an early event in disease progression.114-116 In response to physiological stimuli 

as well as during compensated hypertrophy, mitochondrial content increases in proportion to other 

cell components to maintain an optimal ratio between mitochondria and energy consuming organelles 

like myofilaments.117 In uncompensated hypertrophy, mitochondrial dysfunction is associated with 

decreased energy production, decreased mitochondrial biogenesis, increased production of reactive 

oxygen species and increased mitochondrial permeability. Decreased mitochondrial biogenesis and 

mitochondrial dysfunction appear as a hallmark of the failing heart. Creatine kinase system is 

profoundly altered in heart failure. Content of cytosolic and more mitochondrial creatine kinases is 

decreased, affecting the coupling between energy production and energy transfer.81, 113 Loss of 

metabolic flexibility, mitochondrial dysfunction, reduced mitochondrial content and altered energy 

transfer induce an energetic unbalance leading to altered calcium handling and contractile 

dysfunction. 

Sex differences in energy metabolism in cardiac hypertrophy and heart failure 

The metabolic sexual dimorphism may be exacerbated following physiological or pathological stresses.  
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In response to exercise training, the heart hypertrophies and is remodeled in a sex-specific manner. In 

response to treadmill running, a preferential utilization of fatty acids and upregulation of cardiac genes 

involved in fatty acid metabolism is observed in female hearts compared to males, while myocardial 

glucose uptake is reduced, evidencing sex-specificity in cardiac substrate availability and utilization.118 

Using loss-of-function animal models, it was shown that the sex-specific mitochondrial adaptation to 

exercise is modulated by the estrogen receptor ERβ.119 

In the failing heart, sexual dimorphism has been identified in the expression of genes involved in 

energy metabolism. In patients with idiopathic dilated cardiomyopathy, the female-specific pattern of 

gene deregulation involves energy metabolism and regulation of transcription and translation while 

the male pattern involves genes related to muscular contraction.120 In patients with aortic stenosis, 

women have more concentric hypertrophy with better systolic function, less upregulation of 

extracellular matrix genes and better reversibility after unloading while stressed female hearts 

maintain energy metabolism better than male hearts and are better protected against calcium 

overload.56 These differences could contribute to the protection of females against heart failure.  

Following transverse aortic constriction in mice, females have less hypertrophy and less signs of heart 

failure than males. This is accompanied by a stronger repression of genes involved in mitochondrial 

function and biogenesis as well as fatty acid oxidation and increased expression of matrix-related 

genes in males compared to females involving ERβ.92, 121 Sex differences in energy metabolism and HF 

is underlined by the finding that deletion of PPARα and simultaneous modulation of fatty acid 

utilization in mice leads to sex-specific phenotypes with HF-related death in male animals and survival 

in females.122 

Anticancer therapies by anthracycline are limited by their cardiotoxicity which is considered as a 

complex multifactorial process involving oxidative stress and mitochondrial damages.123, 124 A sexual 

dimorphism in doxorubicin (a widely used anthracycline) toxicity has been recently described. Female 

rats appear much less sensitive to its cardiotoxic effects than male rats.96, 125, 126 The female protection 

involves energy metabolism, AMPK pathway, cardiolipins and mitochondria.96, 125 The greater 

cardiotoxicity to doxorubicin of tumor-bearing spontaneously hypertensive male rats is attributed to 

the greater activation of oxidative stress and apoptosis without differences in tumor volume 

regression.127 

IHD is the leading cause of morbidity and mortality in both men and women but women have lower 

risk before menopause.128, 129 Ischemia and post-ischemic reperfusion cause mitochondrial functional 

and structural injuries due in part to excess production of ROS and calcium overload, triggering PTP 

opening, decrease in ATP supply and ultimately cell death.108 Female hearts are more resistant to 

oxygen deprivation130, 131, and ischemic reperfusion injury induces lower infarct size in female than 

males rats.132 Age and gender-specific modulation of mitochondrial oxygen consumption and 

mitochondrial free matrix calcium ([Ca2+]Mito) content occurs during early reperfusion.133 Female 

protection from myocardial ischemia/reperfusion injury involves better mitochondrial calcium 

handling and maintained membrane potential.110 Estrogen may be involved in the better preservation 

of mitochondrial function following cardiac ischemia/reperfusion.134 

An interesting proteomic analysis in monkeys has shown that female hearts are protected against age-

induced decrease in in numerous enzymes of glycolysis, Krebs cycle and mitochondrial electron 

transport chain. The authors concluded that these differences may likely contribute to the cardiac 

contractile dysfunction of aging male hearts.135 
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Women show an increased prevalence of metabolic cardiomyopathy compared to males. Sex 

differences in metabolic cardiomyopathy has been recently reviewed.86 Cardiovascular disease is the 

leading cause of death in the diabetic population. Metabolic cardiomyopathies like type 2 diabetes and 

metabolic syndrome are more common in women than men.86 Diabetes increases the incidence of 

heart disease three to four times in women and two to three times in men.136 Energy metabolism is 

among the possible targets for these sex differences. Baseline sex differences in energy metabolism 

may be involved. For example, PPARα, the transcription factor involved in the regulation of lipid 

metabolism in heart and other organs show sex differences.100 A role for estrogens in regulating insulin 

sensitivity has been suggested. E2/ERα elicits the metabolic effects of estrogens by genomic, non-

genomic, and mitochondrial mechanisms that regulate insulin signaling, substrate oxidation, and 

energetics.137 In rats, streptozotocin-induced type I diabetes affects female cardiac mitochondrial 

respiration more than the male one but insulin treatment restores mitochondrial function more 

effectively in the female heart138 Female hearts exhibit increased resilience to ischemia/reperfusion 

injury and cell death as compared to males (for review see 88). This advantage is however lost in 

diabetes as in the murine female heart, the metabolic gene switch from fatty acids to glucose and 

enhanced mitochondrial respiratory capacity is lost with the onset of obesity/type 2 diabetes.100  

 

Pulmonary arterial hypertension (PAH) is a fast progressive fatal disease characterized by elevated 

pulmonary arterial pressure, pulmonary vascular remodeling and occlusive pulmonary vascular 

lesions. Evidence from recent epidemiological studies show an approximate female to male ratio of 

4:1, depending on the underlying disease pathology showing that female sex is a risk factor for PAH 

(for review see 139). However, the basal mechanisms of these sex differences are still largely unknown. 

Sex hormones have been involved in the development of PAH. Although generally protective, 

estrogens and its metabolites may in some instances be deleterious and more studies are needed to 

clearly decipher the potential therapeutic effects of estrogens in PAH.140, 141 Mitochondrial dynamics 

and biogenesis have been implicated in the hyperproliferation of pulmonary artery smooth muscle 

cells and remodeling of the right ventricle in PAH142, but male and female potential differences have 

been poorly investigated so far. The major cause of death in PAH is right ventricle heart failure. 

Interestingly, the protective effect of estrogen on right ventricular function has been attributed to 

preservation of mitochondrial function and biogenesis.143  

 

In conclusion, part of the sexual dimorphism of cardiovascular diseases is linked to energy metabolism 

and mitochondrial function. Better preservation of mitochondrial function and content in female heart 

and better ability to handle calcium and to decrease ROS production participate in the lesser sensitivity 

of females to heart failure. However, our understanding of sex differences is still incomplete and 

highlights the importance of developing comparative studies between males and females in basic and 

clinical sciences.  

Sex differences in cardiac inflammation  

Sex differences in the development and outcome of cardiovascular diseases have been recently 

reviewed and the pathomechanisms of cardiac inflammation, leading to myocarditis or coronary artery 

disease appear to differ between men and women.56 Thus, some differences in the development and 

outcome of cardiovascular diseases might be linked with a stronger infiltration of immune cells in male 

cardiac tissue.144 
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Myocarditis is characterized by an acute inflammation and is more prevalent in men than in women145-

148, though the underlying cause is unknown.149 Viral infections, e.g., coxsackievirus B (CVB3), are the 

major cause of myocarditis involving Th1, Th2 and Th17 cell-mediated immunity. Aside from 

lymphocytes, macrophages are also involved in myocardial inflammation.150 Inflammatory 

macrophages can be divided in M1 macrophages, which have a pro-inflammatory signature, or in M2 

macrophages, which are involved in anti-inflammatory actions, e.g., wound healing and fibrosis.151, 152 

The aberrant expression of cytokines during inflammation leads to the switch of the macrophage’s 

phenotype over time, which under certain conditions may promote the perpetuation of the 

inflammation.153 Therefore, M2 macrophages may play a pathogenic role, e.g., in chronic inflammatory 

diseases.154  

 

Polarization of macrophages, i.e., differentiation in M1 or M2 phenotype, in CVB3 induced myocarditis 

is sex-specific: higher expression of activated macrophages M1 in male and M2 phenotype in female 

mice (Fig 4).155 However, only male mouse develop Th2-related fibrosis and DCM after CVB3 

infection145, 156, indeed the activation of Th2 cells in male mice is essential for the perpetuation of the 

myocarditis related inflammation and development of heart failure.157 Male mice infected with CVB3 

virus present more infiltration of γδT cells than female mice, which are involved in the activation of 

M1 macrophages during the acute inflammatory stage.158 In contrast it is described that, more Th2 

anti-inflammatory cells and T regulatory (Treg) cells infiltrate and therefore more M2 macrophage 

activation in the cardiac tissue of female mice after CVB3 infection.149, 158, 159 Interestingly, female mice 

with myocarditis in the estrus phase showed significantly lower amounts of inflammatory cells. IFN-γ-

positive CD4 cells and activated T-cells were decreased in the estrus phase, while the amount of Treg 

cells was increased158, suggesting the pivotal role of sexual hormones in the development and 

chronicity of myocarditis.    

 

In CAD also sex differences in the inflammatory processes are reported, which contribute to the 

development and maintenance of this disease.160 Men suffer more frequently from occlusive CAD, 

while women exhibit more frequently microvascular dysfunction or spasm located in the epicardial 

coronary arteries due to pathological vasoreactivity based on endothelial dysfunction in younger 

ages.53, 161Moreover, spontaneous coronary artery dissection occurs >90% in women <60 years of age. 

It is frequently associated with strong changes in the sex hormone levels and occurs more frequently 

in immunologic and connective tissue diseases.162 Chronic inflammation seems to play a crucial role in 

atherogenesis and in the maintenance of atherosclerotic lesions.163 Particularly, monocytes and 

macrophages significantly contribute to the inflammatory processes in CAD.164-166 Sexual hormones 

modulate the immune system via hormone receptors under physiological and pathological 

conditions.167 Sexual hormone receptors are expressed in macrophages, mast cells, natural killer cells, 

dendritic cells, B cells and T cells.168 Estrogens and androgens regulate inflammation through genomic 

and non-genomic pathways.169 This modulation promotes sex differences in the activation of immune 

cells.169  

 

While androgens enhance the innate immune response and have immunosuppressive actions, 

activating the pro-inflammatory Th1/Th17 immune response, E2 activates the regulatory IL-4 mediated 

Th2 response, which protects women and female animals from acute inflammation.170 Furthermore, 

E2 activates the humoral immune response, leading to an increased antibody response and 

autoantibody production.149, 170 In addition, sex differences in the balance between Th1 and Th2 

immunity in humans are documented171, men develop a Th1/Th17 mediated acute immune reaction, 
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while women develop a prominent Th2 immune response in cardiac tissue. The sex hormone mediated 

imbalance of the Th1/Th2 immunity profoundly modulates the acute inflammatory stage in the 

heart.170 Furthermore, Treg, which are prominent in the immune reaction in women, decrease Th1, 

Th2 and Th17 immune response and inhibit acute inflammation.172, 173 Although both pro-and anti-

inflammatory actions of estrogens in male and female animals and cells, have been described, which 

seems to play a dual role in chronic inflammation162, the majority of studies argue for anti-

inflammatory effects of estrogen receptors (ER) activation in cardiac tissue. Particularly, E2 exhibits 

anti-inflammatory actions on endothelial cells and immune cells in vitro.165, 166 and promotes 

cardioprotective effects in premenopausal women.174 

 

E2 seems to inhibit directly the NF-κB dependent Th1 immune reaction via activation of the ER-α.175 In 

addition, E2 loss leads to expression of pro-inflammatory cytokines in humans53 and induces the 

premature development of atherosclerosis176, an effect that can be prevented in both species by 

estrogen-containing oral contraceptives.177, 178 In accordance with this, E2 treatment of 

postmenopausal women attenuated progression of atherosclerosis.179 However, the beneficial effects 

of a HRT seems to be strongly dependent of the timing of the hormonal substitution after 

menopause.178 While the initiation of an E2 administration at the time of the  menopause significantly 

decreased the risk of coronary heart disease in postmenopausal women, the late initiation of HRT has 

no positive effects in the prevention or improvement of atherosclerosis.177, 180-182 In accordance with 

this, animal studies demonstrated that HRT prevents the formation of arterial lesions, but it did not 

improve the regression of established arterial lesions.177, 180 The protective effects of E2 in 

atherosclerosis are related among other to the actions of E2 on chemokines and cytokines that are 

involved in the early inflammatory phase in atherosclerosis183, 184, which has positive effects in the 

stabilization of endothelium.185 Likewise, E2 reduces myocardial phosphorylation of p38 and 

myocardial expression of pro-inflammatory mediators, e.g., TNF-α, IL-1β and IL-6, which are lower in 

female rodents after ischemia and reperfusion.186  

 

Chronic inflammation has been shown to directly or indirectly disturb the endothelial integrity by 

changing the expression profile of vasoactive molecules or altering the cell-to-cell junctions. Likewise, 

chronic inflammation also activates monocytes to transmigrate endothelium and release a repertoire 

of cytokines leading to the loss of endothelial integrity and dysfunction.187 Clinical and experimental 

studies suggest the importance of E2 in the inflammatory response-induced disturbance of the 

endothelial function. Indeed, an estrogen replacement therapy decreases the risk of cardiovascular 

disease in postmenopausal women188, which can be, at least partly, attributed to the reduced 

expression of vascular inflammatory markers, like E-selectin and ICAM-1, observed both in patients189, 

190 and endothelial cell culture models in vitro.191 In vascular endothelium, E2 enhances eNOS 

expression and NO production192 and improved cerebral artery dilation.193 Furthermore, E2 suppresses 

TNFα -induced ICAM-1 and MCP-1 expression in endothelial cells191 and improves the expression of 

tight junction protein occluding in endothelial cells.194 In addition, E2 reduces leukocyte extravasation 

in different inflammation models.195, 175, 196  

 

Monocytes also contribute in the endothelial destabilization, which plays an important role in the 

development of diastolic dysfunction in HFpEF, which is more common in postmenopausal women 

than in men. The development of HFpEF has been suggested to be related to microvascular endothelial 

cell inflammation and subsequent concentric cardiac remodeling and dysfunction.197 Cardiac 
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inflammation plays a crucial role in the initiation of cardiac fibrosis and diastolic stiffness in HFpEF 

patients198, which further confirms the link between inflammatory cells and fibrosis. Monocyte 

infiltration and differentiation as well as activation of macrophages in the inflamed area play a 

prominent role in the activation and differentiation of fibroblasts into myofibroblasts, leading to 

collagen deposition and fibrotic tissue199 Macrophage and mast cells modulate degradation and 

synthesis of extracellular matrix and contribute directly in tissue remodeling processes in the inflamed 

heart.170, 200 Pro- and anti-inflammatory cytokines like IL-1β, IL-4, IL-13, IL-17, TNF-α and TGF-β promote 

fibroblast proliferation and activation, leading to an excessive collagen deposition.199 Moreover, MCP-

1 is more elevated in male heart during cardiac inflammation in comparison to female heart.201 MCP-

1 overexpression plays a fundamental role in the immune cell infiltration in cardiac tissue, promoting 

heart failure.202 Testosterone seems to play a crucial role in these processes, leading to adverse cardiac 

remodeling in the male heart.145, 203  

Studies on the transcriptomic response of the heart to pressure overload in female mice lacking ERβ 

showed an increase in natural killer cell-mediated cytotoxicity and leukocyte transendothelial 

migration pathways.204 In human activated peripheral blood mononuclear cells (PBMCs) E2 inhibits the 

expression of pro-inflammatory cytokines205 and decreases the ROS-mediated NF-κB activity.206 In 

accordance with this, our previous studies showed that the expression of genes related with 

cytochrome P450 pathways were restored under the effects on the E2/ERβ axis204, contributing to the 

positive effects of E2 in cardiovascular diseases. 

In addition, a loss of the endothelial barrier function results in increased vascular permeability and 

leakage of blood components, which may finally result in organ dysfunction.205 In addition, cellular 

stress, like hypoxia evokes endothelial dysfunction e.g. through a decrease in the eNOS expression and 

an increased reactive oxygen species (ROS) production in endothelial cells, following by increased 

endothelial instability.207 Likewise, chronic inflammation also activates monocytes to transmigrate 

endothelium and release a repertoire of cytokines inducing endothelial barrier failure.208 

 

Recent reports suggest the role of mitochondrial function and biogenesis in inflammatory response, 

either in immune cells or in targeted cells, e.g. fibroblasts or endothelium.209 There is a growing 

evidence that E2 supports mitochondrial function by promoting expression of tricarboxylic acid cycle 

and OXPHOS proteins and, therefore, may affect inflammatory response.210 While NO seems to have 

anti-inflammatory effects, ROS promotes pro-inflammatory actions, leading to cell and organ damage. 

Recent reports suggest that NO/ROS balance is essential for mitochondrial function and resolution of 

inflammation.211 The potential cellular mechanisms of the anti-inflammatory effect of E2 may be the 

improvement of mitochondrial function and reduction of ROS formation in cardiac cells. Certainly, 

inflammatory response is usually accompanied by excessive ROS formation resulting in mitochondrial 

stress.212  

Sex differences in cardiac fibrosis  

Cardiac fibrosis is strongly and in a sex specific manner associated with the development of myocardial 

hypertrophy (MH) and progression to heart failure. Clinical studies have documented sex differences 

in cardiac fibrosis with higher collagen deposition and more frequently observed cross-hatching in men 

compared to women with aortic stenosis (AS), coronary artery disease and atherosclerosis.29, 56, 213-215 

Accordingly, TGFβ-1 and SMAD signaling was found to be more pronounced in male hearts compared 

with women with AS.29, 216 Furthermore, men with AS showed a significant higher activation of pro-
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fibrotic markers, i.e. collagen I and III, periostin, matrix metalloproteinase-2 (MMP-2) and -9, compared 

with women.29, 32, 216 ERα, ERβ and AR control fibrotic pathways, collagen, and matrix-

metalloproteinase synthesis in a sex-specific manner (Fig 6 ). In addition, estrogen attenuates the 

development of cardiac fibrosis differently in women and men. Estrogen directly inhibits collagen 

synthesis in women and supports it in men.32, 217-219 Estrogen also increases matrix metalloproteinase 

expression via activation of the ERα and MAPK-ERK1/2 signaling pathway.220 Furthermore, the E2 

regulates a network of miRNAs mainly via ER ß, that controls fibrosis.221 Cardiomyocyte-specific ERα 

expression reduces the development of fibrosis following myocardial infarction (MI).222 Androgens also 

interact with pro- and antifibrotic mechanisms. The genetic deletion of the AR leads to the 

exacerbation of angiotensin II-induced cardiac dysfunction and fibrosis.223 

Sex differences in calcium handling and contractility  

Sex differences in cardiac contractility and calcium (Ca) handling have been recently reviewed in detail 

by us and others.56, 224 Female rodents exhibit less SR Ca2+ loading compared with males in response to 

β-adrenergic stimulation and smaller Ca2+ transients.225, 226 These sex differences are partly mediated 

by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway.227 Ovarectomy 

increases SR Ca2+ content and peak Ca2+ transient amplitudes. These effects are reversed by E2 

treatment and regulated during the estrous cycle.228-232  

The sensitivity of myofilament response to Ca2+ is regulated by estrogen administration.233-235 In 

particular, myofilament Ca2+ sensitivity is increased in hearts of ovarectomized (OVX) rats compared 

with sham-operated rats, while this effect is reversed by E2 treatment.234, 236, 237 Similarly, CaV1.2 

protein levels and the gain of excitation–contraction coupling are higher in hearts from OVX rats 

compared with those of sham-operated rats.230, 233 

Female sex and E2 is associated with changes in the activity of the sarcolemmal and mitochondrial 

ATP-sensitive potassium (KATP)132, 238 and sarcolemmal KATP channel and to the protection of cardiac 

cells against hypoxia/re-oxygenation injury.132, 238-240 Furthermore, estrogen attenuates the occurrence 

of ischemia/reperfusion-induced arrhythmias through the modulation of NO and Ca2+-activated 

potassium channels, which is more pronounced in females than in males.241-243 

Testosterone also affects cardiac Ca handling and contractility.244-246 L- and T-type Ca2+ currents are 

induced in neonatal rat cardiomyocytes by testosterone.247, 248 Testosterone shortens the QT interval 

by activating potassium channels, giving a molecular explanation for the Brugada syndromes.249, 250 

Sex differences in relaxation  

The molecular basis for diastolic function are manifold as discussed previously.251, 252 Sequestration of 

calcium and cross bridge uncoupling after the end of systole in the cardiomyocyte are responsible for 

the active process of relaxation.253, 254 The phosphorylation state of phospholamban is different in male 

and female hearts and leads to differences in the affinity of the sarcoplasmic reticulum for calcium re-

uptake.254 In addition, E2 protects single myocytes against calcium loading induced by hypoxia.255 In 

female rat hearts, sex related differences in calcium signalling can also be partially explained by greater 

myofibrillar calcium sensitivity.256 Testosteron regulates the L-type calcium channel and other calcium 

regulatory proteins.257 Thus, differences in myocardial calcium handling due estrogens or androgens 

may contribute to sex differences in diastolic function. 

Increased availability of NO increases diastolic function in animal models and the human heart.258 NO 

leads to an earlier onset of relaxation and increases diastolic distensibility via effects on MMPs and 

cGMP.258 The NO-system exhibits sex specific regulations. Estrogens affect the expression and activity 
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of NO-synthases at different levels - at the level of gene transcription and cytoplasmic control of 

activity.34 This leads probably to higher levels of NO in women compared with men and contributes to 

better endothelial dependent vasodilation in women. Polymorphisms in the NO system have greater 

effects in women than in men.259 Thus, differences in the NO synthases represent a candidate to 

understand sex differences in relaxation. The cardiac endothelium is one of the main producers of NO 

and modulators of calcium signaling. It should also have a major role in the control of relaxation and 

sex differences.260  

Sex differences in vascular adaptation and maladaptation  

Although the pathophysiology of the HF syndrome is multifactorial and complex, vascular dysfunction 

is known to be a major contributor to the development, progression and treatment of HF.197, 261-265 The 

vascular wall is a biological, dynamic organ that, in addition to releasing vasoactive substances, reacts 

to various hemodynamic and metabolic stimuli with structural and functional adaptations.263 

Moreover, various physiological (i.e. age) and pathological (i.e. hypertension, diabetes) factors affect 

the vascular bed, thereby impairing its morphology and function.266 Hence, vascular dysfunction is a 

result of a cumulative exposure of the vascular bed to the effects of numerous pathophysiological 

elements, with sex being a key determinant in this process.  

Sex differences in vascular dysfunction are due to inherent sex differences in vascular biology as well 

as to sex differences in vascular ageing patterns and susceptibility to risk factors.197, 261-265, 267  In HFrEF, 

the leading predisposing factors for its development are clinical syndromes of macrovascular disease, 

namely obstructive CAD and MI.261, 268-270 Contrarily, in HFpEF, coronary microvascular impairment is 

thought to be the main driver.197, 261-265, 271, 272 In coronary microvascular impairment, endothelial 

dysfunction yields microvascular rarefaction, autonomic imbalance and a reduced coronary flow 

reserve.273, 274 Autopsy studies have indeed confirmed the process of microvascular rarefaction in 

hearts of patients diagnosed with HFpEF. Genetic studies indicate that genes involved in myocyte 

proliferation, transforming growth factor-beta (TGF-β)/erbB signaling, and extracellular matrix 

formation may be causal to HFpEF, although no evidence was provided regarding differences between 

men and women.275 TGF-β can induce an endothelial-to-mesenchymal transition (EndMT), a 

mechanism in endothelial cells that may contribute to vascular disease. It may be causal to the 

microvascular endothelial dysfunction and coronary microvascular ischaemia seen in in HFpEF.276-278 

Also a reduced coronary flow reserve is an important pathophysiological feature in HFpEF. Due to 

deficient functioning of the coronary microvasculature, cardiomyocytes stay intact, yet respond with 

a reduction in relaxation capacity. As such, the myocardium stiffens.262 Microvascular impairment in 

HF is suggested to be preceded by abnormalities in the microcirculation such as damage to the arterial 

intima, swelling and degeneration of endothelial cells (yielding narrowing of the lumen of capillaries), 

the occurrence of degenerative foci and lipofuscin deposits in myofibers and an increase in adrenergic 

function and abnormal handling of norepinephrine in cardiac sympathetic nerve endings.276-278  

It has been postulated that microvascular disease primarily affects women due to sex differences in 

vascular alterations related to hormonal exposure as well as to accumulation of risk factors and to 

intrinsic biological sex differences.47, 261 An excellent example of the latter is provided by The Women’s 

Ischemia Syndrome Evaluation (WISE) study.279, 280 This study demonstrated that in 50% of all women 

who presented with chest pain without signs of significant obstructive CAD on coronary angiography, 

coronary microvascular dysfunction, as demonstrated by coronary flow velocity reserve testing, was 

in fact present and could not be predicted by risk factors for atherosclerosis or hormone levels. 279, 280 

More importantly, during follow up, a considerable number of these women developed HFpEF, 
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implying that HFpEF as well as non-obstructive CAD go hand in hand with coronary microvascular 

dysfunction.280 In addition to microvascular dysfunction, non-obstructive CAD appears to be 

accompanied by microvascular spasm, arterial stiffening, arterial wall thickening and myocardial 

bridging, all of which may result in myocardial ischemia.261, 281 Moreover, thrombus on top of an intact 

eroded plaque, more often described in women than in men, is accompanied by microembolisations 

downstream in the heart.282 This may potentially link female atherosclerotic disease to coronary 

microvascular disease.283 Although a detailed description of sex differences in atherosclerotic plaque 

morphology goes beyond the scope of this chapter, it has been excellently covered in previous 

chapters.  

Sex differences in vascular biology 

With macro- and microvascular dysfunction underlying a myriad of cardiovascular diseases, which in 

turn show great disparities in prevalence between the sexes, looking at sex differences in components 

of the vascular wall may provide insight into why these sex differences arise. (Fig 6) Already at a 

morphological level, the coronary arteries differ between men and women. Women have a smaller 

diameter of all coronary arteries as compared to men, and the same holds true for the smaller vessels 

in the heart.284, 285 Macroscopic differences in disease are present as well. In early atherosclerosis of 

the coronary artery, men show more diffuse macrovascular endothelial dysfunction and larger 

atheroma burden than women in the coronary arteries.270 On a genetic level, sex-specific genetic 

variants that associate with coronary endothelial dysfunction in the large vessels have been 

identified.286 Variants in males are located in genes such as NFKB1 and KIF6, while for females they are 

present in LPA and ADORA3. In children already, high levels of plasma LPA are associated with 

dysfunctional endothelium.287 ADORA1, adenosine receptor A1, is a gene with genetic variants in both 

sexes, but with different single-nucleotide polymorphisms. Adenosine-related biology in the coronary 

vasculature is subject to sex-differences.288, 289 In pigs it has been shown that a sexual dimorphic 

response to adenosine is present in the coronary vasculature, depending as well on the type of vessel, 

be it venule or arteriole.289 The regulation of vasorelaxation by NADPH oxidases in the endothelium 

also displays sexual dimorphism in coronary arteries of pigs. Interestingly, NADPH oxidase 5 (NOX5) is 

significantly higher expressed in males in human coronary arteries (GTex Portal). The role of NOX5 in 

vascular disease has just been reviewed, but only recently discovered, as rodents lack NOX5.290 Dealing 

with oxidative stress is prone to sex differences, and might also partly explain differences in longevity 

between men and women.291 In a mouse-model of hypertension, inhibiting mTOR signaling in females, 

but not in males, led to diminished expression of CD31 in the coronary microvascular endothelium, 

indicating that mTOR signaling is essential for cardioprotection in women but may not be essential in 

men.  

An important contributor to microvascular impairment appears to be estrogen deficiency.261, 273, 292 Sex 

hormones are a large cause of differential responses between men and women.2, 56 It is known that in 

women, the age-related cardiovascular risk is more manifest in post-menopausal life than in pre-

menopausal life.261 This phenomenon is generally attributed to the menopausal transition, the 

withdrawal of endogenous sex steroids in midlife.261 The degree to which biological ageing and 

menopause each add to the age related increment in cardiovascular risk in women persists to be a 

subject of ongoing debate. Due to the concurrent occurrence and interrelatedness of both processes, 

this debate is not easy.293 Additionally, elucidating the role of estrogen in cardiovascular disease risk is 

difficult due to the recognition that around menopause, next to estrogen, other cardiovascular risk 

factors in women alter as well, which is likely related to a combination of ageing and the menopausal 
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transition.261, 294-296 Hence, estrogen might independently add to cardiovascular risk, spuriously due to 

confounding or by serving as a mediator through which other cardiovascular risk factors act. However, 

evidence does support the existence of an association between endogenous estrogen and 

cardiovascular disease, including HF.292 Estrogen receptors are present in numerous vascular and 

cardiac cells and may thereby affect microvascular disease and HF.297-299 Moreover, in postmenopausal 

women, an inverse relation between years since menopause and brachial artery flow mediated dilation 

(FMD) has been reported.300 Hence, estrogen appears important in maintaining proper vascular health 

before menopause, as loss of ovarian hormones leads to activation of the renin angiotensin 

aldosterone system, causing endothelial dysfunction in the end.301 Also, studies have shown that 

whereas estrogen mediates vasodilation of the epicardial coronary arteries in pigs, testosterone might 

be beneficial to the vessels because of its conversion to estrogen by aromatase.302-304 It has been 

reported that testosterone treatment in elderly women with heart failure is indeed beneficial.305 

Nonetheless, other lines of evidence did not observe any associations between menopausal status and 

cardiovascular outcome.306 In addition, various studies have pointed out that already at pre-pubertal 

age, sexual dimorphism in (sub) clinical cardiovascular phenotypes is present.307-309 This implies that, 

intrinsic, non-hormonal factors that act throughout life probably contribute more to sex differences in 

cardiovascular risk than midlife hormonal shifts do.  

Indeed, sex chromosomes are beginning to be recognized as important to health and disease, 

independent of sex hormones. Aberrations in sex chromosome number and genetic variation within 

sex chromosomes have showed to be associated with several cardiovascular diseases.310 Multiple 

genes located on the sex chromosomes are hypothesized to have tissue-specific roles, and are 

differentially expressed between men and women in, for example, the coronary artery (GTex Portal), 

and as such, most likely as well in the microvasculature. A study in a gonadal-free environment in 

ischemia/reperfusion injury showed that one X chromosome is better than two, as XX mice are more 

susceptible to damage and have lower functional heart recovery, underlining the importance of sex 

chromosomes.311 Moreover, age-related loss of the Y chromosome in men was associated with 

incident cardiovascular disease (among which incident HF) in men with severe atherosclerotic 

disease.312 Changes in X chromosome inactivation may regulate gene expression between sexes, 

individuals and tissues. The X chromosomes contain information involved in immunity, inflammation 

and endothelial function, potentially explaining why most autoimmune diseases predominantly affect 

women.313, 314 These women with autoimmune diseases, in turn, have an increased risk for 

cardiovascular disease, suggesting an intriguing role for the female X chromosomes. However, data on 

sex chromosome alterations in cardiovascular biology is lacking, while the sex chromosomes harbor 

genes important in (epigenetically) regulating the autosome. As such, whether or not sex chromosome 

regulation is involved in the syndrome of HF warrants further investigation. 

 

Sex differences in vascular ageing 

Age-related alterations in vascular function largely encompass progression of endothelial dysfunction, 

arterial dilatation and arterial stiffening, which usually goes hand in hand with an increase in systolic 

blood pressure.261, 315 Up to the sixth decade of life, both the increment in arterial stiffening and 

endothelial dysfunction progress at a greater rate in men as compared to women.261 However, from 

the sixth decade of life onwards, age-related vascular dysfunction progresses more rapidly in women 

than in men.261 Before menopause, the general vascular function as well as the baroreceptor response 

and autonomic tone perform better in women when compared to their male counterparts of 
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comparable age.316, 317 Yet, after menopause, arterial stiffness becomes more pronounced in women 

than in men, even after adjustments for confounding factors such as arterial diameter and body size.318, 

319 Clinically, this sex-specific change in vascular structure is reflected in hypertension prevalence 

patterns across the life span: whereas below the age of 45 years, hypertension is more prevalent in 

men than in women and between the ages of 45 and 64 years, its prevalence is comparable between 

the sexes, from the age of 65 years onwards, the prevalence of hypertension is higher in women than 

in men.320 

The sex-specific alterations in biomechanical properties of the arteries with ageing have deleterious 

sex-specific effects on left ventricular diastolic function. Age-related arterial stiffening induces an 

increase in arterial pressure during systole and a decrease in arterial pressure during diastole.262, 321-323 

The increase in arterial pressure during systole enhances left ventricular load, thereby inducing left 

ventricular hypertrophy and, as such, prompts left ventricular dysfunction. The hypertrophied heart 

has a longer contraction and relaxation period, which prolongs the duration of systole and shortens 

the duration of diastole. A longer systole results in augmented transmission of antegrade and 

retrograde pressure waves.322, 323 With arterial stiffening, antegrade pressure waves add to retrograde 

pressure waves, returning to the heart not at early diastole but at end systole, thereby increasing late 

systolic load and thus extending ventricular relaxation time even more.263, 315, 324, 325 These changes 

prompt an increase in myocardial oxygen demand, which requires an increase in coronary blood 

flow.324 Unfortunately, this requirement is not met. The ability to increase coronary blood flow is 

impaired as a result of a reduction in arterial pressure during diastole and a reduction in diastole 

duration, the latter being due to a prolonged systolic ejection period and ventricular relaxation time.263, 

315, 326 The mismatch of a decreased ability for coronary perfusion while there is a need for an increase 

in coronary perfusion induces ischemia. Ischemia prompts an additional increase in ejection time as 

well as a decrease in ventricular relaxation, which further impairs ventricular perfusion throughout 

diastole, thereby generating a vicious circle and giving rise to the development of left ventricular 

diastolic dysfunction.263, 315, 327 

Due to the larger increment in arterial stiffening in later life, women are more prone to develop an 

increase in aortic pressure and a longer duration of ventricular relaxation than men.322, 328, 329 This 

results in a larger burden of pulsatile arterial loading and pulsatile afterload in women, which 

deteriorates diastolic function and, as such, possibly adds to the development of HFpEF in women.322, 

325, 330 This theory is confirmed by in vivo studies that showed that only in women arterial stiffness is 

inversely related to diastolic relaxation.331 Hence, in later life, arterial stiffening may not only progress 

at a higher rate in women, they may also be more susceptible to its deleterious effects on left 

ventricular diastolic function than their male counterparts.262  

Sex differences in vascular risk factors 

Advancing age and comorbidities synergistically result in abnormalities in vascular and cardiac 

morphology and function. As such, comorbidities predispose for the development of HF, although it 

requires mentioning that also in the absence of cardiovascular disease, female sex as well as ageing 

have been related to an increment in vascular and left ventricular diastolic stiffness. Comorbidities 

related to vascular dysfunction contribute to the development and progression of HF, in a sex-specific 

manner.  

Comorbidities are alleged to contribute more to HFpEF than to HFrEF since patients with HFpEF are 

more likely to die from non-cardiac causes and less likely to die from HF than patients with HFrEF.197, 
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265, 332-335 Several lines of evidence showed that whereas HFrEF patients have a higher prevalence of 

CAD and MI, HFpEF patients have a higher prevalence of non-cardiac comorbidities such as 

hypertension, diabetes, obesity, anemia, chronic kidney disease (CKD), atrial fibrillation (AF) and 

COPD.271, 272, 336, 337 For HFmrEF patients, studies showed that they more frequently had hypertension 

than HFrEF patients, more commonly had ischemic heart disease than HFpEF patients and that a 

significant proportion had diabetes.9 Interestingly, although CAD is more common in HFrEF, it is also 

prevalent in HFpEF.264, 338 Because of improvements in therapeutic strategies for acute coronary 

syndromes, survival rates for patients with CAD have increased dramatically over the past decades.339 

For example, enhanced salvage of the myocardium owing to revascularization enables the 

perseverance of ejection fraction.264 Despite this therapeutic progress, due to chronic multi-vessel 

CAD, the majority of patients have persistent ischemia, that induces an increase in left ventricular filling 

pressure, a decrease in ventricular compliance and a deterioration in ventricular relaxation, which may 

all ultimately lead to HFpEF.264, 338, 340 

A hypothesis postulated by Paulus et al. suggests that in HFpEF, comorbidities induce a systemic, pro-

inflammatory state that affects the coronary microvascular endothelium, which, in turn, is causal to 

the development of HFpEF.197, 265 Paulus et al. state that inflamed endothelial cells react to the pro-

inflammatory state by producing reactive oxygen species that reduce nitric oxide (NO) bioavailability 

for neighboring cardiomyocytes. Decreased NO bioavailability prompts a decline in protein kinase G 

(PKG) activity in cardiomyocytes. Consequently, low PKG activity induces cardiomyocyte hypertrophy 

thereby favoring stiffening of the cardiomyocytes and concentric left ventricular remodeling due to 

hypophosphorylation of titin, a large and important cytoskeletal protein. Finally, the stiffened 

cardiomyocytes as well as interstitial fibrosis, the latter being due to an increase in collagen depositison 

by myofibroblasts, add to the development of left ventricular diastolic dysfunction, the key functional 

deficit in HFpEF.197 According to the abovementioned the hypothesis proposed by Paulus et al. 

numerous comorbidities are capable of inducing a systemic pro-inflammatory state.197 This pro-

inflammatory state appears to predict the occurrence of HFpEF, yet not of HFrEF.197, 341 For example, 

COPD, an important contributor to HFpEF development, morbidity and mortality, obviously is a 

chronic, systemic inflammatory disease.197, 265, 335 Also for obesity, it has been proposed that release of 

pro-inflammatory cytokines in adipose tissue infiltrated by macrophages may yield a systemic 

inflammatory response.197, 342, 343 Furthermore, in salt-sensitive hypertension, high salt intake prompts 

renal production of pro-inflammatory cytokines thereby provoking systemic oxidative stress.197, 344, 345 

Moreover, both diabetes and the metabolic syndrome are known to be preceded by among others 

oxidative stress and mitochondrial and endothelial derangements.264, 346, 347 

In addition to functional vascular impairment, comorbidities also contribute to structural vascular 

deficits. For example, two major predisposing factors for microvascular damage (HFpEF) are 

diabetes and hypertension. Their cardiometabolic effects appear to affect endothelium dependent 

vasodilatation thereby inducing disturbances in the microvasculature.346, 347 Whereas hypertension 

has been described in depth in the previous paragraph, diabetes is also a well-known risk factor for 

both HFpEF and HFrEF.264, 348 Evidence points out that the presence of diabetes is related to a larger 

age-related increment in left ventricular wall thickness and a smaller age-related decrease in left 

ventricular diastolic dimensions, signifying the risk of volume overload.347, 349 Additionally, in HFpEF, 

diabetes has been related to increased filling pressure and arterial stiffness as well as to left 

ventricular remodeling, the latter specifically occurring in women.340 Markers of insulin resistance 

have also been related to both concentric remodeling and a greater mass of the left ventricle.346, 350 
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Besides diabetes, obesity prompts alterations in vascular structure and induces an increment in total 

and central blood volumes and simultaneously, a decrease in systemic arterial resistance.351, 352 The 

combination of these hemodynamic changes and increase in oxygen consumption yield an 

increment in cardiac output.351, 352 Perseverance of these hemodynamic alterations may pave the 

way for the development of subclinical left ventricular hypertrophy as well as for augmented 

pressures in the mean pulmonary artery and during left ventricular diastole, which can ultimately 

result in HFpEF.351, 352 Also in CKD, anemia and chronic liver disease this condition of abnormal 

vascular and cardiac structure and function combined with a high-output state and extra-cardiac 

volume overload can arise, thereby possibly provoking HFpEF.264 In metabolic syndrome, an 

enhanced tendency for CAD as well as left ventricular hypertrophy, myocardial stiffening and 

decreased energy availability have been described as major abnormalities that may induce HFpEF.346 

As for physical activity, a study observed a relation between physical inactivity and deterioration in 

ventricular function that appeared to closely mimic the ventricular impairments seen in HFpEF. With 

advancing age, women less frequently engage in strenuous physical activity than men. In fact, the 

extent of physical activity in women decreases from 54% at the ages of 18-44 years to 13% at the 

age of 75+ years.262, 353, 354  

In conclusion, sex differences in vascular dysfunction play a multifactorial and crucial role in the 

pathophysiology of the HF syndrome. Nonetheless, more interdisciplinary research is warranted to 

untie all the knots in sex-stratified cardiovascular biology, including the role of sex in all stages and 

aspects of the HF syndrome. 
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Legends  

 

Fig 1 . Sex specific development of myocardial hypertrophy. From 56  

Figure 2. Sex differences in energy metabolism and in response to stress involves mitochondrial 

capacity, production of reactive oxygen species, calcium handling leading to decreased opening 

probability of the PTP and better cell survival in females compared to males. 

Fig 3 Estrogen effects in immune cell function, adapted from 56 

Fig 4 Sex differences in fibrosis Adapted from VRZ, 56 

Figure 5: Schematic overview of sex-specific determinants of vascular dysfunction. In women, 

vascular dysfunction of the microvessels may lead to HFpEF,. In men, vascular dysfunction in the 

macrovessels is more common and may lead to HFrEF.  
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