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Abstract

To get informative studies for nonlinear mixed effect models (NLMEM),
design optimization can be performed based on Fisher Information
Matrix (FIM) using the D-criterion. Its computation requires knowl-
edge about models and parameters, which are often prior guesses.
Thus, adaptive designs composed of several stages may be used. Robust
approach can also be used to account for various candidate mod-
els. In the estimation step of a given stage, model selection (MS)
or model averaging (MA) can be performed. In this work we pro-
pose a new two-stage adaptive design strategy, based on the robust
expected FIM and MA over several candidate models. The methodol-
ogy is applied to a clinical trial simulation in ophthalmology to optimize
doses and time measurements. A set of dose-response candidate mod-
els is defined, and one-stage designs are compared to two-stage 50/50
designs (i.e., each stage performed with half of the available subjects),
using either local optimal design or robust design, and performing anal-
ysis with one model, MS or MA. Performing a two-stage design with
MS at the interim analysis can correct the choice of a wrong model
for designing the first stage. Overall, starting from a robust design
(1- or 2-stage) is valuable and leads to reasonable bias and precision.
The proposed robust adaptive design strategy is a new tool to design
longitudinal studies that could be used in different therapeutic areas.

Keywords: Adaptive Design, Non Linear Mixed Effect Model, Fisher
Information Matrix, Model Averaging, Optimal design
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Introduction

In pharmacometrics, the science of quantitative pharmacology, nonlinear
mixed effect models (NLMEM) are the most appropriate tool, as they can
exploit the richness of longitudinal pharmacokinetics (PK) and/or pharmaco-
dynamics (PD) data, even if few samples are collected from each individual
[1-3]. The use of NLMEM (i.e. the population approach) allows the estimation
of mean parameters, inter and intra-individual variabilities as well as covariate
effects.

Before a study is carried out, it is possible to evaluate a design to know
whether or not enough information will be collected to meet its objectives.
Indeed, poor designs lead to poor precision of parameter estimates, and there-
fore to inconclusive studies [4]. Moreover, algorithms can be used to optimize a
design, accounting for the imposed practical constraints. A design in NLMEM,
called a population design, is composed of a number of subjects and a corre-
sponding set of elementary designs. An elementary design represents the design
of an individual. The elementary design elements include the dosing regimen
and the number and allocation of PK and PD measurement times [5]. In prac-
tice groups of individuals with identical elementary design are defined. Then,
two approaches have been proposed to evaluate and optimize designs. The first
approach, based on clinical trial simulation (CTS), is very time-consuming and
therefore limits the number of evaluated population designs[6]. Alternatively,
the Fisher information matrix (FIM) can be used, its inverse being defined as
the lower bound of the variance—covariance matrix of any unbiased estimated
parameters. Several methods exist to evaluate the FIM, the most commonly
used is based on first order (FO) linearization of the model around the expec-
tation of random effects [7]. The expected relative standard errors (RSE) can
then be calculated from FIM, as well as the widely used D-criterion which is
based on the FIM determinant. The latter accounts for the precision of esti-
mation of all model parameters. It is therefore maximized to find the optimal
design.

To evaluate or optimize a design, knowledge is needed about the model
and its parameters, which are however often prior guesses at this step. There
are several possibilities to deal with these situations. Among them, adaptive
designs (ADs) are a promising tool, as they offer flexibility compared to tra-
ditional one-stage studies [8]. These designs are composed of several stages.
The first stage of an AD is defined from what is known before the study, as
for a non-adaptive design. The data are then analyzed at the end of the first
stage (i.e. after the inclusion of the first cohort). The design can be refined for
the next stages of the study depending on the results obtained in the previous
stages. The model and parameters uncertainties are therefore reduced after
each stage. Interestingly, AD also allows to halt the study if an interim anal-
ysis reaches a stopping criterion. (efficacy or futility) [9]. Several studies have
been published in the field of AD for NLMEM, proposing to use the FIM [10]
or CTS [11] to choose the design of each step. It was shown that performing
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a two-stage design instead of one-stage is relevant in pharmacometrics exam-
ples, especially if the total sample size is halved and allocated to each stage
(50/50) [10, 12]. However, the gain in efficiency generated by the realization
of more than two stages does not seem to compensate the cost and the clinical
constraints of such studies [12, 13]. Moreover, interim analyses inflate the type
I error if no control method is used [14]. Therefore in our work, only designs
with a reduced number of stages are considered and compared: one-stage and
two-stage 50/50 designs.

Another possibility is to use robust design methods that account for model
and/or parameter uncertainty [15]. It has been shown that accounting for
model uncertainty could be more relevant than for parameter uncertainty [16].
In this approach, several candidate models with a corresponding weight are set
to calculate the robust FIM-based optimality criterion (i.e. to find the robust
optimal design [17]).

At estimation step, pharmacometricians classically perform model selec-
tion (MS) by using the model with the lowest likelihood-based criterion (e.g.
Akaike information criterion, AIC or Bayesian information criterion, BIC).
Alternatively, one can perform model averaging (MA) between different can-
didate models by weighting appropriately each of them (e.g. with AIC). MA
leads to better predictive performances than MS, especially in case of sparse
data [18, 19].

This work aims to propose a method combining the approaches of model-
based AD and robust design. It also aims to compare MS and MA at estimation
step, and to combine these methods with AD and robust designs. Based on
a disease progression example with dose and measurement time optimiza-
tion, simulations are performed to assess which approach or combination of
approaches is the most efficient to estimate the dose-response relationship.

In material and methods, the notations and methods are detailed. Then,
an application example is shown. Finally, results are presented, then discussed.

Material and Methods

In this section we present notations and methods on study design as well as
mixed effects models and the Fisher information matrix. After that, optimality
criteria for a design with a given model and with model uncertainty are shown.
Then, the robust adaptive design strategy and the optimization procedure are
detailed.

Design

The population design is denoted E = {N, (&1, ..., &N )}, with N the number of
individuals, and (&1, ...,&n) the set of elementary designs. &; is the elementary
design of the i-th subject and we denote &; = (d;, (1, ..., tin,)), where d; is the
dose received, t;; the j-th sampling time, and n; the total number of samples
for the subject i.

Let @ denote the total number of possible unique elementary designs &g,
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indexed by ¢ = 1, ..., @. This design space is predefined through doses and time
measurements constraints. Denoting n, the number of subjects whose individ-
ual design is &;, the population design is: = = {(&1,n1), ..., (g, Q) }-

The population design can also be expressed with the weights associated to
these possible elementary designs across the population. Let 0 < oy = % <1
denote the weight given to the individual design &, in the population design =,

such that »  ag = 1. Thus we have == {N,Z,}, where Z, = (fl §Q>.
ap ... aQ

In the framework of K-stage design, K population designs Z1,...,Zk are
defined for groups of Ny, ..., N individuals, such that )", Ny = N.

Statistical models

In this work M candidate nonlinear mixed effects models m = 1,... M are
considered to describe observation y; with design &;. They all have the following
form:
Yi = fm(0i,&) + i (1)
where 6; = g(pm,b;) is the vector of individual parameters, depending
on fi,, the vector of fixed effects and b;, the vector of random effects (b; ~
N(0,9,,)), and ¢; is the vector of residual errors, assuming independent ¢; for
each subject, conditionally to random effects. It follows a normal distribution
of mean 0 and variance ¥; (g; ~ N (0,%;)), where ¥; is a diagonal matrix of
size n; defined as: ¥; = diag(Tinter,m + Tsiope,m X fm(0i,&))?, i.e. a combined
error model. If 0giope,m = 0, the error model is additive with a standard error
of Ointer,m, Whereas if ointer,m = 0, the error is proportional to the model with
a standard error of ogope,m-The vector of population parameters, of length
P,,, is denoted t,,, with ¢ = (,u%,Q%u,aintmm,aslope,m), with Q,,,, the
vector containing the unique elements of €2,,.

Fisher Information Matrix

Given a model m and its parameters values v, and assuming that the N
individuals are independent, the Fisher Information Matrix for the population
design ¢ is the weighted sum of individual FIMs:

Q
MFp(Ym, =) = NzaqMF(d’wufq) (2)

q=1

For individual ¢, the elementary FIM M g (1, ;) for the elementary design
&; is defined as:

810g L (¥, yi) Dlog L (b, yi)"

Mp(Wm, &) =E a0, I

3)
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where log L (¢, y;) is the log-likelihood of the vector of observations for
individual ¢ and parameters ,,, given by:

log L (¥, ys) = log </Rp(yilbmwm)p(bilwm)dbz') (4)

with p(y;|b;,¥m) the probability density function of y; given parameters
¥, and random effects b;, and with p(b;|¢,,) the probability density function
of b; given t,,.

Optimality criteria

The D-criterion ¢p is a widely used optimality criterion in the field of optimal
design. For a given model m, it writes:

P

Q Y
¢p.m(Z) = Det(Mp(thm, =)/ P = Det (NZ%MF(%,&)) (5)

q=1
with P, = dim(t,,) and Det(A) the determinant of the matrix A.

The relative D-efficiency Ep ., (E) of a design E with respect to a reference
design =* is computed as:

(6)

The locally optimal design for a model m according to the D-criterion will
be denoted Z10p,m in the following.

In the context of robust design, the aim is to account for the model uncer-
tainty, and therefore to compute an optimality criterion based on the theory
of compound optimality[20]. Assuming that a set of M models, denoted .#,

is available, each model being associated with a weight 0 < w,, < 1 such
M

that Z wy, = 1, the CD-criterion is defined as the weighted product of the
m=1
D-criteria from the different models:

M

¢cp(E) = [ (bp.mE)"" (7)

m=1

The CD-optimal design, known as the robust design, will be denoted ZE¢p =
ZRobust 10 the following.

FIM based Adaptive Designs

In the general setting of robust and adaptive design with K stages, the first
stage of the study is designed and conducted according to previous information
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and accounting for model uncertainty. Then each following stage is planned by
leveraging the data obtained in the previous stages. Indeed, the FIM at stage
k depends on the design of the k*" stage, but also on those of all previous
stages, from 1 to k — 1. Thus, for a given model m (index m is omitted in the

following equations for the sake of simplicity), the total FIM ./\/lgf)(z/;(k*l), =)

at stage k, for a design = and given estimated parameters 1/3(’“’1) from stage
k — 1, writes:

Mg) V. 2) = Mp@* D Zop 1) + Mp* Y, Zcp o)
+ e+ M@ Y Eep k1)
+ My E) (8)

where the E¢p j is the Egopuse computed at stage j.

Two different strategies can be chosen to conduct the design optimization
at stage k. First, the model whose AIC is the lowest at stage k — 1 may be
selected, and the k' stage design determined as the locally optimal design for
this selected model, using its estimated parameters at stage k — 1. Otherwise,
the robust design can be determined for the stage k, using the candidate models
with weights updated according to Eq. 9.

ArcEY
=
W =— ©)
w =
" ArckY
S

m/=1
where wﬁ,’f) is the weight of the m'" candidate model at stage k, with
AIC,(,f_l), the AIC of the m'" candidate model at stage k — 1. To design the
first stage, as no data has been collected and fitted yet, the same weight is
assigned for each model (total uncertainty) i.e. wi) =1 /M.
Workflow for robust adaptive two-stage design is given on Figure 1.
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Two-Stage
P
One-Stage
Design stage 1 Design stage 2
( (m, po) J ( (M N, P0) ) ( (m, p1) )[ AZED) )( (mars,p1)
FIM l-‘[\[,,(,,,wl FIM F[\[nmml FIM
ZELop ERobust ELop ERobust ELop
Estimation 1 —— DataY(®
= DataY() <~ Estimation 2
/ l YO 4 y®
Y
Fit m Fit MA Fit MS
s (myp1) | | = (2,7, 20) s (mars, p1) Fit m Fit MA Fit MS
s (m, pa) = (M, W, Do) » (mars, p2)
L J
L J

Fig. 1 Design and Estimation Options: One-stage or Two-Stage, Locally Optimal or
Robust, fitting with one model, MA or MS

(m, p) refers to a model m and an associated set of parameters p, (A, #i, @) is a collec-
tion of models .# with their respective estimated parameters &, and weights %} after a
given stage k - Ep0p is a Locally Optimal Design, while ZEgopyust 1S @ Robust Design - M A
and M S respectively stand for Model Averaging and Model Selection (mpsg refers to the
selected model)

Design optimization procedure

The multiplicative algorithm, with either D-criterion for local optimal designs,
or CD-criterion for robust designs, is used to find optimal designs. More
details on the computation are given in Appendix A. Designs returned by this
algorithm present groups with non-integer number of subjects. Therefore we
defined the following rounding procedure.

Let 2 = {(&,Wh)..., (§g's Wgr)} denote the design returned by the multi-
plicative algorithm, )’ being the number of individual designs. In particular,

we have Zglzl Wy = N, with N the total number of subjects at the considered
stage. Our aim is to round Wy to ng = ayp N to obtain a design Z,ounded:

fQ’) (10)

aQ

& ...

Erounded = {Na Erounded,a} with Eraunded,a = <061
such that for all ¢ = 1,...,@Q’, the number of subjects having the individual
design &, is an integer, i.e. ny € N, and Z?,:l ng = N.

To be more realistic,only groups with at least n,,., subjects are kept, where
Numin 1s chosen according to the context. After discarding the smallest arms, the
remainders’ weights are normalized. Arm sizes are rounded to integers using
an efficient rounding method, based on multipliers for apportionment [21].
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Evaluation by simulation

Our clinical trial simulation is based on the one proposed by Buatois et al.(see
[18]) which is itself inspired by a study on a monoclonal antibody indicated
in the treatment of wet age-related macular degeneration (wet-AMD). This
disease leads to a reduction in visual acuity (VA). The latter is the number of
letters the patient can successively read on a given table.

Models

As in [18], the disease progression model for individuals suffering from wet-
AMD is supposed to be known and is modelled as follows:

£(0,6) = VA(D,d,t) = VAo + (1 — e *)(B(d) — 8 x VA,) (11)

with VAq the visual acuity at baseline, k the rate of the exponential decrease
in VA to the asymptote VAy(1— ) without treatment, and E(d) the dose effect
relationship.

In the following, the "true” model for F(d) is the Emax model, given by
Eq. 12¢, meaning that it is used to simulate the data. Three additional models
are also considered as candidate models for the investigation: Linear model
(Eq. 12a), Log-linear model (Eq. 12b) and Sigmoid model (Eq. 12d).

Linear: E(d) = ad (12a)
Log-linear: E(d) = alog(d + 1) (12b)
Emamd
: =7 12
Emax: E(d) EDwy 1 d (12¢)
E’r’lﬂ..’td’y

Sigmoid: E(d) , with v = 2 (fixed) (12d)

T EDY, +d

The vector of individual parameters 6; is thus different in the four models:
for Linear and Log-linear models, 8; = (VAy;, ki, 8;, «;), while for Emax and
Sigmoid models, 8; = (VAo;, ki, Biy Emazis EDsoi)-

The distributions followed by the individual parameters are given in
Table 1. In addition, we assumed an additive error model: g; ~ N'(0,02,,,,).
For the simulation, we took O‘%ntw = 28 letters?.

For all models, the population values of the dose-effect parameters are

chosen to reach the same asymptotic VA for dose d,q, = 1000 pg.
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Table 1 Parameter values and distribution of the different candidate models

VAo 1 Emaax EDso
(letters) k (day™) B « (letters) (letters)
Distribution  log-normal log-normal log-normal normal normal log-normal
L pn = 0.03
Linear pw=>55 w = 0.005 w=0.2 w? = 0.0009
. n =35
Log-linear w2 =15
Emax 2 2 2 n =30 ©n =150
@ =007 W =05 wi=1 w? =150  w?=0.49

Sigmoid

Note: p refers to the fixed effects, and w? to the variance of the random effects

Using the median parameters (i.e. the fixed effects p), the change from
baseline in visual acuity AVA (AVA(d,t,u) = VA(d,t,u) — VA(d,t = 0,p))
between 0 and 672 days is represented on the Figure 2.

(a) Linear Model (b) Loglinear Model (c¢) Emax Model (d) Sigmoid Model

w 10- @ 10- w 10- @ 10- Dose (ug)
g 2 /— s g
B oo B . 2 o- o o- 0
< < < < 150
> > > >
Q -0 3 -10- Q -10 3 -10- — 500

0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600

Time (days) Time (days) Time (days) Time (days)

Fig. 2 Evolution of the change from baseline in visual acuity (AVA) according to the fixed
effect, for the candidate models, with 0, 150 and 500 ug doses

Scenarios

The design is based on the scenario described in [17]: the duration of the trial
is 24 months, with 26 measures of visual acuity per individual (day 0, day 7
and every 28 days from the 28th to the 672nd day) and a total of N = 300
individuals.

Design optimization is performed on the tested doses and on the time points
measurements. Each possible elementary design is composed of two fixed
times, at day 0 and 672, and two different measurements optimized among
the proposed times {7; 28k,k = 1,...,23}. Each individual is allocated to
a dose group, receiving at day 0 a dose among {0, 25,50, 100, 150, 300, 500}

ug. Thus, there is (224) X 7 = 1932 possible elementary designs. Designs are

rounded with n,,;, = 5.
Both one-stage and two-stage designs are explored.

One-stage design
Different one-stage designs are compared, based on three approaches (see

Figure 1, block ”One-Stage”) for the design optimization: locally optimized
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designs for Linear model (i.e. the simplest model) and Emax model, respec-
tively 210D, Linear a0d ELOD, Emag, and robust design (i.e. accounting for the
uncertainty on the model) Zgopyst-

Then, different models are considered for the estimation step, in order to
highlight the effect of the design when the model is accurate or misspecified.
For the three initial designs, parameters are estimated using Emax model,
MA approach and MS approach. For E10p,rinear an additional case is con-
sidered by estimating parameters using the Linear model. The best case is
supposed to be Er0p,Emaz, followed by a fit using Emax model, as it is the
true model, meaning the one used to simulate the data.

For MA approach, fits are performed with the four candidate models, which
are then weighted according to their AIC as given in Eq. 9. For MS approach,
the model with the lowest AIC is selected.

Two-stage design

Two-stage design strategies are illustrated on Figure 1 and explained in mate-
rial and methods. Fach stage contains half of the subjects, i.e. Ny = Ny =
N/2 = 150. This analysis aims to evaluate the performance of the adaptive
procedure combined with Zgopus:- The different options come after a first
stage similar to the scenarios explored in the previous section with one-stage
designs. As previously, we consider 210D, Linecars 2LOD,Emaz and ERobust as
three possible first stage designs. Then, the second stage is performed using
either a local optimal design for Emax when the parameters are estimated with
the Emax model, a robust design based on MA or a local optimal design for
the model selected after the first stage’s estimation step. For the Zr0p, Lincar
design at the first stage, we also consider the case in which the second stage
is designed again using a local optimal design for the Linear model.

Implementation and simulation settings

All the design optimizations are performed using the multiplicative algorithm
implemented in PFIM 5.0 (beta version) [22]. An extension of this package is
implemented for the CD-criterion and for K-stages designs.
Estimations are performed using the Stochastic Approximation Expectation-
Maximization (SAEM) algorithm implemented in saemix 3.0 [23]. Running
default parameters are kept (300 iterations for the exploratory phase and 100
for the smoothing one). For the estimation step in one-stage setting and in
the first stage in two-stage setting, the SAEM algorithm is initialized with the
values reported in Table 1.
Data simulation is performed using R version 4.1.0 and the package mlxR
version 4.2.0.

One-stage design settings
For each explored design, the Emax model (Eq. 12c) and the associated values
presented in Table 1 are used to simulate S = 100 datasets with N = 300
subjects. Then, fits are performed on each dataset using the different strategies
and comparison quantities are computed.
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Two-stage design settings

First S; = 100 datasets Ys(ll) are simulated with N7 = 150 and fitted with
the different first stage strategies. In each scenario, for each dataset, results
obtained are used to design the second stage. This means that the FIM for
second stage design is computed using the estimated parameters on Ys(ll), the
empirical FIM from the first stage and the expected FIM for second stage. In
case of a robust design scenario, the AIC weights are updated according to the
first stage results. Then, a dataset YS(IZ) is simulated following this second stage
design. Parameters are re-estimated, using both Ys(ll) and Ys(lz) and comparison
quantities are computed.

Performance Evaluation

The different design strategies are compared according to several criteria. As
proposed by Buatois et al. [18], we use the Minimum Effective Dose (MED)
which is the minimum dose at which a clinically relevant drug effect is achieved,
here defined as an increase of the median AVA at the end of treatment of at
least 15 letters, to evaluate predictive performances. Derived from the true
model and the population parameters given in Table 1, MED is equal to 250
[

The individual visual acuity change from baseline at the end of the trial (¢t =
tpor) is denoted AVA. Monte-Carlo (MC) simulations are used to estimate the
distribution of the individual AVA at tgor for the different doses and models.

For a candidate model m, a given dose d and a simulation s, the estimated
probability density evolution from baseline is:

Pin,s(ds AVA) = po o (fn(dytor, 0) — fin(d,0,0)), 6~ p(thms)  (13)
In model averaging approach we use :

M
PcbD,s = Z wmpm,s(da AVA) (14)

m=1

As the drug is supposed to have a relevant effect if the median AVA has
increased of at least 15 letters at the end of the treatment, the MED is defined
as:

MED,, s = argmin [ meclicm((pm,s(d7 AVA)> —median (pms(o7 AVA))] >15

d
(15)
The design strategies are then compared in terms of MED estimation, using
the Relative Bias (RB) and the Relative Root Mean Square Error (RRM SE).
Formula for these assessment quantities are given in Eq. 16, with z* referring
to the true value of the parameter and Z, its estimation in the s-th simulation.
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~ *

Relative Estimation Error: REE(Z;) = xs;k:c x 100 (16a)
1 S
RB(i) = < ; REE(,) (16b)
1 S
RRMSE(#;) = || < ; REE(i,)? (16c)

The impact of the design in the frequency of selection of candidate models
in MS, and the resulting ability to select the true model are explored, as the
weights distribution in MA.

Results

One-stage design

The robust design Egepust and the locally optimal designs (LOD) Zr0p.m
for each model m for the one-stage designs are reported in Table 2. Overall,
the designs are similar in terms of sampling times. The informative sampling
times are located between 140 and 196 days, and close to the end of the study,
between 588 and 644 days. An early measuring time, 7 days after the beginning
of the treatment, is also optimal excepted for the Log-linear model. Between
the different models, the most critical design elements are the doses. In case of
Linear Er0p, Linear OF Log-linear 21,0p,Log—tinear models, all the individuals
are allocated to extreme doses (0 and 500 pg) whereas optimal designs for
Emax Er,0p,Emaz and Sigmoid models Er,0p, sigmoid 2lso include intermediate
doses such as 100 or 150 pg, as expected. In a coherent manner, the robust
design Egopust over these four candidate models involves individuals with an
intermediate dose, in smaller numbers than for Z.0p, Emaes and ELoD,sigmoid
(57 vs. 92 and 83, respectively).
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Table 2 Optimal one-stage designs, N = 300.

Design and arms  Dose (pg)  Sampling times (days)  Subjects

ERobust
arm 1 0 (0, 168, 196, 672) 126
arm 2 100 (0, 7, 616, 672) 6
arm 3 100 (0, 7, 644, 672) 51
arm 4 500 (0, 168, 196, 672) 117
ELOD,Ema,:c
arm 1 0 (0, 168, 196, 672) 99
arm 2 100 (0, 7, 616, 672) 13
arm 3 100 (0, 7, 644, 672) 79
arm 4 500 (0, 168, 196, 672) 109
ELOD,Linear
arm 1 0 (0, 168, 196, 672) 197
arm 2 500 (0, 7, 588, 672) 10
arm 3 500 (0, 7, 616, 672) 27
arm 4 500 (0, 7, 644, 672) 66
ELOD,Lagflinea'r
arm 1 0 (0, 140, 196, 672) 78
arm 2 0 (0, 168, 644, 672) 65
arm 3 500 (0, 168, 196, 672) 157
ZLOD,Sigmoid
arm 1 0 (0, 7, 644, 672) 9
arm 2 0 (0, 168, 644, 672) 72
arm 3 150 (0, 7, 644, 672) 83
arm 4 500 (0, 168, 196, 672) 136

ZRobust 18 the robust design accounting for model uncertainty over the four candidate
models, Z;,0p,m is the local optimal design for the model m.

Table 3 Relative D-efficiencies of optimal one-stage designs under the different candidate
models, N = 300.

Design — — - -
Model S Robust ZSLOD,Emax SLOD,Linear SLOD,Log—linear SLOD,Sigmoid

Emax 0.98 1 0 0.0023 0.95
Linear 0.92 0.91 1 0.96 0.86
Log-linear 0.96 0.94 0.97 1 0.92
Sigmoid 0.96 0.96 0.0017 0 1
Mean 0.96 0.95 0.49 0.49 0.93

ZRobust 18 the robust design accounting for model uncertainty over the four candidate
models, Z;,0p,m is the local optimal design for the model m.
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These LOD are compared based on their relative D-efficiencies reported in
Table 3. For a given model, the corresponding optimal design is more efficient
than the Zropyst, but the latter is almost always better than the designs deter-
mined as the optimal one for another model. Z10p.Emae and EroD,sigmoid
have overall good efficiencies while it can be noticed that ZErop,rineqr and
ELOD,Log—linear 1€ad to efficiencies close to 0 when the model is Emax or Sig-
moid. This is explained by the absence of intermediate doses in these designs,
which makes impossible the estimation of EDsgy. Using a robust design allows
to get around this issue. In addition, the efficiency of the Egypyst is the largest
in average.

500-
400- ¥

e
=300-
T | B R Trr SOCETT! | CEEEEEY | EEEEEEY | SEREERY | SRR | SRS .
Y200,
100-

Mting Linear Emax MA MS Emax MA MS Emax MA MS

RB(%) 900 10.0 7.8 2.0 10.2 10.8 16.8 6.2 2.0 3.2
ARMBE (%) 91.3 44.4 46.6 54.6 413 443 51.2 36.7 37.6 41.9

Design: B LOD Linear ll LOD Emax [ Robust Design
Fig. 3 Violins and boxplots for the distribution of the predicted Minimal Effective Dose
(MED) for one-stage designs.
100 Simulations, N = 300. The upper whiskers extend from the hinge to the largest value
below 1.5 x the interquartile range, and the lower whiskers extend from the hinge to the
smallest value above 1.5 X the interquartile range. Red diamonds represent the means. The
red dashed line is the true MED.
LOD: Local Optimal Design, MA: Model Averaging, MS: Model Selection, RB: Relative
Bias, RRMSE: Relative Root Mean Square Error

From simulated datasets and for different fitting methods presented in sce-
narios subsection, the minimum effective dose (MED) is calculated and shown
in Figure 3. As expected, Z.0D,Linecar - Fit Linear is the worst performer
(RB = 90% and RRM SE = 91.3%). Nevertheless, fitting with the true model
or using model averaging or, to a lesser extent, model selection gives accept-
able results. As the Emax model is the true model used to simulate the data,
EL0D,Emaz Scenarios provide good performances. MS analysis leads to a higher
risk of misidentifying the MED than MA. Similar or better performances are
obtained with the Zgopyst (lowest RB, between 2.0% with MA to 6.2% when
fitting with the Emax model, and lowest RRMSE, between 36.7% when fit-
ting with the Emax model and 41.9% with MS). Importantly, choosing a local
design for a misspecified model such as 210D, Lincar gives less good results than
choosing a robust design Zgropyst, whether fitting by MA (RRMSE of 46.6%
vs. 37.6%, respectively) or by MS (RRM SE of 54.6% vs. 42.0%, respectively).

MS and MA weights distributions for the different designs are shown on
Figure 4. After 10D, Linear, Log-linear model is much more selected than the
other ones: 78% of the cases while only respectively 12% for Emax, 7% for
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Sigmoid and 3% for Linear. Consistently, the most weighted model in MA
is Log-linear, with an average weight of 0.65, then comes Emax (0.17), then
Sigmoid (0.15) and finally Linear (0.04). After =10p,Emas, model selection
is more balanced between Log-linear, Emax (both 38%) and Sigmoid (24%).
Linear model is never selected. In the same way, MA weights are more balanced
between Emax (0.37), Log-linear (0.34), and Sigmoid (0.29). After Zrobusts
Log-linear is once again the most selected (50%), while Emax and Sigmoid
are almost equally selected (respectively, 26% and 24%). As for Zr0p,Emasz:
Linear is never selected in MS approach, and the weight of this model in MA
is null. Once again Log-linear model is the most weighted (0.44), then comes
Emax (0.30) and Sigmoid (0.27). Thus, design impacts the ability to select
the true model (Emax), or at least one close to the true one (Sigmoid), in MS
and in the weights distribution of MA. In this framework, Zgopust performs
better than Z10p,Linear and its results are even close to those obtained with
ELOD,Emas (true model). The prevalence of Log-linear model in MS and MA
may be explained by the similar trends between Emax and Log-linear models
(see Figure 2) coupled with the smaller number of parameters to be estimated
in Log-linear model. Thus, because of the penalty term in AIC computation,
with equal likelihood, Log-linear model is preferred.

Another important result from these simulations is that the MA method
outperforms MS, especially in the case of local designs (RRMSE of 46.6%
VS. 546% for ELOD,Linear and RRMSFE of 443% VS. 512% for ELOD,Emam)~
Indeed, this sparse design setting (only 4 measuring times per individual) leads
to the selection of a model which is not the true one (Emax) in most of the
cases, even with the Zp0p Emas (Emax model selected in only 38% of the
simulations).
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Fig. 4 Selected Proportions for MS (left) and AIC Weights distribution w (right) for MA
in different One-Stage Designs: (a) and (b): LOD (Local Optimal Design) for the Linear
model, (c) and (d): LOD for the Emax model, (e) and (f): Robust Design

100 Simulations, N = 300. The upper whiskers extend from the hinge to the largest value
below 1.5 X the interquartile range, and the lower whiskers extend from the hinge to the
smallest value above 1.5 X the interquartile range. Red diamonds represent the means.
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Two-stage design

Optimal designs obtained with the multiplicative algorithm for the first stage
with N3 = N/2 are presented in Appendix B. They are similar as the ones
previously obtained for IV, but with only approximately half as many patients
in each arm. The small differences come from the constraint we set of having
at least 5 patients per arm. This explains why the Zgopuse only has 3 arms
for the first stage while it used to have 4 in the one-stage design. Therefore,
the relative efficiencies have the same hierarchy as the one found with a single
stage.
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First Stage Design: LOD Linear, N=150
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Fig. 5 Selected Proportions for MS (left) and AIC weights distribution (right) after different
First Stage Designs: (a) and (b): LOD (Local Optimal Design) for the Linear model, (c¢) and
(d): LOD for the Emax model, (e) and (f): Robust Design

100 Simulations, N = 150. The upper whiskers extend from the hinge to the largest value
below 1.5 X the interquartile range, and the lower whiskers extend from the hinge to the
smallest value above 1.5 X the interquartile range. Red diamonds represent the means.
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The Figure 5 shows that whatever the design used, the Log-linear model
is always the most selected after the first stage in the MS approach (78% after
ZELOD,Linears 53% after HELOD,Emax and 67% after ERobust)- It means that
the second stage will be conducted using its optimal design, according to the
new estimated parameters. After 2.0, Emas the second most selected model
is Emax (26%), then comes Sigmoid (21%), while Linear is never selected.
After ZRropust, Emax and Sigmoid are respectively selected in 13% and 20% of
the cases. After 210D, Linear, Emax, Sigmoid and Linear are selected almost
equally (respectively, 9%, 7% and 6%).

Overall these results are not as good as those obtained with the one-stage
designs as the Emax model is less selected. Especially it is selected in only 13%
of the simulations for Z g,y While it used to be 26%. This may be explained
by the smaller amount of subjects, and thus of data, leading to select a simpler
model. Indeed, the Log-linear model has one less parameter than the Emax
and Sigmoid models.

Consistently, the Log-linear model is also always the most weighted one
(0.61 after E10D,Linear, 0.43 after E10D, Emas and 0.53 after Egopyst), accord-
ing to AIC, in the MA approaches (see Figure 5). The most balanced weights
are obtained after Z5,0p, Emax With 0.29 for Emax, 0.43 for Log-linear and 0.28
for Sigmoid. Interestingly, the robust design leads to a weight of 0 for the Lin-
ear model, which is the most distant model from the true one, in more than
90% of the simulations.

(a) LOD Linear - Fit MS (b) LOD Emax - Fit MS (c) Robust Design - Fit MS
- LOD MS -LOD MS -LOD MS

Model B Emax N Linear | LogLinear I Sigmoid

Fig. 6 Selected Proportions for Model Selection (MS) after different first stage and a second
stage based on the model selected after the first stage
100 Simulations, N1 = N3 = 150, LOD: Local Optimal Design

The Figure 6 shows the proportion of selection in the MS approach for the
second stage depending of the design used in first stage, the selected model
being the one used to compute the MED. Once again we can see that the
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Log-linear model is the most selected, but having more data (completing the
second stage) leads to select slightly more frequently the right model compared
to after the first stage, even if the design is often optimized for a wrong model.
For example, starting with Zgopust, the Emax model is selected in 13% of the
simulations after the first stage vs. 25% after the second stage.
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Fig. 7 Violins and boxplots for the distribution of the predicted Minimal Effective Dose
(MED) in pg for different approaches: (a) after Erop,Linear, (b) after Zro0D, Emaz, (€)
after ERopust first stage

100 Simulations, N = 300. The upper whiskers extend from the hinge to the largest value
below 1.5 X the interquartile range, and the lower whiskers extend from the hinge to the
smallest value above 1.5 X the interquartile range. Red diamonds represent the means. The
red line is the true MED.

Z Robust 1S the robust design accounting for model uncertainty over the four candidate mod-
els, ELop,m is the local optimal design for the model m.

LOD: Local Optimal Design, MA: Model Averaging, MS: Model Selection, RB: Relative
Bias, RRMSE: Relative Root Mean Square Error
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From simulated datasets and for different two-stage design approaches pre-
sented in scenarios subsection, the minimum effective dose (MED) is calculated
and shown in Figure 7.

Approaches derived from a E10p, Linear first stage design are presented on
panel (a). As seen previously, this design followed by a fit using Linear model
performs poorly. The same design but with a fit using the true model leads to
a reasonable result (RB = 10% and RRMSE = 44.4%). A two-stage design,
even with Er0p,Linear - Fit Linear approach is slightly better than just a one-
stage design in linear design, both RB and RRM SFE are smaller (respectively
RB = 81.4% and RRMSFE = 83.9% for two-stage design, and RB = 90.0%
and RRMSE = 91.3% for the one-stage design), but this approach is still
performing poorly. The two-stage design Fit Emax - Er0p, Emas - Fit Emax
does not perform better than the one-stage one fitting with Emax (respectively,
RB = 12.8%,RRMSE = 43.4% and RB = 10%, RRMSE = 44.4%). This
may be explained by error propagation: the SAEM algorithm is initialized at
the beginning of the first stage with the true values when fitting with Emax,
while at the second stage, estimates from the first stage are used as starting
points. This may cause an overly optimistic evaluation when fitting with Emax
model in one-stage design. Using MA at the first stage, then using Egopust
for the second stage and MA again performs reasonably, RB is of 11.6% and
RRMSE is 49.1%. Selecting a model after a first stage to design the second
stage (Fit MS - Erop,ms - Fit MS) gives here the best results in terms of RB
(RB = —2.8%). In addition, the RRM SE is smaller than the one obtained
with one-stage design (see Figure 3) Zr0D Linear followed by MS (49.8% vs.
54.6%) while RB are close (-2.8% vs. 2%). These results show that even if the
model is highly misspecified when designing the first stage, using MA - Egopust
or MS - Erop,ms in a second stage allows to reach good results.

As expected, starting with 210D, Emaz, 1-€. the design of the first stage
under the true model, leads to good performances (Figure 7, panel (b)).
The expected best scenario was the two-stage with Fit Emax - Er0p, mas -
Fit Emax. It has the lowest RRMSE (37.4%) but it is more biased (RB =
14.6) than other approaches. This result is consistent with one-stage design
approaches, in which E10p, Emas led to more bias than Egr,p,s:. The robust
two-stage approach using MA for the two fits performs equivalently to the
one-stage design followed by a fit using Emax model (respectively, RB =
10.9%, RRMSE = 46.0% and RB = 10.2%, RRMSE = 41.3%). On this
example the two-stage design Fit MS - Erop,ms - Fit MS has again the best
performances (RB = 4.8% and RRMSE = 41.6%).

Overall, starting with Zgopust leads to good performances (Figure 7,
panel (c¢)). The Fit MA - ZEgopust - Fit Emax is more biased than the one
ending by MA, despite Emax being the true model (respectively, RB =
19.2%, RRMSE = 48.7% vs. RB = 14%,RRMSE = 51.4%). Here, the
Robust Adaptive Design using MS performs slightly better than the one using
MA (respectively, RB = 7.6%, RRMSE = 47.6% vs. RB = 14%, RRM SE =
51.4%).
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Overall, MS at both stages is a decent strategy. One can prefer to start
with a robust design at the first stage rather than a possibly wrong local
design. For example, although the metrics indicate similar bias and precision in
ELOD,Linear - Fit MS - Epop,ms - Fit MS and ZEgepust - Fit MS - Epop, s -
Fit MS, the median MED corresponds to the true MED in the second strategy
which is not the case when the first stage is Erop, Linecar-

Importantly, in our example, one-stage robust design coupled with MA
(RB = 2% and RRMSE = 37.6%) is performing better than any two-stage
strategy starting with a robust design at first stage.

Discussion

In this work, we propose a new two-stage adaptive design strategy in longitudi-
nal studies, based on the robust expected FIM and MA over several candidate
models. The concepts and methodology of this approach are explained in mate-
rial and methods. Then, this strategy is applied to a clinical dose-response
design of a treatment in ophtalmology, with several candidate models. This
application includes simulations to evaluate the relevance of the approach and
to compare it with other one- or two-stage designs and analysis (e.g. MS or
MA) approaches.

Within one-stage, our work confirms even more conclusively than in pre-
vious works [17], that a robust design should be chosen, and local designs
that lead to poor D-efficiencies with more complex models should be avoided.
By simulation, we also demonstrated that local design optimization can have
severe impacts at estimation step. It increases the risk of selecting a model dis-
tant from the true model, or, when performing MA, of obtaining higher weights
in the most distant models (in our example, the linear model). Thus, it leads
to higher bias than robust design and imprecision on parameters and therefore
on outcomes such as MED in our example, which would lead to a suboptimal
dose selection. Among two-stage designs, performing MS or MA at the end of
the first stage to design the second stage is as expected better than focusing
on the same wrong model at both stages. These two methods lead to reason-
able bias and precision of estimation. If one focuses on local designs and model
selection methods, performing a two-stage design, with a model selection at
the choice of a wrong model when designing the first stage. The most robust
procedure (robust design and MA at both stages) did not show a noteworthy
interest in our example. On the other hand it seems valuable to start from a
robust design at the first stage in order to collect information that could sat-
isfy the different candidate models and then to perform MS after first stage to
optimize the design of the second stage. Notice that this result could be a con-
sequence of the low number of measurements per individual in our example,
which may lead to high weights on simpler (and in our case, wrong) models.

A limit of our work is that the RB on MED estimation could be around
10%, even in an ideal scenario. This can also be explained by our relatively
sparse design compared to the number of parameters to be estimated and to
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the work of Buatois on the same models (4 vs. 26 measurement times, respec-
tively) [18]. Here we decided to focus on MED, its RB and RRMSE but other
metrics such as the clinically relevant drug effect (CRE) can also be used [18].
Moreover, it would be of interest to consider more dose/response relationships
(e.g. quadratic, exponential or logistic) in the set of candidate models [24, 25].
Overall, it would be of interest to apply the proposed approaches to other
examples with different number of measurements, different candidate models
or another type of study to investigate which design and/or which analysis
method is the most suitable depending on the situation.

In our work, we searched local D-optimal designs or robust CD-optimal
designs, as we aimed to optimize the precision of the estimates of all the model
parameters. Other options can be of interest, when focusing on a subset of
parameters, like maximizing c- or Dg- criteria, or even better to combine those
to D-optimality to avoid sacrificing other parameters, i.e. ¢D- [26] or DDg-
criteria, respectively (CcD- or CDDg- in case of robust design [17]). In other
studies, it could be a good option to optimize design accounting for parameter
uncertainty [15], which can also be done on top of accounting for model uncer-
tainty [16]. In our article, we used the multiplicative algorithm implemented
in PFIM5 R package [22], to optimize designs in a discrete space. Another per-
spective could be to optimize robust adaptive design with algorithms working
with a continuous design space, such as particle swarm optimization [27] or
PGBO [28], which are also implemented in PFIM5.

Conclusion

In this work, we propose a new approach to conduct robust and adaptive
designs in longitudinal data analyses such as pharmacometrics studies. This
approach has been applied to a dose-response study example and shows the rel-
evance of adaptive two-stages design and of robust design accounting for model
uncertainty. A perspective is to investigate the relevance of this approach in
other examples, which would be eased by the PFIM R package.
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Appendix A Multiplicative Algorithm for
Robust Approach

The multiplicative algorithm is an iterative algorithm which can be used to
computed the weights o4 to attribute to the individual designs in order to
optimize the D-criterion or the CD-criterion in case of Zgopust- [29]
The derivative of these criteria in case of one-stage and K-stage designs, which
are required for the optimization process, are computed in the following.
CD-derivative for one-stage design
9¢p(2)

Oay

is needed. Therefore

In the multiplicative algorithm, an expression for

let denote:

Q
¢p(Z) = Det (A(O‘q))l/P with Mp(2) = A(ag) =N Z ag Mp(&y)

q'=1
(A1)
We have,
9¢p(E) _ 1 i 1/P—1
dag P \da Det (Aay)) | Det(A(ey)) (A2)
According to Jacobi’s formula,
9 Det (Alay)) = tr {A(aq)_l dA(O‘q)] Det (A(ay)) (A3)
doyg Qq

A
and we have: dAlag) _ NMp(&,), which leads to:

dayg
quDet (A(ag)) = Ntr [MFp(E)""Mrp(&,)] Det (Mp(E)) (Ad)
Thus,
a%ff) _ % <quDet (A(aq))> Det(A(ag)/ P!
- %” [Mp(E)" M (&)] Det(Mp(2))" (A5)

For the robust approach, we need expressions for derivatives of
M

¢cp(E) = [] (@pm(E) "

m=1
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Recall that

ST =3 | Sr@ e (A6)

Thus,

8 M 6 m E Wop, — =\ \ W,/
¢CD Z wm(bD,i() (¢D,m(E)) mt H (¢D,m’(‘:)) "
=1

aaq Oay it
(AT)
which writes:
ddcp(E) - 1 0¢pm(E)
ooy ¢cp(2) Z Hm épm(E)  Oaq (48)

m=1

The robust version was implemented using PFIM and the new Multiplica-
tiveAlgorithmRobust class.

CD-derivative for K-stage design
In the general setting of robust and adaptive design with K stages, the first
stage of the study is designed and conducted according to previous information
and accounting for model uncertainty. Then each following stage is planned
leveraging the data obtained in the previous stages. Indeed the FIM at stage k
depends on the design of the k" stage, but also on those of all previous stages,
from 1 to k—1. Thus, for a given model m (index m is omitted in the following

equations for the sake of simplicity), the total FIM Mg)(ﬂ(k_l), E) at stage k,
for a design = and given estimated parameters 1)*~1) from stage k — 1, writes:

Mﬁf) (p* D 2) = Mp@* Y Zcp 1) + Mp@* Y Zop 0)
F it Mp@*F Y Zop k1)
+ Mp(ptb E) (A9)

where E¢p ; is the Eropust computed at stage j.
Thus, only Mg ()*~1), =) depends on Z, the design on which optimization
is performed. Therefore, at stage k, let denote the previous FIM:

Mgf)apTev(qzj(kfl)) — MF('l/A)(kil)yacD 1)+MF(7[}(]€71)’ECD,2)
ot Mp@* Y Eop 1) (A10)

which leads to write:

M (@0,2) = MEPPGE) + MY, 2)
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Q
— M%C)vprev(w(k—l)) + Ny, ZaqMF(w(k_l)afq) (All)

q=1

As previously and with A(a,) = M%C) (=1 2), we have:

208 5 (G Det (Atag)) ) Dertata) P (A

which writes:

P00(E) _ Ny TP @D, 2)7 M ()] Det(MP @D, )7

Oay P
(A13)
Thus, in robust approach, the derivative of ¢ p keeps the same expression:

d¢cn(E) - 1L 9¢pm(Z)
725{1 :¢0D(:)Z <wm¢D,m(E) gaq ) (Al4)

m=1



28 Robust adaptive designs

Appendix B Two-stage design: designs for the
first stage and relative efficiency

Table B1 Optimal First Stage Designs, N1 = 150.

Design and arms  Dose (pg)  Sampling times (days)  Subjects
ERobust
arm 1 0 (0, 168, 196, 672) 65
arm 2 100 (0, 7, 644, 672) 26
arm 3 500 (0, 168, 196, 672) 59
ELOD,E'mcLz
arm 1 0 (0, 168, 196, 672) 49
arm 2 100 (0, 7, 616, 672) 7
arm 3 100 (0, 7, 644, 672) 39
arm 4 500 (0, 168, 196, 672) 55
EL()D,Linea'r
arm 1 0 (0, 168, 196, 672) 102
arm 2 500 (0, 7, 616, 672) 14
arm 3 500 (0, 7, 644, 672) 34
ELOD,Logflinear
arm 1 0 (0, 168, 196, 672) 39
arm 2 0 (0, 168, 644, 672) 32
arm 3 500 (0, 168, 196, 672) 79
ZLOD,Sigmoid
arm 1 0 (0, 168, 644, 672) 37
arm 2 150 (0, 7, 644, 672) 43
arm 3 500 (0, 168, 196, 672) 70

ZRobust 1S the robust design accounting for model uncertainty over the four candidate
models, E7,0p,m is the local optimal design for the model m.

Table B2 Relative D-Efficiencies between designs, N1 = 150.

Design
Model ZRobust

ELOD,EnLa:L'

ELOD,Linear

ELOD,Logflinear

ELOD,Sigmoid

Emax 0.98 1 0 0 0.95
Linear 0.92 0.86 1 0.92 0.75
Log-linear 0.95 0.89 0.91 1 0.89
Sigmoid 0.95 0.97 3.0e-05 0 1
Mean 0.95 0.93 0.48 0.48 0.90

ZRobust 1S the robust design accounting for model uncertainty over the four candidate
models, ZE1,0p,m is the local optimal design for the model m.
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