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SUMMARY

Human pluripotent stem cells have ushered in an exciting new era for disease modelling, drug
discovery and cell therapy development. Continued progress toward realizing the potential of
human pluripotent stem cells will be facilitated by robust datasets and complementary
resources that are easily accessed and interrogated by the stem cell community.

In this context, we present SISTEMA, a quality-controlled curated gene expression database,
built on a valuable catalogue of human pluripotent stem cell lines and their derivatives for
which transcriptomic analyses have been generated using a single experimental pipeline.
SISTEMA functions as a one-step resource that will assist the stem cell community to easily
evaluate the expression level for genes of interest, while comparing them across different

hPSC lines, cell types, pathological conditions or after pharmacological treatments.



INTRODUCTION

In the last decades, the isolation of human pluripotent stem cells, first from human embryos
(Thomson et al., 1998), and more recently from the genetic conversion of somatic cells
(Takahashi et al., 2007), represents a major breakthrough to study lineage-specific
mechanisms underlying development or pathological condition and to broaden our capacity
for biological therapeutics. Based on their unique capacities for self-renewal and
differentiation into specialized cell types, human pluripotent stem cells have become the
subject of intense research not only for developmental studies but also in the field of cell
therapy, modeling of human diseases and drug discovery and testing (Bassez et al., 2018; Ben
M'Barek et al., 2020; Ben M'Barek et al., 2017; Rowe & Daley, 2019).

Genome-wide expression profiling has been a common endpoint for these studies for
analyzing pluripotency, differentiation and the function of genetic variants associated with
monogenic diseases. A growing body of transcriptomic datasets for various hPSC lines and
their specific differentiated counterparts has been deposited in public data repositories (Assou
et al., 2007; Au & Sebastiano, 2014; Ghosh & Som, 2020; Godoy et al., 2018; Mair et al.,
2019; Mallon et al., 2013; Streeter et al., 2017). Despite this wealth of data, exploring gene
expression profiles from different experiments is not trivial. Different challenges still remain
such as the integration and interpretation of massive amount of available data, the
heterogeneity in original data processing as well as the quality datasets (Pinto et al., 2018).

To overcome these challenges, we provide here a large well-characterized collection of
human pluripotent stem cell lines and their derivatives for which transcriptomic analysis has
been generated using a single experimental pipeline. Moreover, we have developed a user-
friendly search engine to facilitate comparisons of gene expression data between these
different biological samples. This open resource presented in SISTEMA web portal is

designed for the community to examine individual or multiple genes for expression under



different states from pluripotency to differentiated conditions and under normal or
pathological conditions, with 8 different monogenic diseases already represented in this

growing database.



RESULTS

Data collection and dataset curation

All the biological samples were collected from the same laboratory and included 45 hPSC
samples from 11 hPSC lines (2 hESCs and 9 hiPSC) at either undifferentiated state or one of
eight differentiated states representing the different germ layers (Guenou et al., 2009; Maury
et al., 2015; Mournetas et al., 2019; Nicoleau et al., 2013) (Figure 1A). This collection
included 23 healthy and 24 clones from donors with a rare genetic disease which represented
a total of 8 different pathological conditions comprising neuromuscular, neurodegenerative
and skin disorders, as well as some isogenic lines generated either using CRISPR/ Cas 9
technology or lentiviral transduction (Figure 1B and 1C). Samples treated with different
chemical compounds have also been included (Figure 1D). These small molecules were
evaluated in the context of different pathologies such as lithium for the autism spectrum
disorder caused by SHANK3 haplo-insufficiency, MG132 for Hutchinson-Gilford progeria
syndrome, Thiostrepton and Bortezomib for Limb-girdle muscular dystrophy type 2D, VPA
for Wolfram syndrome or Kenpaullone for Spinal muscular atrophy (Darville et al., 2016;
Harhouri et al.,, 2017; Hoch et al., 2019). All the transcriptomic data were generated in
comparison to DMSO treated controls. Of interest, some of the data provided by the database
have not been published yet all the scientific community to have access to a larger spectrum
of data. All the cell lines used for the creation of this database as well as the metadata files are
also available upon request and following the French legal policy.

The processing of all these biological samples were performed using a unique platform
following a standardized protocol from RNA extraction to biological analysis. To overcome
the current limitations associated with traditional whole-transcriptome sequencing technology,
e.g., the requirements of a significant amount of input RNA, we chose to process the samples
by using the Ion Ampliseq technology (Li et al., 2015). This technology has been designed for

targeted amplification of over 20,000 distinct human RNA targets simultaneously and is
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described to present the advantage of amplifying a short amplicon (~ 150 bp) for each
targeted gene allowing a much smaller amount of raw reads (only 10 Million reads sequenced
by sample) required for accurate gene expression quantification (Li et al., 2015). To evaluate
the reproducibility of the Ampliseq technology, one RNA sample was sequenced twice
independently leading to a percentage of correlation of 97.8, which indicated a consistent
performance between technical replicates (Figure ST1A). This experiment also confirms the
robustness of this technology allowing us to study and compare the gene expression of several
samples sequenced at different times on the platform. Then we validated the sequencing
coverage offered by the Ampliseq technology. For this purpose, each amplicon sequence was
BLASTed against a transcriptome of reference (GRCh38.92). This analysis revealed that
99.89% of the amplicons panel were correctly identified and represented 21,080 genes.
(Figure S1B). Based on this technology, a total of 443 transcriptomes were generated by
following a unique and standardized protocol which led to the consistent deep sequencing
coverage and percentage of alignment (Figure S2A and S2B). The sequencing process was
followed by a standardized data analyzing pipeline as described in Supplementary Figure 2A.
For each sample, reads were aligned to the Amplicons sequence reference using bowtie2 local
(v2.3.4.1). Reads below a mapping score of 10 or multi-mapped were filtered using samtools
(v0.1.19). Samples were normalized by RPM (reads per Million) and the expression values
were converted into logarithm scale (log10(x+1)) using R (v3.6.0).

Web interface and graphical visualization

All expression profiles from the 443 experimental datasets have been implemented in the

form of a web-resource called SISTEMA (http://sistema.ens-lyon.fr ). It was designed as a

user-friendly interface in which a set of tools has been integrated for providing a rapid
overview of the data and for querying, analyzing and displaying data online. With the purpose

of continuously updating this resource with new datasets, SISTEMA enables to compare the



expression levels of particular genes of interest or a combination of genes across different
lineages and conditions.

The query can be specified by first selecting the datasets pertaining to the cell lineage(s) of
interest, the genotype(s), the cell line(s), the time of differentiation, the effect of a chemical
treatment (Figure 2A). Then, the users can define the gene(s) of interest (Figure 2A). As an
example of querying for a single gene, the expression profile of NANOG, one of the key
pluripotent markers (Chambers et al., 2007; Silva et al., 2009), has been analyzed in different
samples of undifferentiated hESC samples or hiPSC-derived Keratinocytes. Once the queried
data is processed, detailed information regarding the chromosomic localization, the gene
structure, its interacting partners are first displayed as SISTEMA interface is linked to other
databases such as Genecards, NCBI, MIM, HGNC, Ensembl, Vega and STRINGDB (Figure
2B). For better visualization, the results are presented as a histogram and a downloadable
table in which data are expressed as the normalized counts in logarithmic scale observed in
each sample. As expected, NANOG was found to be highly expressed in pluripotent cells
whereas its expression is absent in the hiPSC-derived keratinocytes (Figure 2C-2D). For each
sample, a list of different characteristics such as the cell type, genotype, the phenotype, the
time and condition in culture, is provided (Tablel) and the user can customize the graph and
the table in function of the cell types, genotypes, cell lines or time of differentiation (Figure
2D).

SISTEMA also allows a multi-gene analysis. An option is proposed to visualize the
expression profile of up to 10 genes on a selected set of samples. As an example, the
expression profiles of NANOG, OCT4 and SOX2, the triad of transcription factors known to
be critical for self-renewal and pluripotency (Chambers & Tomlinson, 2009), has been
analyzed in hESC and hiPSC-derived keratinocytes (Figure 3A). As for the single gene

analysis, detailed information regarding each gene is provided and their expression profile is



presented as a histogram and a downloadable table (Figure 3B-3D). In addition, results are
also presented as a heatmap in which the retrieved expression data for the selected genes and
cell types are indicated and the samples are hierarchically clustered (Figure 3C).

Example applications

To illustrate the utility and the potential applications of SISTEMA, we first sought to evaluate
the assignments of the samples from clustering the entire database in function of the
expression of selected markers. For that purpose, the expression of a set of 10 genes of
pluripotency, extracted from the database KEGG pathway, were analyzed across all the
biological samples. Hierarchical clustering allowed the correct distinction between pluripotent
stem cells and differentiated cells (Figure 4A). Conversely, the expression profile of a set of
10 genes associated with the GO term “spinal cord motoneuron differentiation” led to the
distinction between pluripotent stem cells and their motoneuronal derivatives, comfirming the
relevance of the SISTEMA Database (Figure 4B).

We also evaluated the possibility to define the temporal expression profile of 10 genes known
to be associated with the development of the melanocyte lineage (from GO) at different time
points of the differentiation protocol from human pluripotent stem cells. As expected, the
expression profile of this set of markers allowed to accurately make the distinction between
hPSCs and hPSC-derived melanocytes. In addition, it revealed profiles of gene expression
that evolved over time along with the differentiation (Figure 4C). Thus, CITEDI and ENDRB,
previously described as two important regulators of melanogenesis (Howlin et al., 2015; Nair
et al., 2001; Park et al., 2015), appeared progressively expressed during the differentiation
process (Figure 4C). The expression of GLI3 was in contrast more pronounced in the early
specification of the melanocyte lineage, as previously described in a mouse model (Matera et
al., 2008). As a control, we also chose GNAQ which appears to be the only one with no

modification of its expression with the differentiation. Concordant with our observations, this



gene has been previously shown to be involved in the regulation of pigmentation rather than
differentiation (Kusters-Vandevelde et al., 2010; Van Raamsdonk et al., 2004). Altogether,
these analyses validated the relevance of the SISTEMA database both to evaluate the
expression profiles of different gene sets across a large battery of biological samples and to
visualize the expression profiles of gene sets along lineage specification.

Since their first isolation, human pluripotent stem cells have sparked widespread enthusiasm
for the development of new models of human disease and have enhanced platforms for drug
discovery. To evaluate the potential of SISTEMA database for these applications, we focused
on the expression profile of the survival motor neuron 1 (SMNI) gene, the homozygous
deletions/mutations of which causes spinal muscular atrophy (SMA), a severe genetic
neuromuscular disease (Lefebvre et al., 1995). As expected, SMNI expression was
significantly decreased only in the biological samples derived from SMA patients (Figure
5A). Next, we sought to explore SISTEMA database to identify a potential small molecule
capable to increase the level of SMNI, which therefore would present a therapeutic interest.
Thanks to an unbiased analysis including all the pharmacologically-treated biological samples
present in SISTEMA database, we identified three proteasome inhibitors, Bortezomib,
Thiostrepton and MG132 that lead to an increased expression of SMNI compared to mock-
treated controls. The results were concordant with previous studies that showed at least for
two of these proteasome inhibitors, Bortezomib and MG132, a beneficial effect on SMNI
expression both in vitro and in vivo (Kwon et al., 2011; Locatelli et al., 2015). In contrast, and
in agreement with previous studies (Brichta et al., 2003; Dachs et al., 2013; Elshafay et al.,
2019; Piepers et al., 2011), neither VPA nor lithium treatment showed a significant effect

(Figure 5B).



DISCUSSION

Here we present the data access and presentation services that SISTEMA database provides,
which enable the community to both discover and to reuse the cell lines and data included in
this project.

SISTEMA further complements and outspreads the two gene expression databases dedicated
to pluripotent stem cells, StemCellDB for human embryonic stem cells (Mallon et al., 2013)
and HipSci for human induced pluripotent stem cells (Streeter et al., 2017). Whereas these
online resources are based on either microarrays or whole transcriptome RNA sequencing
technologies, the main strength of SISTEMA lies on the use of a unique pipeline to generate
transcriptomic analysis providing a collection of quality-controlled curated data. Most of the
other data resources from public repository, i.e. EBI expression atlas or NCBI short read
archive, are also useful tools to explore gene expression dataset but cover a large set of
biological field from microbiology to stem cells biology which makes difficult to easily and
rapidly analyze a specific research. One of the objectives of Sistema is to provide a rapid
overview of the gene expressing by providing a comprehensive and limited number of hESC
and hIPSCs cells and their derivatives. Additionally, SISTEMA relies on the use of a recent
technology, named AmpliSeq, designed for targeted amplification of over 20,000 distinct
human RNA targets simultaneously using a highly multiplexed amplification method (Li et
al., 2015). Because of this targeted nature and small amplicon size, the amount of raw data
required for accurate gene expression quantification is much smaller with the AmpliSeq
technology than classical RNA sequencing. This clearly represents an advantage since for
large scale of RNA sequencing experiments involving hundreds or even thousands of samples
the bioinformatics analysis as well as the data storage needs can rapidly become strenuous

(Schmidt & Hildebrandt, 2017). All the data included in SISTEMA have thus been generated
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through this unique experimental workflow and on the same platform, giving rise to
standardized operative procedures and the production of homogenous samples in term of
quality and coverage depth.

Since the derivation of the first human embryonic stem cell line more than two decades ago
(Thomson et al., 1998), human pluripotent stem cells have ushered in an exciting new era for
the fields of stem cell biology and biomedical research. Nowadays, human pluripotent stem
cells are widely used for disease modelling, drug discovery and cell therapy development. In
this context, SISTEMA provides a valuable catalogue of human pluripotent stem cell lines
with a representative snapshot of these cells in their undifferentiated state as well as in a wide
range of differentiated cell types. SISTEMA functions as a one-step resource that will assist
the stem cell community to easily evaluate the expression level for their genes of interest,
while comparing them across different hPSC lines, cell types, pathological conditions or after
pharmacological treatments (Figure 6). It therefore opens up a wide spectrum of applications
(Figure 6), such as validating the co-expression of different genes along a differentiation
process or under a pathological condition, assessing their cell-type or temporal specificities of
expression, evaluating the effect of a drug treatment on a set a genes of interest. Most of the
data presented on Sistema are already integrated on largest databases such as Gene Expression
Omnibus. Of interest, our database also includes none published results which provide an
opportunity for the scientific community to access to larger not yet published datasets.
LIMITATIONS OF THE STUDY

Currently, SISTEMA contains data generated from the ampliseq technology and does not
include other omics. Our objective for the future is to continuously feed SISTEMA with new
data generated on our platform without ruling out the possibility of including expression

profiles generated by whole transcriptome RNA sequencing or single cell RNA sequencing,
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also generated by the same platform as these approaches provide complementary snapshots
(Li et al., 2015).
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FIGURE LEGENDS

Figure 1. Representation of the phenotype and genotype diversity currently described in the
database. (A). Graphical representation in percentage distribution of the 10 principal cell types that
are present in SISTEMA database. Reference cells means RNA from commercial cell lines (primary
cells) or total RNAextracted from human tissues; i.e. human Brain or Human foetal Brain. (B).
Graphical repartition between biological samples that carry a causal mutation associated with a rare
disease and healthy non affected (WT) biological samples. (C). Detailed representation of the different
monogenic diseases presented in SISTEMA (EB: Epidermolysis bullosa, HD: Huntington, LND:
Lesch Nyhan, SMA: Spinal Muscular Atrophy, WES: Wolfram Syndrome, DMD: Duchenne Muscular
Dystrophy, DM1: Myotonic Dystrophy type 1 and Progeria). (E). Graphical representation of
pharmacological treatments performed on some biological samples. See also Figure S1 and S2.

Figure 2. Visualization of the Web Interface for single gene analysis. (A). View of the query page
with the different filters that can be used for analysis such as cell type, pharmacological treatments,
time of differentiation as well as the visualization of the results obtained for NANOG as the gene of
interest. (B). Visualization of the general information provided for each gene as well as the different
web links. (C). Level of expression of NANOG in hES cells and hES-derived keratinocytes
(normalized counts: loglO(cpm + 1)). (D). Visualization of the expression table gathering the different
information concerning each cellular sample. This table is downloadable as an excel file. Figures C-D
represent the results obtained with 9 different hESC lines. See also Table 1.

Figure 3. Visualization of the Web Interface for analysis of multiple genes. (A). for each gene
analyzed, a link to NCBI database is associated as well as the possible relation between the different
genes analyzed (by using STRING). (B) Histogram representing the comparative expression value for
each gene analyzed in hES cells and hES-derived keratinocytes. (C). Hierarchical clustering of the
genes SOX2, NANOG and POUSF1B expressed in undifferentiated hESC and in hPSC-derived

keratinocytes (normalized counts: loglO(cpm + 1), (D) Downloadable expression table and detailed
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information about individual biological sample. Figures 3C-D correspond to the representative results
obtained with 9 independent hPSC lines.

Figure 4. Pairwise dissimilarities of markers identified from specific differentiation status
(‘“‘complete” method and Euclidiean distance) Hierarchical clustering for 10 genes extracted from
(A) KEEG “Signaling pathways regulating pluripotency of stem cells” (hsa04550) on all the biological
samples included in SISTEMA database. These genes were selected on the basis of the different
quality controls performed in the laboratory to validate the pluripotency of the different hiPSC and
hES lines. Other genes have been selected based on the literature such as the example of ID1 gene that
belongs to a family called “inhibitors of the differentiation” and previously described to be specific of
human pluripotent stem cell lines (Aloia et al., 2015; Hong et al., 2011). (B) Level of expression of 10
genes selected from GO term “Spinal Cord Motor Neuron differentiation (GO 0021522) in hPS cells
and hPS-derived spinal motoneurons. The genes ISL1/2 and MNX1 (also known as HB9) are two
genes well known to be expressed in spinal motoneurons (Maury et al., 2015). We also used the genes
referenced in the GO 0021522 and selected the ones that appear the most relevant. As two examples,
Pax6 and Olig2 are two factors we routinely used to control the differentiation of human pluripotent
stem cells into spinal motoneurons (Maury et al., 2015). (C). Level of expression of 10 genes selected
from GO melanocyte differentiation (GO 0030318) in hPS cells and hPS-derived melanocytes.

Figure 5. Application examples of SISTEMA (A). SMNI1 gene expression in different biological
samples clustered in function of their phenotypes or genotypes. Each bar indicates a unique sample.
(B). SMNI1 expression in fibroblasts (Hoch et al., 2019) and hESC-derived neurons after treatment
with different small compounds. Data have been extracted from SISTEMA and are represented as the
mean of normalized count + SEM and were statistically analyzed with DESeq2 R package using
Negative binomial generalized linear model and Wald's test; *p < 0.05, **p < 0.01. Chart generated
from GraphPad Prism.

Figure 6. Large spectrum of applications offered by SISTEMA

Table 1: Metadata concerning samples experiments (Related to Figure 2 and STAR

Methods).
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THE STAR METHODS TEXT

RESOURCE AVAILABILITY
Lead contact

Further information and requests for biological resources or metafiles should be addressed to
the Lead Contact, Cécile Martinat (cmartinat@istem.fr) or Margot Jarrige
(mjarrige @istem.fr).

Materials availability

This study did generate new web site available at http://sistema.ens-lyon.fr/

This study did not generate new reagents

Data and Code Availability

e Some data sets used in this work are available from publicly available sources and have
been deposited at GEO (GSE 104091 and GSE119841). Accession numbers are listed in the
key resources table. RNAseq data are publicity available on a user friendly interface and
freely available at http://sistema.ens-lyon.fr

* All original code in this paper is available from the lead contact upon request.

* Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

*Please omit this section if your study does not use experimental models typical in the life sciences (e.g., if your
study is computational or physical science research). This section should also include information related to cell
lines/strains used for in vitro experiments.

RNA collection from biological samples.

RNA samples were extracted from human embryonic stem cell lines and human induced
pluripotent stem cell lines collected from Institut for Stem cell Therapy and Exploration of
Monogenic diseases (I-STEM). All the Human embryonic stem cell lines indicated in

SISTEMA database are referenced on hPSCreg and listed here:
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-SA001 (hPSCreg Name: CEBe033-A, alternative name SA00), sex Male (XY),

https://hpscreg.eu/cell-line/CEBe033-A

-RC9 (hPSCreg Name: RCe013-A, alternative name RC9), sex Male (XY),

https://hpscreg.eu/cell-line/RCe013-A

-RC17 (hPSCreg Name: RCe021-A , alternative name RC17), sex Female(XX),

https://hpscreg.eu/cell-line/RCe021-A

The collected information regarding the cell culture conditions can be found at
http://sistema.ens-lyon.fr/Echantillons.php. For the Human induced pluripotent stem cell lines
not all are referenced yet but will be integrated when the program of research they are
involved in will be published. The cell lines used on the study are listed on Key ressources

table.

METHOD DETAILS
Data collection.

Except for the RNA reference sample, all the samples have been generated at ISTEM. Human
embryonic cell (hESC) lines were used following the recommendation of the French Law of
Bioethics and declared at the French Agency of Biomedicine (Number SASB1020178S). For
Human induced pluripotent stem cells (hiPSC), tissue samples were collected under specific
participant consents. The SISTEMA portal provides all information regarding the generation,
the culture conditions of human pluripotent stem cells (hPSC) as well as their differentiation.
Such information is also provided in Table 1. A unique standardized name for each sample
was generated by combining “cell type”—"Phenotype”

RNA extraction.

Total RNA was extracted using the Qiacube instrument and the RNeasy micro or mini kit

depending of the quantity of cells. The quality of the RNA was evaluated using the Bio-
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analyseur 2100 Agilent[TM] following the protocol of the manufacturer (Qiagen®). Only
samples with a RNA integrity number higher than 7 were processed.

Library generation and sequencing.

For each sample, 50 ng of total RNA was reverse transcribed using the Ion AmpliSeq
Transcriptome Human Gene Expression kit following the protocol of the manufacturer
(Thermofisher Scientific®). Briefly, the cDNA libraries were amplified and barcoded using
Ion AmpliSeq Transcriptome Human Gene Expression core panel and Ion Xpress Barcode
Adapter, named Amplicons (Thermofisher Scientific®). The amplicons were quantified using
Agilent High Sensitivity DNA kit before the samples were pooled in sets of eight. Emulsion
PCR and Enrichment was performed on the Ion OT2 system Instrument using the Ion PI Hi-Q
OT2 200 kit (Thermofisher Scientific). Samples were loaded on an Ion PI v3 Chip and
sequenced on the Ion Proton System using Ion PI Hi-Q sequencing 200 kit chemistry to
generated around 10.156.774 reads per sample (200 bp read length; Thermofisher Scientific).
The fastQ file was generated on the Ion Torrent server and transfer to the PSMN (for
scientific pole for numerical modelling at ENS Lyon; www.ens-lyon.fr/PSMN).

Amplicon annotation.

The quality control of the sequencing data was evaluated using FastQC. The reads were
trimmed using Prinseq (v0.20.4) (--trim-right 20) and filtered by average quality score (--trim-
qual 20). Reads were mapped to the Amplicons sequence reference using bowtie2 local
(v2.3.4.1). Reads below a mapping score of 10 or multi-mapped were filtered using samtools
(v0.1.19). The level of gene expression was quantified with the specific annotation described
above. Each sample was normalized by RPM (reads per Million) and the expression values
were converted in logarithm scale (log10(x+1)) using R (v3.6.0).

Data implementation and web interface.

17



SISTEMA database was implemented using MySQL (www.mysql.com) and organized on
three main tables. Briefly the first table combines all the information extracted from NCBI
such as the chromosome coordinate, the gene type and the gene name (present in the seven
main genetic databases: NCBI, EnsEMBL, HGNC IMGT/GENE-DB, MIM et Vega (Ashurst
et al., 2005; Yates et al., 2017). The second table contains all the data curated for the sample
sequence on the platform such as the library and sequencing number, the sequencing barcode,
NGS user, sequencing date, FASTQ_name, sample_name, replicate, cell line, cell matrix, the
team and the project). The last table corresponds to the expression value counting table
transform in logarithm scale. For presentation and interpretation of the data, we chose to
provide only reads per million for each gene analyzed rather than a presentation based on fold
change analysis.

The web interface was developed using the programming language Php and JavaScript.
Highcharts (© 2020 www.highcharts.com) and StringDB (Jeanquartier et al., 2015) APIs
(application programming interface) were used. For NCBI viewer, a direct URL link in an
embedded window is used. To facilitate the comprehension of the figures 2C, 3B-C and 4 on
the manuscript we used color coding to label the cell type using R. The figure 5B was

generated using Graphpad Prism 5.

QUANTIFICATION AND STATISTICAL ANALYSIS
For RNAseq quantification, reads were mapped to the Amplicons sequence reference using

bowtie2 local (v2.3.4.1). Reads below a mapping score of 10 or multi-mapped were filtered
using samtools (v0.1.19). The level of gene expression was quantified with the specific
annotation described above. Each sample was normalized by RPM (reads per Million) and the
expression values were converted in logarithm scale (loglO(x+1)) using R (v3.6.0). For
Figure 5, data have been extracted from SISTEMA and are represented as the mean of
normalized count + SEM and were statistically analyzed with DESeq2 R package using
Negative binomial generalized linear model and Wald's test; *p < 0.05, **p < 0.01.
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ADDITIONAL RESOURCES
Further information relevant to the study can be found on http://sistema.ens-lyon.fr/index.php

or on http://sistema.ens-lyon.fr/MatAndMeth.php
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