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ABSTRACT 39 

Respiratory microbial dysbiosis is associated with acute respiratory distress syndrome (ARDS) and 40 

hospital-acquired pneumonia (HAP) in critically ill patients. However, we lack reproducible respiratory 41 

microbiome signatures that can increase our understanding of these conditions and potential treatments. 42 

Here we analyzed 16S rRNA sequencing data from 2,177 respiratory samples collected in 1,029 43 

critically ill patients (21.7% with ARDS and 26.3% with HAP) and 327 healthy controls from 17 44 

published studies. After data harmonization and pooling of individual patient data, we identified 45 

microbiota signatures associated with ARDS, HAP, and prolonged mechanical ventilation (MV). HAP 46 

and prolonged MV microbiota signatures were characterized by depletion of a core group of microbes 47 

typical of healthy respiratory samples, and ARDS signature was distinguished by enrichment of 48 

potentially pathogenic respiratory microbes, including Pseudomonas and Staphylococcus. Using 49 

machine learning models, we identified clinically informative, three- and four-factor signatures that 50 

associated with ARDS, HAP, and prolonged MV with fair accuracy (AUC 0.751, 0.72, and 0.727, 51 

respectively). We validated the signatures in an independent prospective cohort of  136 mechanically 52 

ventilated patients and found that patients with ARDS, HAP, or prolonged MV microbiome signatures 53 

had longer times to successful extubation than patients lacking these signatures (Hazard Ratio 1.56 54 

(95CI% 1.07-2.27), 1.51 (95%CI 1.02-2.23) and 1.50 (95%CI 1.03-2.18), respectively). Thus we 55 

defined and validated robust respiratory microbiome signatures associated with ARDS and HAP that 56 

may help identify promising targets for microbiome therapeutic modulation in critically ill patients.  57 

Abstract word count. 235 58 

Keywords: microbiome, acute respiratory distress syndrome, hospital-acquired pneumonia, dysbiosis, 59 

critical illness.  60 
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INTRODUCTION 61 

Acute respiratory distress syndrome (ARDS) and hospital-acquired pneumonia (HAP) are the most 62 

frequent respiratory complications and important drivers of prolonged mechanical ventilation (MV) and 63 

death in critically ill patients 1,2. Despite advances in defining optimal MV settings and antimicrobial 64 

therapies, adjunctive treatment options remain limited for ARDS and HAP 3–5. A better understanding 65 

of the underlying pathophysiology of these conditions is needed to enable the development of innovative 66 

therapeutics. There is a clinical overlap between ARDS and HAP since secondary pulmonary infections 67 

are frequent complications of ARDS patients, and severe HAP can also evolve towards ARDS 6. The 68 

comparative investigation of ARDS and HAP can increase our understanding of the cause of these 69 

medical conditions. 70 

Culture-independent, high-throughput sequencing of nucleic acids extracted from respiratory secretion 71 

samples has shown that the lungs harbor highly diverse microbial communities, collectively known as 72 

the lung microbiome, despite traditional dogmas of presumed lung sterility. 7,8 A group of five bacteria 73 

found in most healthy individuals, composed of five genera Prevotella, Streptococcus, Veillonella, 74 

Fusobacterium, and Haemophilus, has been proposed as a pulmonary core microbiota essential for lung 75 

homeostasis 9–12. Microbiome investigations in intensive care unit (ICU) patients have provided 76 

supportive evidence for respiratory microbial dysbiosis in patients with ARDS 13–17 and HAP 18–20. 77 

Reproducible microbiome signatures have not been developed because most data were generated in 78 

single-center studies with limited statistical power. Moreover, well-recognized limitations for data 79 

synthesis across microbiome studies, such as variability of sample collection methods, DNA extraction, 80 

and sequencing protocols, have hampered the generalizability of results and clinical translation at the 81 

bedside.  82 

The features of HAP and ARDS respiratory microbiome dysbiosis have not been thoroughly compared, 83 

and this knowledge gap has limited the development of microbiome-targeted interventions for the 84 

prevention and treatment of these conditions 21. We hypothesized that the comparative investigation of 85 

the respiratory dysbiosis associated with ARDS and HAP would enable the identification of specific 86 

signatures, thus improving understanding of the links and differences between these two conditions and 87 

paving the way to developing common and specific innovative microbiome-targeted approaches. Thus, 88 

we aimed to define robust respiratory microbiome signatures relevant to the pathophysiology of ARDS 89 

and HAP using publicly available data and validation in an independent cohort.  90 

 91 

Results 92 

Summary of available data 93 

We included 17 studies with 16S gene-based microbiome that had studied the respiratory microbiome 94 

of patients hospitalized in ICUs or from healthy controls, from multiple countries (United States, 95 

Switzerland, Germany, and China). Study characteristics are described in Tables S1 to S3. All studies 96 

reporting ARDS outcomes used the diagnosis criteria meeting the Berlin definition for mild to severe 97 
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ARDS 22 (n=9). All the studies reporting HAP occurrence used the clinical and radiological HAP criteria 98 

in compliance with international guidelines 23,24 (n=7), and 3 (43%) also included microbiological 99 

criteria. We gathered individual data from 2177 respiratory samples, including 310 bronchoalveolar 100 

lavages (BAL), 1083 endotracheal aspirates (ETA), and 784 oropharyngeal swabs (OS) obtained from 101 

1029 critically ill patients. The median time of the sample collection was day 1 (IQR 1-5) after ICU 102 

admission. Acute respiratory distress syndrome and HAP were diagnosed in 223 (21.6%) and 271 103 

(26.3%) patients. One hundred seventy-three (11.2%) samples were collected in patients with both HAP 104 

and ARDS criteria (Table S4). Data from 327 samples collected in healthy individuals were obtained 105 

from four studies 8,25–27. 106 

Characterization of respiratory microbiota in critically ill patients 107 

Here, we assessed if samples collected in critically ill patients (n=2177) differed from those collected in 108 

healthy individuals (n=327). We initially observed that the respiratory microbiota of all samples (BAL, 109 

ETA, and OS) collected during ICU hospitalization were distinct from those obtained from healthy 110 

individuals using Principal Coordinates Analysis (PCoA) (p-value = 0.001, r2 = 0.016; Figure 1A). The 111 

differences between ICU patients and healthy controls were also found when BAL, ETA and OS 112 

samples were analyzed separately (Figure S1A). We then studied the alpha diversity of the respiratory 113 

microbiome. This measure summarizes species abundance distribution in each sample into a single 114 

number and depends on species richness (number of species in a sample) and relative abundance 115 

(evenness). Alpha diversity was lower in critically ill patients than healthy controls (Figure 1B for all 116 

samples, and S1B in BAL). Among ICU patients, alpha diversity in the samples collected following 117 

five days of hospitalization was lower than those collected before Day 4 (Figure S1C).  118 

In the 2117 samples from critically ill patients, we found that five of the six most prevalent genera 119 

belonged to the healthy respiratory microbiome core (Figure 1C and Table S5). However, the relative 120 

abundance of the healthy respiratory microbiota core was lower in critically ill patients than in healthy 121 

controls (34% vs. 43%, respectively, p-value < 0.01, Figure 1C). More specifically, the relative 122 

abundances of Fusobacterium, Veillonella, and Prevotella were lower in critically ill patients (p=0.03, 123 

<0.001, and <0.001, respectively), while Haemophilus was significantly more abundant (p<0.001, 124 

Table S5). Pseudomonas was observed in 53% of critically ill patients, with a mean relative abundance 125 

reaching 5.3% (Table S5). The relative abundance of Pseudomonas in ICU patients was negatively 126 

correlated with the relative abundance of the genera of the healthy respiratory core microbiota (Figure 127 

1D for all sample types, and Figure S1D for BAL only). This series of analyses demonstrated that 128 

critical illnesses are associated with respiratory dysbiosis. 129 

We then examined whether the loss of healthy microbiota core was homogenously observed 130 

along the respiratory tract or specific to the sampling sites (OS, ETA, and BAL). Using beta diversity 131 

that quantifies dissimilarities between samples, we observed that the three main contributors to variance 132 

in the respiratory microbiota composition were the variables ‘Study’ (p<0.001, R2=0.12, Figure S1E), 133 

the ‘Site of sampling’ (p<0.001, R2=0.008, Figure S1F), and then the medical condition ‘healthy vs. 134 
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critical illness’. Here, we found that BAL, ETA, and OS had significantly different beta diversity and, 135 

as expected, that the alpha diversity decreased from OS to BAL (Figure 1E). At the genus level, only 136 

two members of the healthy microbiome core (Streptococcus, Prevotella) were commonly found in 137 

BAL, ETA, and OS, but their relative abundances varied with the site of sampling (Figure 1F, and 138 

Tables S6-8). The replacement of the healthy core microbiome by Pseudomonas genera increased from 139 

the upper airways (OS) to the alveolar spaces (BAL) in ICU patients (Figure 1G and Figure S1G). We 140 

then determined which site offers the best compromise between clinical accessibility and accuracy. We 141 

found that the richness of the ICU respiratory microbiome core, represented by the set size of the UpSet 142 

plot, was higher in OS and ETA than in BAL. Still, as represented by the intersection size of the UpSet 143 

plot, this signature was more frequently observed in BAL and ETA than in OS (Figure 1H). Given the 144 

non-invasiveness and repeatability of ETA, we thus prioritized the development of microbiome 145 

signatures in ETA samples. 146 

ARDS microbiome score in ETA samples 147 

To develop a respiratory microbiota signature for ARDS, we selected critically ill participants with one 148 

or more ETA samples collected during the first week of ICU hospitalization and ARDS outcome 149 

available (number of ETA samples analyzed: 551). Out of the 450 patients included in four studies, 98 150 

(22%) had ARDS at baseline or during the follow-up. We found that ETA samples from patients with 151 

ARDS had a significantly different overall beta diversity than critically ill patients without ARDS 152 

(Figure 2A). Since ‘study’ was the main contributor to the architecture of the respiratory microbiome 153 

(Figure S2A), the study effect was treated as a blocking factor (i.e., confounder) for all the following 154 

analyses. The alpha diversity of ETA was not statistically different between ARDS and no ARDS 155 

patients (Figures 2B-C). When comparing patients with extreme Shannon index values (first quartile 156 

vs last quartile values), the rate of ARDS was 21% in patients with low alpha diversity and 20% in those 157 

with preserved alpha diversity (P=1, Figure S2B). The tracheal respiratory microbiome's composition 158 

differed at the phylum and genus levels between patients with or without ARDS (Figures 2D and S2C-159 

E). Correlation network analysis showed different relationships between species among these groups of 160 

patients (Figures 2E-F). Notably, the high relative abundance of Streptococcus correlated with the low 161 

abundance of Staphylococcus in patients without ARDS. 162 

Next, we selected the top features (i.e., genera) associated with ARDS using a Mann-Whitney U test 163 

adjusted for ‘study’ and ANCOM-BC with adjusting for ‘study’. With a p-value with a False Discovery 164 

Rate (FDR corrected p-value) of 0.20, we identified a panel of 30 genera with different relative 165 

abundance in ARDS and no ARDS microbiomes (Figure 2G, Table S9). We then employed a stacked 166 

machine learning model consisting of spectral clustering and Fast and Frugal Trees (FFT)  to define a 167 

parsimonious predictive score using a minimal number of criteria. FFT-based modeling offered a simple, 168 

3-factor decision tree that individually classifies samples as ARDS or no ARDS based on the presence 169 

of Staphylococcus, Ralstonia, and Enterococcus (sensitivity = 92%, specificity = 63%, Figure 2H). 170 

Shannon Index values and low alpha diversity subgroup (first quartile) were tested but not selected in 171 
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the FFT-based score. We applied a 10-fold cross-validation scheme to test the accuracy of the model 172 

and calculated a mean-classification AUC of 0.751 (Figure 2I). Patients with no ARDS signature 173 

defined by the FFT model had a higher probability of successful extubation than patients with ARDS 174 

signature (Hazard Ratio (H.R.) 1.338, 95%CI 1.032-1.734, P=0.026, Figure 2J). The mortality rate in 175 

patients with ARDS microbiome signature was 37% (49/132 patients) vs 27% (85/318 patients) in 176 

patients with no ARDS signature (p=0.028), further supporting the clinical relevance of this FFT-based 177 

classification. 178 

As an exploratory analysis, we questioned the effect of the sampling time on the accuracy of the ARDS 179 

signature. Thus, we built a risk index by calculating the sum of the relative abundances of taxa associated 180 

with no ARDS minus the sum of the relative abundances associated with ARDS. The ARDS risk index 181 

decreased when the relative abundance of ARDS-associated taxa increased. We observed that the risk 182 

index values were not significantly different between early and late samples (ANOVA p-value =0.146, 183 

Figure S2F). We also observed that the AUC of the model was 0.72 for samples collected during the 184 

first week, 0.78 during the second week, and 0.73 afterwards (Figure S2G). This series of analyses 185 

suggested that the developed ARDS microbiome signature was robust for samples collected during the 186 

first three weeks of ICU hospitalization. 187 

We also tested a score built by Classification Decision Tree, which can improve the model’s accuracy 188 

and interpretability, but usually uses more variables than FFT. The Classification Decision Tree-based 189 

model included 10 factors but did not have significantly better accuracy than the parsimonious FFT-190 

based score (AUC = 0.789, sensitivity = 87.5%, specificity = 66.5%, Figure S2H). 191 

 192 

Respiratory microbiome signature of ARDS in bronchoalveolar lavages did not significantly 193 

outperform the ETA signature  194 

We tested the extrapolation of the ETA-based FFT model in the BAL sample dataset and observed a 195 

decreased accuracy for ARDS classification (AUC = 0.68). We thus aimed to develop a BAL-specific 196 

microbiome score associated with ARDS and repeated the approach described in Figure 2 in the cohort 197 

of 252 participants from five studies with at least one BAL obtained during the first week of ICU 198 

hospitalization (number of samples analyzed = 283, number of ARDS patients = 125/252, 50%). Even 199 

after treating the study as a confounding factor for all analyses, we observed a statistically different 200 

significant architecture of the respiratory microbiome between critically ill patients with or without 201 

ARDS (Figure S3A). The alpha diversity was lower in samples from ARDS patients compared to no 202 

ARDS patients (Figure S3B-C), and the composition of the BAL respiratory microbiome was different 203 

at the phylum and genus levels between patients with or without ARDS (Figure S3D-F). The top 204 

features selection identified a panel of 37 microbes that were differentially abundant between ARDS 205 

and no ARDS BAL (Figure S3G and Table S10 for taxa) and, as expected, different from those selected 206 

in ETA (see Figure 2G). The FFT-based modeling offered a 3-factor decision tree based on the 207 

abundances of Flavobacterium, Veillonella, and Prosthecobacter that predicted individual risk of ARDS 208 
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from the BAL microbiome with good accuracy (sensitivity = 85%, specificity = 76%, mean-209 

classification AUC of 0.81, Figure S3H-I). The model's overall accuracy was not significantly 210 

improved when using the Classification Decision Tree method (AUC = 0.79, sensitivity = 75%, 211 

specificity = 83%, Figure S3J). The accuracy of the BAL-specific microbiome signature for ARDS was 212 

not significantly higher than the ETA-specific microbiome signature (0.751 vs 0.81, p=0.514 for mean 213 

AUCs comparisons), supporting that the development of respiratory microbiome signatures in ETA 214 

samples is a fair balance between accuracy and accessibility. Following the same strategy, we developed 215 

a microbiome score in the OS dataset, which reached a low accuracy (AUC 0.65, data not shown), 216 

further strengthening our decision to favor ETA samples for developing respiratory microbiome 217 

signatures. 218 

 219 

HAP microbiome score  220 

We then developed a microbiome signature associated with HAP in a cohort of participants with at least 221 

one ETA sample and a HAP outcome available. Out of the 738 patients included in 7 studies (number 222 

of ETA samples = 955), 484 (65.6%) patients had HAP at baseline or during the follow-up. We observed 223 

that ETA samples from critically ill patients with HAP had a significantly different overall architecture 224 

than ETA from those without HAP, even after adjustment for the study effect (Figure 3A and Figure 225 

S4A for the variability across the studies). The microbiome alpha diversity was lower in HAP than in 226 

no-HAP samples collected in critically ill patients (Figures 3B-C). When comparing patients with 227 

extreme Shannon index values (first versus last quartile values), the rate of HAP was 57% in patients 228 

with low alpha diversity (first quartile) and 42% in those with preserved alpha diversity (fourth quartile, 229 

P=0.001, Figure S4B). The composition of the ETA microbiome was different at the phylum level 230 

between patients with or without HAP, with an increased relative abundance of Proteobacteria in HAP 231 

patients (Figure 3D). Streptococcus and Veillonella relative frequencies were negatively correlated with 232 

the relative frequency of Pseudomonas (Figures 3E-F). 233 

The top feature selection approach identified a panel of 66 microbes that were differentially abundant 234 

between HAP and no HAP samples (Figure 3G and Table S11 for taxa). FFT-based modelling offered 235 

a 4-factor decision tree associated with HAP classification (sensitivity = 73%, specificity = 71%, Figure 236 

3H). Notably, HAP was associated with low relative abundances of Streptococcus and Veillonella, two 237 

genera belonging to the healthy respiratory microbiome core. Shannon Index values and low alpha 238 

diversity subgroup (first quartile) were tested but not selected in the FFT-based score. We applied a 10-239 

fold cross-validation scheme to test the accuracy of the FFT-based model for HAP classification and 240 

calculated a mean-prediction AUC of 0.72 (Figure 3I). Patients with no HAP signature defined by the 241 

FFT model had a higher probability of successful extubation than patients with a HAP signature (HR 242 

1.505, 95%CI 1.16-1.952, P=0.019, Figure 3J). The mortality rate in patients with a HAP signature was 243 

32% (68/213 patients) vs. 29% (95/326 patients) in those with no HAP microbiome signature (p=0.49). 244 
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We tested this model in BAL and observed a decreased accuracy for HAP classification (AUC = 0.61), 245 

which did not support the extrapolation of this FFT model in distal samples. 246 

As an exploratory analysis, the accuracy of the HAP microbiome score estimated by the Classification 247 

Decision Tree was 0.67 (sensitivity = 56%, specificity = 71%, Figure S4C). We also questioned the 248 

effect of the sampling time on the accuracy of the HAP signature. Thus, we built a risk index for HAP 249 

by calculating the sum of the relative abundances of taxa associated with no HAP minus the sum of the 250 

relative abundances associated with HAP. The HAP risk index decreased over time (ANOVA p-value 251 

= 0.002, Figure S4D), demonstrating that the total relative abundance of taxa associated with HAP 252 

increased after two weeks in ICU. In a subgroup analysis based on sample timing, the AUC of the FFT-253 

based model for HAP was 0.72 during the first week, 0.72 during the second week, and 0.66 beyond 254 

two weeks (Figure S4E), demonstrating that the HAP signature accuracy decreased after two weeks in 255 

ICU.  256 

 257 

Early successful extubation microbiome signature  258 

The diagnoses of ARDS and HAP are faced with challenges in clinical practice, due to inherent 259 

subjectivity, especially with regards to radiographic data interpretation for ARDS, as well as sensitivity 260 

and specificity limitations of microbiology for HAP. As such, it is important to examine microbiome 261 

signatures independent of ARDS/HAP diagnoses that can predict clinical outcome.2,6. Successful 262 

extubation (i.e., liberation from MV) is an important patient-centered outcome. Therefore, we tested 263 

whether defining a microbiota signature could predict the time-to-successful extubation in critically ill 264 

patients. Among the ICU patient population with ETA samples, all samples had been collected before 265 

weaning from MV (n=254), and the median time to successful extubation was 10 (4-11) days since ICU 266 

admission. We thus developed a score to predict early (< 4 days, first quartile) vs. late (> ten days, fourth 267 

quartile) successful extubation and found 18 features associated with these outcomes (Figure 4A, Table 268 

S12). The FFT-based modeling offered a 3-factor decision tree for classification as early successful 269 

extubation based on the relative abundances of Lactobacilliales, Rothia, and Streptococcus (sensitivity 270 

= 85%, specificity = 60%, Figure 4B). We applied a 10-fold cross-validation scheme to test the accuracy 271 

of the FFT-based prediction model for early successful extubation and calculated a mean-prediction 272 

AUC of 0.727 (Figure 4C). We tested the ETA-based model in BAL sample datasets (n=154 patients, 273 

median MV duration 10 days) and observed a similar accuracy for time to extubation classification 274 

(AUC 0.71). Further supporting the medical relevance of this score, the mortality rate in patients with 275 

an early successful extubation microbiome signature was 23% (49/217 patients) vs 36% (85/233 276 

patients) in those with prolonged MV signature (p=0.001).  277 

As an exploratory analysis, the Classification Decision Tree-based model also included three factors 278 

(Lactobacilliales, Rothia, and Haemophilus) with increased accuracy (AUC 0.882, sensitivity = 82%, 279 

specificity = 90%, Figure S5A). To test the impact of the early successful extubation definition, we 280 

built a risk index by calculating the sum of the relative abundances of taxa associated with early 281 
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extubation minus the sum of the relative abundances associated with prolonged MV. The risk index thus 282 

varied from -1 (samples rich in taxa associated with prolonged MV) to +1 (samples rich in taxa 283 

associated with early extubation), and had a fair accuracy for predicting prolonged MV (Figure S5B). 284 

We observed that the risk index of samples collected during the first week of hospitalization was higher 285 

than those collected during the second week or after (Figure S5C). This observation suggests that the 286 

early successful extubation signature can be useful in ICU populations with a median duration of MV 287 

of close to one week, routinely reported in ARDS (median 8 days) 2 and HAP (median 7 days) 3 patients.  288 

 289 

External validation of the microbiome signatures of ARDS, HAP, and early successful extubation 290 

Finally, we aimed to validate the accuracy of these scores in a prospective independent cohort of ICU 291 

patients. We analyzed 277 ETA samples collected on days 0, 4, and 7 after ICU admission in a cohort 292 

of 136 brain-injured patients requiring invasive MV hospitalized in one French hospital. The study 293 

population characteristics are described in Table S13. The rates of ARDS and HAP were 38% and 51%, 294 

respectively, and all cases of ARDS were related to severe HAP.  295 

We confirmed that the respiratory microbiome architecture differed between patients with or without 296 

ARDS, patients with or without HAP, and patients with or without early successful extubation (Figure 297 

5A-F). The ETA-based microbiome FFT scores for ARDS, HAP, and early successful extubation 298 

performed reasonably in this independent cohort of severely brain-injured patients (AUC= 0.75, 0.70, 299 

and 0.68, respectively, Figure 5G-I). Finally, we observed that patients with ARDS, HAP or prolonged 300 

MV microbiome signatures based on the 3 or 4 criteria FFT had longer times to successful extubation 301 

than patients with no signatures (Hazard Ratio 1.56 (95CI% 1.07-2.27), 1.51 (95%CI 1.02-2.23) and 302 

1.50 (95%CI 1.03-2.18), respectively) (Figure 5J-L).  303 

 304 

DISCUSSION  305 

While the clinical presentations of HAP and ARDS frequently overlap, we defined and validated 306 

two different respiratory microbiome signatures: HAP signature was mainly characterized by a low 307 

abundance of the healthy microbiome. In contrast, the ARDS signature consisted of high levels of 308 

pathogenic bacteria. This observation can substantially impact the diagnosis of these two conditions and 309 

suggest two different types of microbiome manipulation to treat them: restoration of commensal bacteria 310 

to prevent and treat HAP 28, and aggressively targeting pathogens with therapies that do not alter 311 

commensal in patients with ARDS (e.g., genera-specific antibodies 29). 312 

The administration of probiotics designed to restore the gut microbiome failed to prevent HAP 313 

and reduce MV in critically ill patients 30,31.  Developing and validating specific modifications in the 314 

respiratory microbiota composition can aid in identifying bacterial consortia that can be administrated 315 

to prevent or treat respiratory complications 32. Association of HAP with a low abundance of 316 

Streptococcus is of particular interest since the secretion of a bacterial peptidoglycan hydrolase by 317 

Streptococcus taxa decreases the severity of gram-negative mucosal infection 33, and lung colonization 318 
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with Streptococcus pneumonia enhanced alveolar macrophages responses to bacteria 34. From a 319 

therapeutic perspective, bacterial administration directly into the lungs of patients can be challenging 320 

and potentially poorly tolerated 35,36. Another approach could be directly administering the bacterial-321 

derived metabolites that regulate the immune cell response 12 and affect pneumonia outcomes 37. Future 322 

investigations of respiratory microbiomes should aim at deep sequencing (i.e., shotgun metagenomic 323 

and metabolomic datasets) to understand the functional consequences of dysbiosis better.38 324 

A high relative abundance of Rothia, a gram-positive coccus member of the family 325 

Micrococcaceae, which is considered part of the normal microflora of the upper respiratory tract 39, was 326 

associated with absence of HAP and short duration of MV but counterintuitively with ARDS. Several 327 

interpretations can be discussed to explain these findings. First, ARDS is a heterogenous condition, 328 

Rothia abundance could define an ARDS sub-group with favourable outcomes (no superinfection and 329 

rapid weaning from MV). Moreover, given the nature of the data (16sRNA sequencing), we cannot 330 

exclude the possibility of differences in Rothia sub-species composition between favorable and 331 

unfavorable outcomes.  332 

Given the high inter-person variability of the respiratory microbiome composition, it is unlikely 333 

that probiotics will benefit all critically ill patients. The development and validation of frugal scores, 334 

using a limited number of bacteria, that predict individual outcomes is thus a significant deliverable of 335 

this study. However, even if real-time metagenomics enables rapid pathogen identifications in bacterial 336 

pneumonia 40, it cannot currently be feasibly implemented at the bedside. Standardized rapid multiplex 337 

PCR panels accurately identify tens of bacteria in respiratory fluids in HAP patients and deliver results 338 

within a few hours after sampling 41–43. While most of the current rapid biomolecular tests aim to identify 339 

pathogens, monitoring the healthy commensal abundance could be included in these biomolecular tests 340 

to predict individual responses and guide treatment at the bedside. 341 

Developing reliable respiratory microbiome signatures required pooling data from various 342 

studies due to the limited size of reported cohorts. The heterogeneity in the included studies, regarding 343 

geographic location, inclusion criteria, sampling methods, and ARDS and HAP definitions, was an 344 

important consideration in our analyses. To limit the risk of bias in our meta-analysis, we had to control 345 

for study variability by adjusting or blocking study effects in the analyses. Despite this methodological 346 

approach, the sampling heterogeneity potentially biased the comparison between BAL and ETA score 347 

accuracies because differences in study populations cannot be definitively excluded. Several exploratory 348 

analyses were performed to test the score robustness. First, we found an enrichment of the ICU 349 

microbiome signature from the alveolar spaces to the upper airways, suggesting an anatomical 350 

continuum of the pathophysiological mechanism. Second, we observed that the accuracy of the score 351 

developed in the BAL dataset did not outperform the ETA-based score. Third, the validation cohort 352 

demonstrated the robustness of our statistical approach and supported the extrapolation of the defined 353 

signatures in other ICUs. This series of analyses suggested that the signatures are robust in BAL and 354 

ETA, and we proposed that if BAL had the best accuracy for ARDS prediction, scores developed in 355 
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ETA are acceptable alternatives with potential higher applicability in clinical practice. However, the 356 

external validation was only performed in ETA samples, and caution before using ETA-based signatures 357 

on BAL samples is required.  358 

When comparing samples from healthy individuals and ICU patients, the analysis of microbial 359 

beta diversity showed that study heterogeneity had a larger effect on overall microbiome composition 360 

than the condition in our pooled data. This limit has also been reported in meta-analyses that assessed 361 

the association of gut microbial signatures with colorectal cancer 44 or immune checkpoint inhibitor 362 

response in advanced melanoma 45. The early sample timing observed in our study can explain that the 363 

condition’s effect was lower than the study’s effect. Indeed, we observed that the alpha diversity 364 

decreased over time, and early sampling may underestimate the association between respiratory 365 

dysbiosis and outcomes, especially for patients who are not liberated early during MV.  366 

Our study has several limitations. Firstly, the large sample size of the pooled analysis population 367 

allowed the identification of statistically significant differences which may be of questionable clinical 368 

significance. Moreover, given the observational nature of our data, we can not conclude if microbiota 369 

dysbiosis contributes to ARDS and HAP or if ARDS/HAP cause microbiota alterations. Secondly, we 370 

could not exclude the possibility of confounding via clinical exposures, including antibiotics. We 371 

deliberately did not adjust our analyses for antibiotic exposure, given that respiratory dysbiosis may 372 

mediate clinical effects attributable to antibiotics and the risk of confounding by indication. Recent 373 

studies revealed associations between the administration of anti-anaerobic antibiotics and adverse 374 

clinical outcomes among mechanically ventilated patients 46,4747. If, as speculated, this association is 375 

mediated by antibiotic effects on the microbiome, adjusting for antibiotics would inappropriately 376 

obscure an important causal relationship. Thirdly, our study samples were collected early, most during 377 

the first week of hospitalization, and the signature accuracies could decrease after two weeks. Finally, 378 

the external validation was performed in a homogeneous population of severely brain-injured patients, 379 

potentially limiting the extrapolation of our findings to other ICU populations. However, the discovery 380 

cohort was built by pooling data from heterogeneous populations (from cardiac arrest to post-operative 381 

care). Since none of these studies has included brain-injured patients, the chosen validation cohort still 382 

increases the spectrum of critical illness investigated in our meta-analysis. 383 

Our findings are pivotal for describing specific ARDS and HAP respiratory microbiome 384 

signatures and associating these respiratory microbiome profiles with unfavourable clinical outcomes. 385 

The 3- to 4-factor decision trees increased our understanding of the pathophysiological causes of these 386 

conditions and could form the basis of diagnostic assays to test for clinical implementation. Our 387 

evidence synthesis can inform future work that aims to mechanistically investigate the contribution of 388 

the respiratory microbiome on lung immunity and inflammation and help to define promising 389 

therapeutic targets for specific microbiome modulation in critically ill patients. 390 

 391 

ONLINE METHODS 392 
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Search strategy for available respiratory microbiome data. 393 

We followed the recommended Preferred Reporting Items for Systematic Reviews and Meta‐analyses 394 

(PRISMA) guidelines to select the articles. We searched in MEDLINE, EMBASE, Web of Science, and 395 

Scopus databases for articles published in peer-reviewed journals written in English and indexed until 396 

May 2022. We combined several search terms, including microbiota, microbiome, microbial 397 

community, gut microbial composition, respiratory microbiome, lung microbiome, metagenomics, 398 

lower respiratory tract, oropharyngeal tract, intensive care unit, mechanical ventilation, acute respiratory 399 

distress syndrome, ventilator-associated pneumonia.  400 

MEDLINE and EMBASE 401 

#1. (microbiom* or microbiot* or microflor* or respiratory flor* or v or microbial respiratory com* or 402 

lower respiratory tract flor* or oropharyngeal flor*).mp. (mp=title, abstract, heading word, original title, 403 

keyword, floating subheading word, candidate term word) 404 

#2. (acute respiratory distress syndrome).mp. (mp=title, abstract, heading word, drug trade name, 405 

original title, drug manufacturer, keyword, floating subheading word, candidate term word) 406 

#2. (ventilator-associated pneumonia).mp. (mp=title, abstract, heading word, drug trade name, original 407 

title, drug manufacturer, keyword, floating subheading word, candidate term word) 408 

#3. 1 and 2 409 

#4. limit 3 to English language 410 

#5. limit 4 to article 411 

Web of Science 412 

#5 #2 AND #1 Refined by: DOCUMENT TYPES: (ARTICLE) AND LANGUAGES: (ENGLISH) 413 

DocType=All document types; Language=All languages; 414 

#4 #2 AND #1 Refined by: DOCUMENT TYPES: (ARTICLE) DocType=All document types; 415 

Language=All languages; 416 

#3 #2 AND #1 DocType=All document types; Language=All languages; 417 

#2 TOPIC: (acute respiratory distress syndrome) DocType=All document types; Language=All 418 

languages; 419 

#2 TOPIC: (ventilator-associated pneumonia) DocType=All document types; Language=All 420 

languages; 421 

#1 TOPIC: (microbiom* or microbiot* or microflor* or respiratory flor* or respiratory flor* or 422 

microbial respiratory com* or lower respiratory tract flor* or oropharyngeal flor*)  DocType=All 423 

document types; Language=All languages; 424 

SCOPUS 425 

(TITLE-ABS-KEY (microbiom* OR microbiot* OR microflor* OR (lung AND flor*) OR (respiratory 426 

AND flor*) OR (lower respiratory tract AND flor*) OR (oropharyngeal AND flor*) OR (or microbial 427 

respiratoty com*))) AND (TITLE-ABS-KEY (acute respiratory distress syndrome)) AND (LIMIT-TO 428 

(DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) 429 
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(TITLE-ABS-KEY (microbiom* OR microbiot* OR microflor* OR OR (lung AND flor*) OR 430 

(respiratory AND flor*) OR (lower respiratory tract AND flor*) OR (oropharyngeal AND flor*) OR (or 431 

microbial respiratoty com*))) AND (TITLE-ABS-KEY (ventilator-associated pneumonia)) AND 432 

(LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) 433 

 434 

Study inclusion criteria in the meta-analyses 435 

We included observational (cross-sectional, case-control, and cohort designs) and interventional studies 436 

involving adult critically ill adults (age 18 years or older) that reported 16S rRNA amplicon sequencing 437 

respiratory microbiota data and described ARDS and/or HAP occurrence during intensive care unit 438 

hospitalization. We also included studies reporting the respiratory composition of healthy adults to serve 439 

as controls. 440 

 441 

Outcomes  442 

We assessed differences in the respiratory microbiome in terms of alpha and beta diversity and 443 

taxonomic composition in the following clinical group comparisons: in critically ill patients hospitalized 444 

in ICU compared to healthy individuals; in patients with ARDS compared to patients without ARDS; 445 

in patients with HAP, compared to patients without HAP; and in patients with late successful extubation 446 

compared to patients with early successful extubation defined as the highest versus lowest quartile of 447 

MV duration in survivors. When investigating the time to weaning from MV, mortality was treated by 448 

censoring the observed duration of MV. We applied the definitions of ARDS and HAP used in the 449 

original studies. Day 0 was defined as in-ICU admission. Microbiome profiles of patients with HAP and 450 

ARDS were independently used to develop both microbiome signatures. 451 

 452 

Study selection and data extraction 453 

All titles and abstracts found by the search strategy reported in above were screened for relevance by 454 

E.M. and QLB. Titles and abstracts were then retrieved in full and evaluated for inclusion eligibility in 455 

the meta-analysis by E.M. and Q.L.B. Eligibility results were compared and discussed between QLB, 456 

AR, and E.M. to retain 20 studies with microbiome data from healthy individuals and ICU patients. Raw 457 

sequencing data (i.e., FATSQ files) were then uploaded from the specified database 458 

(https://www.ebi.ac.uk/ and https://www.ncbi.nlm.nih.gov/sra) and metadata were requested from the 459 

corresponding authors. Two studies analyzed ICU microbiome but did not report ARDS, HAP or MV  460 

duration. Moreover, despite contacting the corresponding authors, we could not access data from one 461 

study 48, leaving 17 studies for the meta-analysis (13 studies with microbiome from ICU patients, 4 462 

studies with microbiome from healthy individuals). 463 

 464 

Microbiota analyses 465 
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Sequences were preprocessed, quality-filtered, and analyzed using QIIME 2 (2019.10 release) 466 

(https://qiime2.org/)49. QIIME 2 computes error-corrected amplicon sequence variants (ASV) for 467 

Illumina read sequences. We used QIIME 2 in combination with its Deblur plugin 51. Raw reads were 468 

imported into a QIIME 2 artifact before merging paired-end reads and quality filtering. Reads were then 469 

denoised using the “deblur denoise-16S” command and trimmed based on demux-summary.qzv. 470 

Representative sequences and their abundances were extracted by feature-table 51. A naive Bayes 471 

classifier was fitted with 16S rRNA gene sequences extracted from Greengenes version 13_8 52. ASVs 472 

classified as mitochondria or chloroplasts were excluded from further analysis. Compositions of 473 

microbiota communities were summarized by proportions at different taxonomy levels, including genus, 474 

family, order, class, and phylum ranks. We then analyzed the respiratory microbiome diversity. First, 475 

we assessed alpha diversity that summarizes the distribution of ASV in each sample into a single number 476 

based on ASV richness and evenness, using the Shannon index and the number of observed genera. We 477 

also assessed the beta diversity that describes the differences in composition between samples by 478 

calculating the Bray-Curtis distance. Tests for categorical differences in beta diversity were performed 479 

using PERMANOVA as implemented in R’s vegan package (R package version 2.6-4). Alpha diversity 480 

measures (observed ASV and Shannon diversity) were calculated from the ASV tables collapsed at the 481 

genus level, using diversity as implemented in R’s vegan package (R package version 2.6-4). We next 482 

plotted network correlation plot of the core respiratory microbiome in the respiratory samples collected 483 

in critically ill patients, using a cut-off for prevalence (presence of a genus in at least 50% of the cohort) 484 

and Spearman’s correlation analysis. We compared samples collected in patients with or without ARDS, 485 

and samples collected in patients with or without HAP using a Mann-Whitney U test blocked for ‘study’ 486 

and ANCOM-BC with adjusting for ‘study’ A p-value with a False Discovery Rate (FDR corrected p-487 

value) of 0.20 was considered significant. To aid clinical decision-making, we fitted a Fast and Frugal 488 

Tree (FFT) to predict risk groups accurately 53–55. FFTs are simpler versions of decision trees and have 489 

been shown to perform competitively with random forests and to facilitate biologic interrogation by 490 

decreasing the number of key features. Data were processed with default settings except when stated 491 

otherwise. 492 

 493 

Independent cohort for external validation 494 

Human subjects and human samples  495 

Bioresources: IBIS (cohort), Nantes, France. Patients were enrolled from 31st January 2017 to 5th May 496 

2020 in two French Surgical Intensive Care Units of one university hospital (Nantes, France). The 497 

collection of human samples has been declared to the French Ministry of Health (Programme de 498 

recherche “Immunologie”, DC2014-2206, authorization renewed DC-2017-2987), and was approved by 499 

the Comite de Protection des Personnes Ouest IV (7/04/2015 and 08/10/2020). Written informed consent 500 

from a next-of-kin was required for enrolment. Retrospective consent was obtained from patients when 501 

possible. Appropriate consent was obtained for release of information from deceased individuals. 502 
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Inclusion criteria were brain injury (Glasgow Coma Scale below or equal to 12 and abnormal brain-CT 503 

scan) and receiving invasive MV. Exclusion criteria were cancer in the previous five years, 504 

immunosuppressive drugs, and pregnancy. All patients were clinically followed up for 90 days. 505 

Endotracheal aspirates were collected on days 0, 4, and 7 after ICU admission, frozen at -80c, and stored 506 

until sequencing (see study protocol in Supplementary files).  507 

 508 

Sequencing and analysis of ETA samples from the IBIS cohort. 509 

Specimen processing: Specimens were centrifuged (30 minutes at 15,000 G) and the resulting pellet was 510 

used for DNA isolation. Pellets were resuspended in 360µl ATL buffer (Qiagen DNeasy Blood & Tissue 511 

kit). Sterile laboratory water and AE buffer used in DNA isolation were collected and analyzed as 512 

potential sources of contamination, as were extraction controls (empty isolation tubes) and blank 513 

sequencing wells. 514 

Bacterial DNA isolation: Genomic DNA was extracted from mini-BAL pellets (Qiagen DNeasy Blood 515 

& Tissue kit, Qiagen, Hilden, Germany) using a modified protocol previously demonstrated to isolate 516 

bacterial DNA[1]. Sterile laboratory water and AE buffer used in DNA isolation were collected and 517 

analyzed as potential sources of contamination. Specimens were processed in a randomized order to 518 

minimize the risk of false pattern formation due to reagent contamination[2]. 519 

16s rRNA gene sequencing: The V4 region of the 16s rRNA gene was amplified using published 520 

primers[3] and the dual-indexing sequencing strategy developed by the laboratory of Patrick D. 521 

Schloss[4]. Sequencing was performed using the Illumina MiSeq platform (San Diego, CA), using a 522 

MiSeq Reagent Kit V2 (500 cycles), according to the manufacturer’s instructions with modifications 523 

found in the Schloss SOP[5]. Accuprime High Fidelity Taq was used in place of Accuprime Pfx 524 

SuperMix. Primary PCR cycling conditions were 95°C for two minutes, followed by 20 cycles of 525 

touchdown PCR (95°C 20 seconds, 60°C 20 seconds and decreasing 0.3 degrees each cycle, 72°C 5 526 

minutes), then 20 cycles of standard PCR (95°C for 20 seconds, 55°C for 15 seconds, and 72°C for 5 527 

minutes), and finished with 72°C for 10 minutes.  528 

Bacterial DNA quantification: Bacterial DNA was quantified using a QX200 Droplet Digital PCR 529 

System (BioRad, Hercules, CA). Primers and cycling conditions were performed according to a 530 

previously published protocol[6]. Specifically, primers were 5’- GCAGGCCTAACACATGCAAGTC-531 

3’ (63F) and 5’- CTGCTGCCTCCCGTAGGAGT-3’ (355R). The cycling protocol was 1 cycle at 95°C 532 

for 5 minutes, 40 cycles at 95°C for 15 seconds and 60°C for 1 minute, 1 cycle at 4°C for 5 minutes, 533 

and 1 cycle at 90°C for 5 minutes all at a ramp rate of 2°C/second. The BioRad C1000 Touch Thermal 534 

Cycler was used for PCR cycling. Droplets were quantified using the Bio-Rad Quantisoft software. Two 535 

replicates were used per sample. No-template control specimens were used and were run alongside mini-536 

BAL specimens. 537 

Statistical analysis: We used the same method for the prospective cohort analysis as for the meta-538 

analysis. 5050 539 
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Scripts for the microbiome analysis 540 

We described here all the custom code used for the analyses.  541 

Alpha diversity 542 

Alpha diversity measures (observed ASV and Shannon diversity) were calculated from the ASV tables 543 

collapsed at the genus level, using diversity as implemented in R’s vegan package (R package version 544 

2.6-4). Alpha diversity was expressed as the Shannon index for normalized numbers of sequences for 545 

each sample. Rarefaction was done by random subsampling with 1043 reads as threshold. Data were 546 

processed with default settings except when stated otherwise. 547 

#example for Shannon index in ARDS samples vs non-ARDS samples 548 
#m : mapping that contains the metadata of the samples 549 
#x: ASV table collapsed at genus level 550 
library(vegan) 551 
x <- x [(rownames(m)) , ] 552 
SHA <- as.data.frame(diversity(x, index = "shannon")) 553 
colnames(SHA) <- c('shannon') 554 
wilcox.test(SHA$shannon ~ m$ARDS)  555 
#plot alpha diversity 556 
pdf('alpha_div_SHA.pdf',width=4,height=4); 557 
e <- ggplot(SHA, aes(x = ICU, y = OS)) 558 
e + geom_violin(aes(fill = ICU)) +  559 
  geom_boxplot(width=0.05) + 560 
  scale_fill_manual(values = body_col])+theme_cowplot(font_size = 7) + 561 
  theme(axis.text.x = element_text(color=NA), axis.text.y = element_text(color=NA)) 562 
dev.off() 563 
 564 

Beta diversity 565 

Tests for categorical differences in beta diversity were performed using PERMANOVA as implemented 566 

in R’s vegan package (Bray-Curtis distances with permutational analysis of variance [permanova] at 567 

1000 permutations). β diversity was summarised using principal coordinate (PCo) analysis of Bray-568 

Curtis distances, as they represent most features of β diversity. The R script used for beta diversity is 569 

described below:  570 

#example for betadiversity in ARDS samples vs non-ARDS samples 571 
#m : mapping that contains the metadata of the samples 572 
#x: ASV table collapsed at genus level 573 
library(vegan) 574 
library(ape) 575 
beta_table <- as.matrix(vegdist(x), method = "bray", na.rm = F) 576 
PCOA <- pcoa(beta_table)$vectors 577 
var_exp <- pcoa(beta_table)$values 578 
#Run stats for diff. centroids 579 
beta_dist = as.dist(beta_table) 580 
length(beta_dist) 581 
#Run permanova 582 
ad = adonis(beta_dist ~ m$ARDS, permutations=999) 583 
p_val <- ad$aov.tab[1,6] 584 
r_sq <- ad$aov.tab[1,5] 585 
#Run Stats for diff. dispersion 586 
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beta_out <- betadisper(beta_dist, m$ARDS) 587 
p_val_disp <- permutest(beta_out)$tab[1, 6] 588 
#stats sur les coordinates 589 
PCOA <- PCOA[rownames(m),] 590 
wilcox.test(PCOA[,1] ~ m$ARDS)  591 
wilcox.test(PCOA[,2] ~ m$ARDS)  592 
#plot betadiversity PCoA 593 
for(i in 1:ncol(PCOA)){ 594 
  colnames(PCOA)[i] <- paste("PC",i, sep="") 595 
} 596 
PCOA <- cbind(PCOA, rownames(PCOA)) 597 
colnames(PCOA)[ncol(PCOA)] <- "SampleID" 598 
m <- cbind(m, rownames(PCOA)) 599 
m <- data.frame(lapply(m, as.character), stringsAsFactors=FALSE) 600 
colnames(m)[ncol(m)] <- "SampleID" 601 
PCOA <- merge(PCOA, m, by="SampleID") 602 
PCOA$PC1 <- as.numeric(as.character(PCOA$PC1)) 603 
PCOA$PC2 <- as.numeric(as.character(PCOA$PC2)) 604 
PCOA$PC3 <- as.numeric(as.character(PCOA$PC3)) 605 
PCOA$PC4 <- as.numeric(as.character(PCOA$PC4)) 606 
 607 
#Make PCoA plot 608 
body_PCOA <- ggplot(PCOA) + 609 
  geom_point(size = 2, alpha=0.65, aes_string(x = "PC1", y = "PC2", color = "ARDS")) +  610 
  scale_color_manual(values=body_cols) + 611 
  theme_cowplot(font_size = 7) + 612 
  guides(color=F) + 613 
  annotate("text", x=-0.45, y=-0.2, label= paste("P=", p_val), size=2) + 614 
  annotate("text", x=-0.45, y=-0.25, label= paste("R2=", round(r_sq, digits=3)), size=2) + 615 
  labs(x="", y="") + 616 
  theme(axis.text.x = element_text(color=NA), axis.text.y = element_text(color=NA)) 617 
#Make boxplot of PCs 618 
PC1_boxes <- ggplot(PCOA) + 619 
  geom_boxplot(aes_string(x = factor(PCOA$ARDS, levels=c("ARDS", "no_ARDS")), y = "PC1", fill 620 
= "ARDS")) +  621 
  scale_fill_manual(values=body_cols) + 622 
  theme_cowplot(font_size = 7) + 623 
  guides(fill=F)+ 624 
  coord_flip() + 625 
  labs(x="", y= paste("PC1 (", round(var_exp$Relative_eig[1], digits=3)*100, "%)", sep="")) 626 
 627 
PC2_boxes <- ggplot(PCOA) + 628 
  geom_boxplot(aes_string(x =factor(PCOA$ARDS, levels=c("ARDS", "no_ARDS")), y = "PC2", fill 629 
= "ARDS")) +  630 
  scale_fill_manual(values=body_cols) + 631 
  theme_cowplot(font_size = 7) + 632 
  guides(fill=F) + 633 
  labs(x ="",  y= paste("PC2 (", round(var_exp$Relative_eig[2], digits=3)*100, "%)", sep="")) + 634 
  theme(axis.text.x = element_text(color=NA)) 635 
 636 
#Compile the PCoA and boxes 637 
top2 <- plot_grid(PC2_boxes, body_PCOA, ncol=2, rel_widths=c(0.3, 1)) 638 
bottom2 <- plot_grid(NULL, PC1_boxes, ncol=2, rel_widths=c(0.3, 1)) 639 
together2 <- plot_grid(top2, bottom2, nrow=2, rel_heights=c(1, 0.3)) 640 
pdf('betadiv.pdf',width=7,height=3.5); 641 
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together2 642 
dev.off() 643 
 644 

Correlation network 645 

We plotted network correlation plot of the core respiratory microbiome in the respiratory samples 646 

collected in critically ill patients (including samples collected at BAL, ETA, and OS), using a cut-off 647 

for prevalence (presence of a genus in at least 50% of the cohort) and Spearman’s correlation analysis. 648 

We used Cytoscape 49 to plot the results of the spearman correlation, and all correlations between the 649 

most prevalent genera were plotted. We plotted all the respiratory microbiome, combining BAL, ETA 650 

and OS samples, and also we plotted separately BAL, ETA or OS samples as detailed in the Figure 1. 651 

The R script is described below:  652 

library(circlize) 653 
library(scales) 654 
library(reshape) 655 
M <-cor(x) 656 
dim(M) 657 
PAIRS <- melt(M) 658 
PAIRS_2 <-PAIRS[!(PAIRS$value=="1"),] 659 
head(PAIRS_2) 660 
pdf("chordDiagram.pdf") 661 
chordDiagram(PAIRS_2,annotationTrack = c("grid", "name"), col = pal, preAllocateTracks = 662 
list(track.height = 0.3),  663 
             order = names 664 
, grid.col = setNames(body_col) 665 
,names)) 666 
draw(lgd, x = unit(1, "npc"), y = unit(1, "npc"), just = c("right", "top")) 667 
dev.off() 668 
 669 
The 3 shared genera (Figure S1G, Streptococcus, Prevotella, and Pseudomonas), were compared 670 
assessed by Kruskal-Wallis and Dunn’s tests. 671 
library(FSA) 672 
kruskal.test(x[,5] ~ meta$host) 673 
PT = dunnTest(x[,5] ~ meta$host,method="fdr")     674 
 675 

The upset plot 676 

UpSetR generates static UpSet plots 49 The UpSet technique visualizes set intersections in a matrix 677 

layout and introduces aggregates based on groupings and queries. The matrix layout enables the 678 

effective representation of associated data, such as the number of elements in the aggregates and 679 

intersections (here features in BAL, ETA and OS), as well as additional summary statistics derived from 680 

subset or element attributes (here for example the common features in BAL, ETA and OS, n = 3). 681 

 682 

Mann-Withney U test blocked for ‘study’  683 

For the association studies, all timepoints were included. Especially for the prospective cohort, the 3 684 

timepoints were used for the analyses. We used the package R coin.56 685 

# returns p-values, q-values (FDR corrected p-value),  686 
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load library(coin) 687 
"differentiation.test" <- function (x,category, alpha=0.20, parametric=FALSE, 688 
  include.subset=FALSE){ 689 
 category <- as.factor(as.character(category)) 690 
 if(length(unique(category)) < 2) stop('Category only has one level') 691 
 if(parametric){ 692 
  pvals <- apply(x,2, function(taxon){ 693 
    if(var(taxon) == 0){ 694 
     NA 695 
    } else { 696 
     summary(lm(taxon~category))[[4]][2,4] 697 
    } 698 
   }) 699 
  stats <- apply(x,2, function(taxon){ 700 
    if(var(taxon) == 0){ 701 
     NA 702 
    } else { 703 
     summary(lm(taxon~category))[[4]][2,1] 704 
    } 705 
   }) 706 
 } else { 707 
  if(length(levels(category)) == 2){ 708 
   ix1 <- category == levels(category)[1] 709 
   ix2 <- category == levels(category)[2] 710 
            pvals <- apply(otus,2,function(xx) pvalue(wilcox_test(xx ~ as.factor(m$Study)))) 711 
   stats <- apply(x,2,function(taxon) 712 
wilcox.test(taxon[ix1],taxon[ix2],exact=FALSE)$statistic) 713 
  } else { 714 
            pvals <- apply(otus,2,function(xx) pvalue(wilcox_test(xx ~ as.factor(m$Study)))) 715 
   stats <- apply(x,2,function(taxon) kruskal.test(taxon ~ category)$statistic) 716 
  } 717 
 } 718 
 na.ix <- is.na(pvals) 719 
  720 
 adj.pvals <- rep(NA,length(pvals)) 721 
 names(adj.pvals) <- names(pvals) 722 
 adj.pvals[!na.ix] <- p.adjust(pvals[!na.ix],'FDR') 723 
 keep.ix <- adj.pvals < alpha 724 
 keep.ix[is.na(keep.ix)] <- FALSE 725 
 if(!any(keep.ix)) stop('select.features failed to find any features.') 726 
 727 
 # add stars to column names based on significance 728 
 annotations <- colnames(x) 729 
 thresholds <- c(.05, .01, .001, .0001) 730 
 for(i in seq_along(thresholds)){ 731 
   732 
  star.ix <- adj.pvals[!na.ix] <= thresholds[i] 733 
   734 
  if(any(star.ix)){ 735 
   for(j in which(star.ix)){ 736 
    annotations[!na.ix][j] <- paste(annotations[!na.ix][j],'*',sep='') 737 
   } 738 
  } 739 
 } 740 
 result <- list() 741 
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 result$annotations <- annotations 742 
 result$features <- which(keep.ix) 743 
 result$qvalues <- adj.pvals 744 
 result$pvalues <- pvals 745 
 result$stats <- stats 746 
  747 
 # classwise means 748 
 result$classwise.means <- t(apply(x,2,function(xx) sapply(split(xx,category),mean))) 749 
 colnames(result$classwise.means) <- sprintf('%s_mean',colnames(result$classwise.means)) 750 
  751 
 if(include.subset){ 752 
  result$subset <- x[,keep.ix,drop=F] 753 
  colnames(result$subset) <- annotations[keep.ix] 754 
 } 755 
  756 
  757 
 return(result) 758 
} 759 
 760 
# saves list of results from differentiation.test to file (or prints) 761 
"write.differentiation.test.results" <- function(results, filename='differentiated.features.txt'){ 762 
 if(!is.null(filename)){ 763 
  scipen.save <- options('scipen') 764 
  options(scipen=20) 765 
  hits <- cbind(results$pvalues, results$qvalues) 766 
  hits <- cbind(hits, results$classwise.means) 767 
  colnames(hits)[1:2] <- c('pvalue','qvalue') 768 
  hits <- hits[!is.na(hits[,1]),] 769 
  hits <- hits[order(hits[,1]),] 770 
  sink(filename) 771 
  cat('Feature\t') 772 
  write.table(hits,quote=F,sep='\t') 773 
  sink(NULL) 774 
  options(scipen=scipen.save) 775 
 } 776 
} 777 
 778 

ANCOM-BC with adjusting for ‘study.’ 779 

The current code implements ANCOM-BC in cross-sectional and longitudinal datasets while allowing 780 

the use of covariates [13]. We applied a methodology called Analysis of Compositions of Microbiomes 781 

with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the 782 

bias induced by their differences among samples. The relative abundance data are modeled using a linear 783 

regression framework, and the method provides statistically valid test with appropriate p-values and 784 

controls the False Discovery Rate (FDR). 785 

 786 
#load the files 787 
otu_mat<- read_excel("OTU_table.xlsx") 788 
tax_mat<- read_excel("Taxonomy_table.xlsx") 789 
samples_df <- read_excel("mapping_file.xlsx") 790 
 791 
#define the row names from the otu column 792 
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otu_mat <- otu_mat %>% 793 
  tibble::column_to_rownames("otu")  794 
 795 
#Idem for the two other matrixes 796 
tax_mat <- tax_mat %>%  797 
  tibble::column_to_rownames("otu") 798 
 799 
samples_df <- samples_df %>%  800 
  tibble::column_to_rownames("sample")  801 
 802 
#Transform into matrixes otu and tax tables (sample table can be left as data frame) 803 
otu_mat <- as.matrix(otu_mat) 804 
tax_mat <- as.matrix(tax_mat) 805 
 806 
#Transform to phyloseq objects 807 
library(phyloseq) 808 
OTU = otu_table(otu_mat, taxa_are_rows = TRUE) 809 
TAX = tax_table(tax_mat) 810 
samples = sample_data(samples_df) 811 
colnames(TAX) = c("Kingdom", "Phylum", "Class", "Order", 812 
                      "Family", "Genus", "Species") 813 
 814 
phylo_me <- phyloseq(OTU, TAX, samples) 815 
phylo_me  816 
 817 
#run ANCOM-BC 818 
Library(ANCOMBC) 819 
res = ancombc(phyloseq = phylo_me, 820 
                            formula = "Study + ARDS", 821 
                             p_adj_method = "fdr",  lib_cut = 1000, 822 
                             group = "ARDS", struc_zero = TRUE, neg_lb = TRUE, tol = 1e-5, 823 
                             max_iter = 100, conserve = TRUE, alpha = 0.20, global = TRUE 824 
                        ) 825 
               826 
res = out$res 827 
 828 

Association plots and ROC curve plot 829 

Association plots and ROC curve plot were plotted using scripts from siamcat package 49 We applied 830 

specific parameter for filtering as described below. We summarized the significant findings from the 2 831 

previous analyses (MWU test blocked and ANCOM adjusted, those with a FDR corrected p-value < 832 

0.20) that were used to plot the association plot and the ROC curve plot. Thus, the siamcat package was 833 

only used for plotting purpose, not for the detection of the microbiome signatures. The reason for this is 834 

that we were not able to adjust for confounding factors (each, study) using siamcat. That it is why we 835 

performed first specific tests with adjustment on the confounding factor. Thus, the plot of the differential 836 

relative abundance in ARDS, HAP, and prolonged mechanical ventilation combined the results of the 837 

MWU blocked test and the ANCOM adjusted. 838 

 839 
#filter 840 
sc.obj <- filter.features(sc.obj, 841 
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                          filter.method = 'abundance', 842 
                          cutoff = 0.001) 843 
sc.obj <- filter.features(sc.obj, cutoff=0.05, 844 
                          filter.method='prevalence', 845 
                          feature.type = 'filtered') 846 
#plot associations 847 
sc.obj <- check.associations( 848 
  sc.obj, 849 
  sort.by = 'fc', 850 
  alpha = 0.20, # that is to include all the discovered makers from MWU and ANCOM 851 
  mult.corr = "fdr", 852 
  detect.lim = 10 ^-6, 853 
  plot.type = "quantile.box", 854 
  panels = c("fc", "auroc"), 855 
  fn.plot = './plot_differentiating_taxa.pdf', color.scheme = body_cols) 856 
associations(sc.obj) 857 
write.table(associations(sc.obj), "./table_list_taxa.txt", sep="\t", color.scheme = body_cols) 858 
#test the model - model building – plot the ROC curve – interpretation plot 859 
sc.obj <- normalize.features( 860 
  sc.obj, 861 
  norm.method = "log.unit", 862 
  norm.param = list( 863 
    log.n0 = 1e-06, 864 
    n.p = 2, 865 
    norm.margin = 1 866 
  ) 867 
) 868 
sc.obj <-  create.data.split( 869 
  sc.obj, 870 
  num.folds = 10, 871 
  num.resample = 10 872 
) 873 
 874 
sc.obj <- train.model( 875 
  sc.obj, 876 
  method = "lasso" 877 
) 878 
model_type(sc.obj) 879 
models <- models(sc.obj) 880 
models[[1]] 881 
sc.obj <- make.predictions(sc.obj) 882 
pred_matrix <- pred_matrix(sc.obj) 883 
sc.obj <-  evaluate.predictions(sc.obj) 884 
model.evaluation.plot(sc.obj, fn.plot = './base_plot.pdf') 885 
model.interpretation.plot( 886 
  sc.obj, 887 
  fn.plot = '. /ROC_curve.pdf', 888 
  consens.thres = 0.5, 889 
  limits = c(-3, 3), 890 
  heatmap.type = 'zscore', 891 
) 892 
 893 

Fast and frungal trees procedure 894 
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To aid clinical decision-making, we fitted a Fast and Frugal Tree (FFT) to predict risk groups accurately 895 
49 FFTs are simpler versions of decision trees and have been shown to perform competitively with 896 

random forests and to facilitate biologic interrogation by decreasing the number of key features. The 897 

selected top features associated with ARDS or HAP, found using a Mann-Whitney U test blocked for 898 

‘study’ and ANCOM with adjusting for ‘study’ and with a p-value with a False Discovery Rate (FDR 899 

corrected p-value) of 0.20, were then introduced in the FFT procedure. The FFT procedure only included 900 

the selected features for each specific signature, not all the ASV table. The R script we used is described 901 

below:  902 

devtools::install_github("ndphillips/FFTrees", build_vignettes = TRUE) 903 
library(FFTrees) 904 
set.seed(1234) 905 
ind <- sample(2, nrow(model), replace = T, prob = c(0.8, 0.2)) 906 
train <- model[ind==1,] 907 
test <- model[ind==2,] 908 
# Tree Model 909 
library(FFTrees) 910 
tree <- FFTrees(formula = ARDS ~ ., 911 
                data = train, 912 
                data.test = test, 913 
                main = "ARDS Decisions", 914 
                decision.labels = c("no_ARDS", "ARDS")) 915 
tree 916 
inwords(tree) 917 
summary(tree) 918 
names(tree) 919 
 920 
tree$criterion_name 921 
tree$cue_names 922 
tree$formula 923 
tree$data 924 
tree$params 925 
tree$competition     926 
tree$cues 927 
 928 
# Plot 929 
pdf('FFT.pdf',width=7,height=7); 930 
plot(tree) 931 
dev.off() 932 
 933 

Validation of the microbiome signatures 934 

To validate the pertinence of the microbiome signatures, we used the risk index procedure that we 935 

developed previously 49 Briefly, to assess the value and the interest of a microbiome signature, we built 936 

the risk index, calculated using the sum of relative abundances of the taxa that were significantly 937 

associated with the occurrence of the outcome minus the sum of the relative abundances of the taxa that 938 

were associated the absence of occurrence of the outcome. This risk index is therefore able to summarize 939 

all the significant microbiome signatures linked the outcome in a given sample into a single number. 940 

# Derives an risk index: bad bugs minus good bugs 941 
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# for y == TRUE 942 
# x is taxon/OTU/feature table 943 
# y is TRUE/FALSE for disease or other phenotype 944 
# alpha determines FDR threshold for inclusion of bugs 945 
# return value includes risk.index.f, a function that takes a matrix with the same 946 
# named columns as x and returns the risk index for each row. 947 
# diff.tests can be included as a prior result to avoid recomputation 948 
# this should be output from differentiation.test(x,y) as described previously 949 

"get.risk.index" <- function(x, y, 950 
  alpha=0.20, 951 
  threshold.method=c('acc','spec')[1], 952 
  threshold.spec=.80, 953 
  transform.type=c('none','asin-sqrt','sqrt')[1], 954 
  threshold=NULL, 955 
  eps=NULL, 956 
  parametric=FALSE, verbose=FALSE, 957 
  diff.tests=NULL 958 
 ){ 959 
 if(any(is.na(y))) stop('y must not contain NA values') 960 
 if(any(is.na(x))) stop('x must not contain NA values') 961 
 require('ROCR') 962 
 963 
 x <- data.transform(x,transform.type) 964 
 if(is.null(diff.tests)){ 965 
  diff.tests <- differentiation.test(x, y, alpha=alpha, parametric=parametric) 966 
 } 967 
 968 
 # if there are a range of alpha values, build multiple lists of hits 969 
 hit.ix <- which(diff.tests$qvalues <= alpha) 970 
  971 
 if(length(hit.ix) == 0){ 972 
  warning('No hits found, predicting risk of 0 for all patients\n') 973 
  good.bugs <- NULL 974 
  bad.bugs <- NULL 975 
  sum.good.bugs <- NA 976 
  sum.bad.bugs <- NA 977 
  risk.index <- rep(0,nrow(x)) 978 
  risk.index.f <- function(x) {return (rep(0,nrow(x)))} 979 
  threshold <- NA  980 
 } else { 981 
  if (verbose) { 982 
  cat("There were",length(hit.ix),"taxa significant at FDR of",alpha,'\n') 983 
  } 984 
 985 
  # get rid of zeros (if eps > 0) 986 
  if(!is.null(eps)) x[x==0] <- eps 987 
 988 
  # identify good/bad bugs 989 
  good.bugs <- diff.tests$classwise.means[,1] > diff.tests$classwise.means[,2] & 990 
diff.tests$qvalues < alpha 991 
  bad.bugs <- diff.tests$classwise.means[,1] < diff.tests$classwise.means[,2] & 992 
diff.tests$qvalues < alpha 993 
 994 
  sum.good.bugs <- numeric(nrow(x)) 995 
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  sum.bad.bugs <- numeric(nrow(x)) 996 
  if(sum(good.bugs) > 0) sum.good.bugs <- rowSums(x[,good.bugs,drop=F]) 997 
  if(sum(bad.bugs) > 0) sum.bad.bugs <- rowSums(x[,bad.bugs,drop=F]) 998 
 999 
  # risk index is simply additive bad bugs vs good bugs 1000 
  risk.index <- sum.bad.bugs - sum.good.bugs 1001 
 1002 
  # risk.index.f  1003 
  "risk.index.f" <- function(x){ 1004 
   sum.good.bugs.i <- numeric(nrow(x)) 1005 
   sum.bad.bugs.i <- numeric(nrow(x)) 1006 
   if(sum(good.bugs) > 0) sum.good.bugs.i <- rowSums(x[,good.bugs,drop=F]) 1007 
   if(sum(bad.bugs) > 0) sum.bad.bugs.i <- rowSums(x[,bad.bugs,drop=F]) 1008 
   return(sum.bad.bugs.i - sum.good.bugs.i) 1009 
  } 1010 
 1011 
  # choose threshold based on requested threshold method 1012 
  if(is.null(threshold)){ 1013 
   if(threshold.method=='acc'){ 1014 
    # get threshold that is most accurate for this risk index 1015 
    pred <- prediction(risk.index, y) 1016 
    perf <- performance(pred, 'acc') 1017 
    threshold.ix <- which.max(perf@y.values[[1]]) 1018 
    threshold <- perf@x.values[[1]][threshold.ix] 1019 
   } else if(threshold.method == 'spec'){ 1020 
    # get threshold that is most accurate for this risk index 1021 
    pred <- prediction(risk.index, y) 1022 
    perf <- performance(pred, 'sens', 'spec') 1023 
    threshold.ix <- max(which(perf@x.values[[1]] >= threshold.spec)) 1024 
    threshold <- perf@alpha.values[[1]][threshold.ix] 1025 
   } else { 1026 
    stop(paste('Unknown threshold method:', threshold.method)) 1027 
   } 1028 
  } 1029 
 } 1030 
    1031 
 res <- list( 1032 
  risk.index=risk.index, 1033 
  risk.index.f=risk.index.f, 1034 
  diff.tests=diff.tests, 1035 
  good.bugs=good.bugs, 1036 
  bad.bugs=bad.bugs, 1037 
  hit.ix=hit.ix, 1038 
  alpha=alpha, 1039 
  threshold=threshold 1040 
 ) 1041 
 class(res) <- "risk.index" 1042 
 return(res) 1043 
} 1044 
 1045 
 1046 
Receiving-operating characteristic (ROC) curve analysis  1047 
# We applied tenfold jack-knifing; the ten ROC curves are in blue and the mean ROC curve is in black 1048 
# runs jackknife ROC and plots a smoothed ROC curve; returns AUC 1049 
# bootstrap.fraction = -1 means leave-one-out 1050 
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# outcome must be T/F 1051 
"bootstrapped.ROC" <- function(predictors, outcome, nreps=10, 1052 
  bootstrap.fraction=.9, 1053 
  filename='ROC-signature.pdf', do.plot=TRUE, 1054 
  title.text='signature, include.xy=TRUE){ 1055 
 require('ROCR') 1056 
 if(is.null(dim(predictors))) predictors <- matrix(predictors,ncol=1) 1057 
 N <- nrow(predictors) 1058 
 if(bootstrap.fraction == -1) { 1059 
  folds <- sapply(1:N,function(ixx) (1:N)[-ixx]) 1060 
 } else { 1061 
  bootstrap.n <- max(min(round(bootstrap.fraction * N), N-1),2) 1062 
  folds <- replicate(nreps,sample(N,size=bootstrap.n)) 1063 
 } 1064 
 tprs <- NULL 1065 
 fprs <- NULL 1066 
 aucs <- NULL  1067 
 1068 
 for(fold in 1:nreps){ 1069 
  fold.ix <- folds[,fold] 1070 
  outcome.i <- outcome[fold.ix] 1071 
  predictors.i <- predictors[fold.ix,,drop=F] 1072 
  res <- logistic.ROC(predictors.i, outcome.i) 1073 
 1074 
  tprs <- cbind(tprs, res$tprs) 1075 
  fprs <- cbind(fprs, res$fprs) 1076 
  aucs <- c(aucs, res$auc) 1077 
 } 1078 
 1079 
 1080 
 require('flux') 1081 
 fprs.mean=rowMeans(fprs) 1082 
 tprs.mean=rowMeans(tprs) 1083 
 auc.mean <- auc(fprs.mean,tprs.mean) 1084 
 1085 
 res <- list(fprs.mean=fprs.mean, tprs.mean=tprs.mean, 1086 
    fprs=fprs, tprs=tprs, 1087 
    auc.mean=auc.mean, aucs=aucs, 1088 
    nreps=nreps, 1089 
    folds=folds) 1090 
 if(do.plot) plot.jackknifed.ROC(res, filename=filename, title.text=title.text, 1091 
include.xy=include.xy) 1092 
  1093 
 invisible(res) 1094 
} 1095 
 1096 
Kaplan-Meier curves in the validation cohort 1097 
To plot the Kaplan-Meier curves in the validation cohort, we adapted the cut-offs of the signatures, 1098 
based on the ratio mean relative abundance of the signature in the IBIS cohort / mean relative abundance 1099 
of the signature in the metanalysis. The following code was applied:  1100 
ggsurvplot( 1101 
  fit,                     # survfit object with calculated statistics. 1102 
  data = ventil_prediction,  # data used to fit survival curves.  1103 
  risk.table = TRUE,       # show risk table. 1104 
  pval = TRUE,             # show p-value of log-rank test. 1105 
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  conf.int = TRUE,         # show confidence intervals for  1106 
  # point estimaes of survival curves. 1107 
  xlim = c(0,50),        # present narrower X axis, but not affect 1108 
  # survival estimates. 1109 
  break.time.by = 10,     # break X axis in time intervals by 10. 1110 
  ggtheme = theme_minimal(), # customize plot and risk table with a theme. 1111 
  risk.table.y.text.col = T, # colour risk table text annotations. 1112 
  risk.table.y.text = FALSE # show bars instead of names in text annotations 1113 
  # in legend of risk table 1114 
) 1115 
 1116 
Classification Decision Tree  1117 
In complement to FFT,  we also test Classification Decision Tree, as the latter may improve the accuracy 1118 
and interpretability of the models. We used the following scripts : 1119 
 1120 
set.seed(1234) 1121 
ind <- sample(2, nrow(mydata), replace = T, prob = c(0.8, 0.2)) 1122 
train <- mydata[ind == 1,] 1123 
test <- mydata[ind == 2,] 1124 
#Tree Classification 1125 
tree <- rpart(VAP ~., data = train) 1126 
rpart.plot(tree) 1127 
 1128 
printcp(tree) 1129 
plotcp(tree) 1130 
tree <- rpart(VAP ~., data = train,cp=   ) #choose cp based on tree 1131 
p <- predict(tree, train, type = 'class') 1132 
#confusionMatrix(p, train$ards, positive="yes") 1133 
 1134 
p1 <- predict(tree, test, type = 'prob') 1135 
p1 <- p1[,2] 1136 
r <- multiclass.roc(test$VAP, p1, percent = TRUE) 1137 
roc <- r[['rocs']] 1138 
r1 <- roc[[1]] 1139 
plot.roc(r1, 1140 
         print.auc=TRUE, 1141 
         auc.polygon=TRUE, 1142 
         grid=c(0.1, 0.2), 1143 
         grid.col=c("green", "red"), 1144 
         max.auc.polygon=TRUE, 1145 
         auc.polygon.col="lightblue", 1146 
         print.thres=TRUE, 1147 
         main= 'ROC Curve') 1148 
 1149 

Supplemental results 1150 

The total output for the sequencing of samples, after quality trimming, removal of duplicates, human 1151 

genome sequences and chimeras a total of 872,155 features remained for analysis (total frequency: 1152 

80,302,231). The sequence count per sample ranged from 1 to 715,298 with a median of 16,993 (1st 1153 

quartile: 8,478 and 3rd quartile: 32,264) and a mean of 27,092.  1154 

 1155 

 1156 
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FIGURES LEGEND 1287 

 1288 

Figure 1. Respiratory microbiome alterations along critically ill patient airways 1289 

A. Beta diversity comparisons of the respiratory microbiomes of the all samples (including BAL, ETA 1290 

and OS) collected from ICU patients and healthy controls. Analyses were performed on the 16S rRNA 1291 

gene. Principal-coordinate analysis of Bray-Curtis distances. The proportion of variance explained by 1292 

each principal-coordinate axis is denoted in the corresponding axis labels. B. Alpha diversity indices in 1293 

all the samples (including BAL, ETA and OS) collected from ICU patients and healthy controls were 1294 

measured using the Shannon index (left panel) or the number of observed genera (right panel). C. 1295 

Relative abundance of the healthy respiratory microbiome core genus in respiratory samples from 1296 

healthy controls and critically ill patients. We included samples collected at BAL, ETA, and OS. D. 1297 

Network correlation plot of the core respiratory microbiome in the respiratory samples collected in 1298 

critically ill patients. Negative correlations are represented in blue, and positive ones are in red. The cut-1299 

off for prevalence was the presence of a genus in at least 50% of the cohort. We included samples 1300 

collected at BAL, ETA, and OS. E. Alpha diversity indices in BAL, ETA, and OS collected from ICU 1301 

patients were measured using the Shannon index (left panel) or the number of observed genera (right 1302 

panel). F. Network correlation plots of the respiratory microbiome in BAL, ETA, and OS collected in 1303 

critically ill patients. Negative correlations are represented in blue, and positive ones are in red. The cut-1304 

off for prevalence was the presence of a genus in at least 50% of the cohort. G. Sum of the genera of the 1305 

core healthy microbiome (relative abundance) in BAL, ETA, and OS collected in critically ill patients. 1306 

H. Respiratory microbiome core of critically ill patients. UpSet plot of the core respiratory microbiome 1307 

in the 2177 samples collected in intensive care unit patients, including BAL, ETA, and OS. The cut-off 1308 

for prevalence was the presence of the genus in at least 40% of the cohort of patients in each sampling 1309 

site.  Statistical significance was assessed by the Bray-Curtis distance (PERMANOVA) and two-sided 1310 

Mann-Whitney test for the principal coordinates (A) and Kruskal-Wallis with Dunn’s tests (B,E,G). *P 1311 

≤ 0.05, **P ≤ 0.01, ***p<0.001. 1312 

  1313 
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Figure 2. Respiratory microbiome signatures of ARDS in endotracheal aspirates 1314 

A. Beta diversity comparisons of the respiratory microbiomes of the ETA collected from ICU patients 1315 

with or without ARDS. Analyses were performed on 16S rRNA gene. Principal-coordinate analysis of 1316 

Bray-Curtis distances. The proportion of variance explained by each principal-coordinate axis is denoted 1317 

in the corresponding axis labels. B-C. Alpha diversity indices in ETA samples collected from critically 1318 

ill patients with or without ARDS were measured using (B) the Shannon index and (C) the number of 1319 

observed genera. D. Relative abundance of the main phyla in ETA samples from critically ill patients 1320 

with or without ARDS. E-F. Network correlation plots of the core respiratory microbiome in the ETA 1321 

samples collected in critically ill patients (E) without or (F) with ARDS. Negative correlations are 1322 

represented in blue, and positive ones in red. The cut-off for prevalence was the presence of a genus in 1323 

at least 50% of the cohort. G. Top features at genus level with different relative abundance in ETA of 1324 

critically ill patients with ARDS and no ARDS. The function computes for each genus the significance 1325 

using a non-parametric Wilcoxon test and different effect sizes for the association (significance for an 1326 

FDR-corrected p-value, AUC, and fold change). H. Fast-and-frugal tree-based staging scheme to predict 1327 

ARDS in ICU patients. I. ROC of ARDS classification applying a ten-repeated 10-fold cross-validation 1328 

scheme. The model evaluation displays the cross-validation error as a receiver operating characteristic 1329 

(ROC) curve, with a 95% confidence interval shaded in grey. J. Kaplan-Meier estimates the time-to-1330 

successful extubation in patients with ARDS vs no ARDS microbiome signature (mortality treated by 1331 

censoring). Statistical significance was assessed by the Bray-Curtis distance (PERMANOVA) and two-1332 

sided Mann-Whitney test for the principal coordinates (A), and Kruskal-Wallis with Dunn’s tests (B, 1333 

C), and Cox proportional-hazards model (J). *P ≤ 0.05, **P ≤ 0.01, ***p<0.001. 1334 
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Figure 3. Respiratory microbiome signatures of HAP in endotracheal aspirates 1336 

A. Beta diversity comparisons of the respiratory microbiomes of the ETA collected from critically ill 1337 

patients with or without HAP. Analyses were performed on 16S rRNA gene. Principal-coordinate 1338 

analysis of Bray-Curtis distances. The proportion of variance explained by each principal-coordinate 1339 

axis is denoted in the corresponding axis labels. B-C. Alpha diversity indices in ETA samples collected 1340 

from critically ill patients with or without HAP were measured using (B) the Shannon index and (C) the 1341 

number of observed genera. D. Relative abundance of the main phyla in ETA samples from critically ill 1342 

patients with or without HAP. E-F. Network correlation plots of the core respiratory microbiome in the 1343 

ETA samples collected in critically ill patients (E) without or (F) with HAP. Negative correlations are 1344 

represented in blue, and positive correlations are represented in red. The cut-off for prevalence was the 1345 

presence of a genus in at least 50% of the cohort. G. Top features at genus level with different relative 1346 

abundance in ETA of critically ill patients with HAP and no HAP. The function computes for each genus 1347 

the significance using a non-parametric Wilcoxon test and different effect sizes for the association 1348 

(significance for an FDR corrected p-value, AUC, and fold change). H. Fast-and-frugal tree-based 1349 

staging scheme to predict HAP. I. ROC of the HAP classification applying a ten-repeated 10-fold cross-1350 

validation scheme. The model evaluation displays the cross-validation error as a receiver operating 1351 

characteristic (ROC) curve, with a 95% confidence interval shaded in grey. J. Kaplan-Meier estimates 1352 

the time-to-successful extubation in patients with HAP vs no HAP microbiome signature (mortality 1353 

treated by censoring). Statistical significance was assessed by the Bray-Curtis distance (PERMANOVA) 1354 

and two-sided Mann-Whitney test for the principal coordinates (A), and Kruskal-Wallis with Dunn’s 1355 

tests (B, C), and Cox proportional-hazards model (J). *P ≤ 0.05, **P ≤ 0.01, ***p<0.001. 1356 
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Figure 4. Respiratory microbiome signatures of successful extubation in endotracheal aspirates 1358 

A. Top features at genus level with different relative abundance in ETA of critically ill patients with 1359 

early vs. late successful extubation. The function computes for each genus the significance using a non-1360 

parametric Wilcoxon test and different effect sizes for the association (significance for an FDR-1361 

corrected p-value, AUC, and fold change). Early extubation: <4 days of mechanical ventilation; late 1362 

extubation: >10 days of mechanical ventilation (mortality treated by censoring). B. Fast-and-frugal tree-1363 

based staging scheme for time-to-successful extubation classification. C. ROC of the late successful 1364 

extubation classification applying a ten-repeated 10-fold cross-validation scheme. The model evaluation 1365 

displays the cross-validation error as a receiver operating characteristic (ROC) curve, with a 95% 1366 

confidence interval shaded in gray.  1367 
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Figure 5. External validation of respiratory microbiome signatures in an independent prospective 1368 

cohort 1369 

A-C. Beta diversity comparisons of the respiratory microbiomes of the ETA collected from brain-1370 

injured patients (A) with or without ARDS, (B) with or without HAP or (C) with early, media or late 1371 

successful extubation classification. Principal-coordinate analysis of Bray-Curtis distances. The 1372 

proportion of variance explained by each principal-coordinate axis is denoted in the corresponding axis 1373 

labels. D-F. Shannon index indices in ETA samples collected from critically ill patients (D) with or 1374 

without ARDS, (E) with or without HAP, and (F) with early, media or late successful extubation. G-I. 1375 

ROC of Fast-and-frugal tree for (G) ARDS, (H) HAP, and (I) early successful extubation applying a 1376 

tenfold jack-knifing; the ten ROC curves are in blue and the mean ROC curve is in black. J-L. Kaplan-1377 

Meier estimates the time-to-successful extubation in patients stratified by microbiome scores for (J) 1378 

ARDS, (K) HAP and (L) early successful extubation. Statistical significance was assessed by the Bray-1379 

Curtis distance (PERMANOVA) and two-sided Mann-Whitney test for the principal coordinates (A-C), 1380 

and Kruskal-Wallis with Dunn’s tests (D-F), and Cox proportional-hazards model (J-L). *P ≤ 0.05, **P 1381 

≤ 0.01, ***p<0.001. 1382 
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