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ABSTRACT

Results of functional Magnetic Resonance Imaging (fMRI) studies can be impacted by many sources of variability including:
different sampling strategies for the participants, different acquisition protocols and material but also different analytical choices
in the processing of the fMRI data. While variability across participants or across acquisition instruments have been extensively
studied in the neuroimaging literature, the root causes of analytical variability remain an open question. Here, we share the
HCP Multi-Pipeline dataset which provides the resulting statistic maps for 24 typical fMRI pipelines on 1,080 participants of
the HCP Young Adult dataset. We share both individual and group results - for 1,000 groups of 50 participants - over 5 motor
contrasts. We hope that this large dataset covering a wide range of analysis conditions will provide new opportunities to study
analytical variability in fMRI.

Background & Summary
Neuroimaging data, such as functional Magnetic Resonance Imaging (fMRI), can be used for a wide range of applications,
including disease diagnosis1 or brain decoding (i.e. identifying stimuli and cognitive states from brain activities)2. But the
workflows used to analyze these data are highly complex and flexible. Different tools and algorithms were developed over the
years, leaving researchers with many possible choices at each step of an analysis3. A given series of operations performed on raw
fMRI data is referred to as a ‘pipeline’. Task-fMRI analysis pipelines are composed of three high-level stages (preprocessing,
subject-level analysis and group-level analysis). Each stage follows a base architecture with multiple processing steps: this
sequence can be customized by the addition or removal of specific steps or modified by using different algorithms or set of
parameters. Several software packages are also available to run task-fMRI analysis pipelines, for instance SPM4, FSL5 and
AFNI6, which are the most commonly used.

In the Neuroimaging Analysis Replication and Prediction Study (NARPS)7, 70 research teams were asked to analyze the
same task-fMRI dataset with their favorite pipeline to answer the same 9 binary research questions investigating the activation
of a particular brain region during a specific cognitive task. Each team used a different pipeline, illustrating perfectly how
researchers can have different practices to analyze task-fMRI data. In the end, results varied in terms of final activation maps
and conclusion to hypotheses. This phenomenon calls for a better understanding of the pipeline-space to try to identify the cause
of the observed differences amongst the final results, and their impact on research findings. For instance, in a recent paper8,
authors explored whether some specific choices in the pipeline (in particular for the first-level statistical modelling) could
improve the reliability of fMRI results, showing that specific choices for contrasts and model parameterization meaningfully
improved test–retest reliability, both at the individual and group-level.

The pipeline-space is especially large9 and challenging to explore due to its interaction with other properties of a dataset: for
instance, with sample size and sampling uncertainty10 or with the research question7. However, due to the high computational
cost of storing and analyzing task-fMRI data, recent studies investigating analytical variability in neuroimaging focused on a
restricted number of participants (N=108, N=30, N=15, and N=10 respectively for3, 7, 11, 12) and cognitive tasks (one paradigm
for3, 7 with respectively k=9 and k=1 contrasts and use of resting-state fMRI for11, 12).

Multiple efforts for collecting datasets with larger number of participants and tasks have arisen in the field of neuroimaging
in the past 10 years with for instance the Human Connectome Project (HCP)13 or the UK Biobank14, 15. In particular, the HCP
Young Adult most recent releases provide task-fMRI data for more than 1,000 participants and for different tasks and cognitive
processes. These data are also available as minimally processed versions, i.e. preprocessed using a common pipeline chosen
by the HCP collaborators16. In brief, this pipeline consists in the following steps: removal of spatial distortions, volumes
realignment to correct for subject motion, registration of the functional volumes to the structural one, bias field reduction,



normalization to a global mean and masking using a structural brain mask computed in parallel.
A set of group-level statistic maps of the HCP Young Adult have also been made publicly available (see NeuroVault

Collection 45717 and corresponding publication18). These were obtained using data from a subset of the participants (68
subjects scanned during the first quarter (Q1) of Phase II data collection. Z-scored statistic maps are available for all base
contrasts (23 different contrasts) and were computed using a single analysis pipeline. This is beneficial for studying individual
differences and contrasts, but it does not allow for analytical variability studies, for which multiple pipelines are needed, or to
perform other analyses such as group-level analyses that could be used to explore the effect of sampling uncertainty or sample
size.

Statistic maps published during the NARPS study7 are also publicly available on NeuroVault, with one collection per team.
For each of the 70 teams, 9 group-level statistic maps are shared (one per research hypothesis) based on two groups of N=54
participants. Additionally, for a limited number of teams (K=4), subject-level contrast maps are also available. The pipeline
space studied in this dataset is unconstrained since teams were instructed to use their usual pipelines to analyze the data.

Here, we share the HCP Multi-Pipeline dataset, composed of a large number of subject and group-level statistic maps and
representing a non-exhaustive but controlled part of the pipeline space. Contrast and statistic maps are made available for the
5 contrasts of the motor task of the Human Connectome Project (HCP Young Adult) for the 1,080 participants of the S1200
release, obtained with 24 analysis pipelines that differ on a predefined set of parameters as typically used in the literature. We
also provide group-level contrast and statistic maps for 1,000 randomly sampled groups of 50 participants for each pipeline and
contrast.

While solutions have been proposed to standardized fMRI preprocessing (e.g. fMRIprep19), practitioners still face multiple
choices regarding first-level statistical analyses. Here, we focus on a set of parameters that often vary across pipelines and this
even when standardized preprocessing are used: smoothing kernels, HRF modelling and the inclusion/exclusion of motion
regressors as nuisance covariates. Group-level statistical analyses were performed uniformly for all pipelines.

Methods
Raw Data: the Human Connectome Project
This work was performed using data from the Human Connectome Project Young Adult13. Written informed consent was
obtained from participants and the original study was approved by the Washington University Institutional Review Board. We
agreed to the Open Access Data Use Terms20.

The HCP Young Adult aimed to study and share data from young adults (ages 22-35) from families with twins and non-twin
siblings, using a protocol that included structural and functional magnetic resonance imaging (MRI, fMRI), diffusion tensor
imaging (dMRI) at 3 Tesla (3T) and behavioral and genetic testing. The S1200 release includes behavioral and 3T MR imaging
data from 1206 healthy young adult participants (1113 with structural MR scans) collected between 2012 and 2015.

Unprocessed anatomical T1-weighted (T1w) and task-fMRI data21–24 were used in this work. The task-fMRI data includes
seven tasks, each performed in two separate runs. Among these tasks, we selected data from the motor task in which participants
were presented with visual cues asking them to tap their fingers (left or right), squeeze their toes (left or right) or move their
tongue. This task is the simplest one of the tasks performed in the study, and the protocol associated with this task is very
standard and robust. We used unprocessed data for the N = 1080 participants who completed this task.

Analyses pipelines
Multiple preprocessing and first-level analyses were performed on the task-fMRI data, giving rise to 24 different analysis
pipelines. These pipelines differed in 4 parameters:

• Software package: SPM (Statistical Parametric Mapping, RRID: SCR_007037)4 or FSL (FMRIB Software Library,
RRID: SCR_002823)5.

• Smoothing kernel: Full-Width at Half-Maximum (FWHM) was equal to either 5mm or 8mm.

• Number of motion regressors included in the General Linear Model (GLM) for the first-level analysis: 0, 6 (3 rotations, 3
translations) or 24 (the 6 previous regressors + 6 derivatives and the 12 corresponding squares of regressors).

• Presence (1) or absence (0) of the derivatives of the Hemodynamic Response Function (HRF) in the GLM for the
first-level analysis. Only the temporal derivatives were added in FSL pipelines and both the temporal and dispersion
derivatives were for SPM pipelines.

In the following, we will denote the pipelines by “software-FWHM-number of motion regressors-presence of hrf derivatives”.
For instance, pipeline with software FSL, smoothing with a kernel FWHM of 8mm, no motion regressors and no hrf derivatives
will be denoted by “fsl-8-0-0”.
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All pipelines were implemented using Nipype version 1.6.0 (RRID: SCR_002502)25, a Python project that provides a
uniform interface to existing neuroimaging software packages and facilitates interaction between these packages within a single
workflow. All pipelines scripts are available online at https://gitlab.inria.fr/egermani/hcp_pipelines
and archived on Software Heritage: swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b

Computing environment
To limit the variability induced by different computer environments and versions of the software packages, we used NeuroDocker
(RRID: SCR_017426)26 to generate a custom Docker image. To build this image, we chose NeuroDebian27 and installed
the following software packages: FSL version 6.0.3 and SPM12 release r7771. To install Python and Nipype, we created a
Miniconda3 environment with Python version 3.8 and multiple packages, such as Nilearn28 (RRID: SCR_001362), Nipype
and NiBabel (RRID: SCR_002498)29. This docker image is available at https://hub.docker.com/repository/
docker/elodiegermani/open_pipeline/general and the command to generate the DockerFile can be found in
the README included in the codebase (see links above).

Preprocessing
Preprocessing consisted of the following steps for all pipelines: spatial realignment of the functional data to correct for motion,
coregistration of realigned data towards the structural data, segmentation of the structural data, non-linear registration of the
structural and functional data towards a common space and smoothing of the functional data. Depending on the software
package used, these steps were performed in a different order, following the default behavior of the software package.

In SPM, for each participant, functional data were first spatially realigned to the mean volume using the “Realign: Estimate
and Reslice” function with default parameters (quality of 0.9, sampling distance of 4 and a smoothing kernel, 2nd degree B-spline
interpolation and no wrapping). Realigned functional data were then coregistered, with the “Coregister: Estimate” function,
to the anatomical T1w volume acquired for the participant using Normalized Mutual Information. In parallel, we segmented
the different tissue classes of the same anatomical T1w volume using the “Segment” function. The forward deformation field
provided by the segmentation step was used to normalize the functional data to a standard space (MNI)(“Normalize: Write”
function) with a voxel size of 2mm and a 4th degree B-spline interpolation. Normalized functional data were then smoothed
with a Gaussian kernel with different FWHM values depending on the pipeline (5 or 8mm).

In FSL, we reproduced the preprocessing steps used in FEAT30. Functional data were realigned to the middle functional
volume using MCFLIRT. Brain extraction was applied with BET and we masked the functional data using the extracted mask.
We smoothed each run using SUSAN with the brightness threshold set to 75% of the median value for each run and a mask
constituting the mean functional. Different values were used for the FWHM of the smoothing kernel depending on the pipeline.
We also performed temporal highpass filtering on the functional data with a thresholding value of 100 seconds. In parallel, we
computed the transformation matrix to register functional data to anatomical and standard space (MNI) using linear (FLIRT
function) and non-linear registration (FNIRT function). Contrary to SPM, the first-level statistical analysis is performed on the
smoothed data in subject-space. Only the transformation matrix was computed at this stage, using boundary-based registration
and applied on the contrast maps output after the statistical analysis.

First level statistical analyses
To obtain the contrast maps of the different participants and contrasts, we modeled the data using a GLM. Each event was
modelled using the onsets and durations provided in the event files of the HCP Young Adult dataset. Six regressors were
modeled: cue (which represent the visual cues), right hand, right foot, left hand, left foot and tongue. Each condition was
convolved with the canonical HRF. For both SPM and FSL pipelines, we used the Double Gamma HRF (default in SPM).

Different numbers of motion regressors (0, 6 or 24) were included in the design matrix to regress out motion-related
fluctuations in the BOLD signal. The modelling of the HRF also varied: Double Gamma HRF with or without derivatives
(time+dispersion for SPM and time for FSL).

In SPM, temporal autocorrelations in the BOLD signal timeseries were accounted for by highpass filtering with a 128
seconds filter cutoff and modelling of serial correlation using an autoregressive model of the first order (AR(1)). In FSL,
highpass filtering was already performed during preprocessing with a 100 seconds filter cutoff, modelling of serial correlation
was also performed using an AR(1) model. Model parameters were estimated using a Restricted Maximum Likelihood approach
for both SPM and FSL software packages. Subject-level contrast maps were computed and saved for 5 contrasts (right hand,
right foot, left hand, left foot and tongue) for each participant. In the end, for each of the 24 pipelines, we had 5,400 contrast
and statistic maps (5 contrasts for each of the 1,080 participants). These maps constituted the subject-level dataset. Figure 1(A)
presents the statistic maps for the contrast right-hand obtained with the different pipelines for a representative subject.

Second level statistical analyses
Group-level statistical analyses were performed using the contrast maps obtained with the different first-level analyses pipelines.
1,000 groups of 50 participants were randomly sampled among the 1,080 participants. For each analysis pipeline, we performed
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one sample t-tests for each group and each contrast in SPM. We purposely used the same second-level analysis method and
software for all pipelines in order to focus on first-level analysis differences. For each of the 24 pipelines, the group-level
dataset was thus composed of 5,000 contrast maps and statistic maps (5 contrasts for each on the 1,000 groups). Figure 1(B)
presents the statistic maps obtained with the different pipelines for one group for the contrast right-hand.

Data Records

The data are accessible on Public nEUro31 at https://publicneuro-catalogue.netlify.app/dataset/PN000003:
%20HCP%20multipipelines/V1. The dataset is organized according to the BIDS specification32, but to date, there is
no established specification for organizing datasets with statistic maps for different pipelines and different processing levels
(here, subject and group-levels derivatives). We used a modlisation that is currently under development in the BIDS Extension
Proposal: BEP041 - Statistical Model Derivatives.

Briefly, the dataset contains one folder per pipeline (i.e. 24 folders in total). Each pipeline folder is composed of two
subfolders respectively named “node-L1” and “node-L2” for subject-level and group-level derivatives. The “node-L1” folder
includes subject-level folders, named after the BIDS specifications, and the “node-L2” folder is composed of group-level folders,
named ‘group-X’ depending on the group number. Group and subject-level folders contain the contrast and statistic maps
with the following specification for contrast maps: ‘sub/group-<ID>_task-<task>_space-<space>_contrast-<contrast>_stat-
effect_statmap.nii.gz’, and T-statistic maps: ‘sub/group-<ID>_task-<task>_space-<space>_contrast-<contrast>_stat-t_statmap.nii.gz’.

Technical Validation
To assess the quality of the statistic maps, we checked that all contrasts led to an activation of the primary motor area (Primary
Motor Cortex M1).

As described in Fig. 2, we looked at the significant activations inside the Primary Motor Cortex (M1) of the brain for the
statistic maps of each group, each contrast and each pipeline. Our group-level statistic maps were thresholded using a False
Discovery Rate (FDR) corrected voxelwise p-value of p < 0.05 and masked using the probabilistic Juelich Atlas33 available in
Nilearn. We selected the region of interest (ROI) corresponding to the Primary Motor Cortex M1, Brodmann Area 4. Depending
on the contrast, both left and right hemisfer’s ROI (“tongue”), only the left hemisfer (“right hand” or “right foot”) or only the
right hemisfer (“left hand” or “left foot”) ROI were selected, to focus on controlateral activations in the motor cortex.

For each map, we computed the percentage of activation inside the Primary Motor Cortex, which is the percentage of voxels
of the ROI that are activated, i.e.:

Percentage o f Activation =
Nactivated voxels

Ntotal voxels
×100 (1)

where Nactivated voxels is the number of activated voxels in the ROI and Ntotal voxels is the total number of voxels in the ROI.

Fig. 3 represents the distribution of percentages of activation inside the Primary Motor Cortex per contrast for all groups and
all pipelines. Results were slightly different across contrasts: mean percentages of activation were all between 20 and 40% but
those of contrasts left-foot and right-foot were below those of right-hand, left-hand and tongue. When looking at the activations
of different contrasts in the ROI for one of our group-level statistic maps (see Fig. 4), we could see that the activations detected
for the right-foot contrast seemed widespread with a small area of high activation. For the right-hand contrast, the high
activation area was larger and covered nearly the entire ROI. This observation was consistent with the literature34, 35 and with
statistic maps obtained from NeuroSynth35 (RRID:SCR_006798) in which the identified area of activation of the foot was
smaller than the hand one (see Fig. 4). In the Primary Motor Area, the statistic maps of the foot contrasts thus have less activated
voxels. Overall, the technical validation was successful. The goal of this quality check was to have a quick estimation of the
accuracy of the statistic maps to represent the task performed, thus we chose to define a single ROI covering the entire motor
area.

We observed consistent metrics across pipelines, with high percentages of activation for hand and tongue contrasts and
lower ones for foot contrasts. An example of the distribution of percentage of activations for all group maps of each contrast is
shown in Fig. 5 for the pipeline “spm-5-0-0”. The percentage of activation computed for all groups, pipelines and contrasts are
available in Supplementary Files.

Usage Notes
The HCP Multi-Pipeline dataset provides researchers with a re-usable dataset of fMRI contrast and statistic maps. The data
is accessible on Public nEUro31 at https://publicneuro-catalogue.netlify.app/dataset/PN000003:
%20HCP%20multipipelines/V1..
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Figure 1. Example of subject (A) and group-level (B) statistic maps obtained for subject 100206 and group 953 for each
pipeline for the contrast right-hand. Pipelines are denoted by <software>,<FWHM>,<motion regressors>,<hrf derivatives>.
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Figure 2. Workflow of technical validation of statistic maps. We thresholded the statistic maps of each group, each pipeline
and each contrast using a FDR-corrected voxelwise p < 0.05 and masked the thresholded maps using the ROI of the Primary
Motor Cortex from Juelich atlas. Then, we computed the percentage of activated voxels inside this ROI.

Figure 3. Distribution of mean Percentage of Activation inside the Primary Motor Cortex across all groups and pipelines for
the five contrasts under study.

This dataset brings together a wide range of analysis conditions, covering many aspects of inter-subject, inter-groups,
inter-contrasts and inter-pipelines variability. Data from 1,080 participants were used to form 1,000 different groups of 50
participants, and 5 contrasts were analyzed with 24 different pipelines, which offers an unprecedented opportunity to explore
analytical variability, understand its causes and how it may interact with other sources of variability.

Analytical variability is not limited to neuroimaging and has been studied in many other disciplines36, such as psychology37

or software engineering38. These different fields have brought solutions to explore and handle analytical variability. These
techniques have begun to be used in neuroimaging, with, for instance, the implementation of continuous integration, a software
engineering technique, to facilitate the reproducibility of neuroimaging computational experiments39 or multiverse analyses
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Figure 4. Thresholded statistic maps for contrasts right foot (right) and right hand (left) for group-level analysis of group 3
with pipeline spm-5-0-0 (upper). Percentage of Activation inside the Primary Motor Cortex were respectively 0.34 and 0.41 for
the contrasts right foot and right hand. NeuroSynth activation maps corresponding to the forward inference of the “hand” and
“foot” paradigms (lower). Green borders correspond to the motor area ROI.

that help to find the most efficient pipelines depending on the data and the goal of the study40.
By sharing directly the results obtained from different analysis strategies, we hope to facilitate the use of these data by

researchers from other fields, that could apply their own methods to help explore the neuroimaging analytical space. For
instance, this dataset could be use to extend the study from8 to other tasks. Using the code provided to create the pipelines,
other researchers could be able to enhance this dataset with other combinations of parameters, giving rise to other pipelines, or
could apply the pipelines to other participants, groups or contrasts.

Code availability
All codes (analysis pipelines and technical validation) were executed in Python v3.8. The executions require the installation
of SPM and FSL software packages. To facilitate reproducibility, we provide a NeuroDocker image that can be pulled
from Dockerhub and that contains all necessary software packages. The Docker image is available at: https://hub.
docker.com/r/elodiegermani/open_pipeline. Python scripts to create and run the pipelines as well as to
perform technical validation are available publicly at https://gitlab.inria.fr/egermani/hcp_pipelines and
archived on Software Heritage at swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b.
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