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A bispecific antibody agonist 
of the IL‑2 heterodimeric receptor 
preferentially promotes in vivo 
expansion of CD8 and NK cells
Katherine E. Harris1,3, Kyle J. Lorentsen1,3, Harbani K. Malik‑Chaudhry1, 
Kaitlyn Loughlin1, Harish Medlari Basappa1, Sharon Hartstein1, Ghenima Ahmil2, 
Nicole S. Allen1, Brian C. Avanzino1, Aarti Balasubramani1, Andrew A. Boudreau1, 
Karen Chang1, Maria‑Cristina Cuturi2, Laura M. Davison1, Dennis M. Ho1, Suhasini Iyer1, 
Udaya S. Rangaswamy1, Preethi Sankaran1, Ute Schellenberger1, Roland Buelow1 & 
Nathan D. Trinklein1*

The use of recombinant interleukin-2 (IL-2) as a therapeutic protein has been limited by significant 
toxicities despite its demonstrated ability to induce durable tumor-regression in cancer patients. The 
adverse events and limited efficacy of IL-2 treatment are due to the preferential binding of IL-2 to cells 
that express the high-affinity, trimeric receptor, IL-2Rαβγ such as endothelial cells and T-regulatory 
cells, respectively. Here, we describe a novel bispecific heavy-chain only antibody which binds to and 
activates signaling through the heterodimeric IL-2Rβγ receptor complex that is expressed on resting 
T-cells and NK cells. By avoiding binding to IL-2Rα, this molecule circumvents the preferential T-reg 
activation of native IL-2, while maintaining the robust stimulatory effects on T-cells and NK-cells 
in vitro. In vivo studies in both mice and cynomolgus monkeys confirm the molecule’s in vivo biological 
activity, extended pharmacodynamics due to the Fc portion of the molecule, and enhanced safety 
profile. Together, these results demonstrate that the bispecific antibody is a safe and effective IL-2R 
agonist that harnesses the benefits of the IL-2 signaling pathway as a potential anti-cancer therapy.

Engaging the immune system in the fight against cancer has been firmly established, with Interleukin-2 (IL-2) 
being one of the first recombinant proteins to be successfully used as a treatment for cancer nearly 40 years ago1,2. 
IL-2 is a key regulator of immune cells inducing both T-cell and natural killer (NK) cell proliferation. However, 
IL-2 is a pleiotropic cytokine that also induces the proliferation of immunosuppressive regulatory T (T-reg) cells3. 
The different functions of IL-2 are determined by the composition of IL-2 receptor complex subunits expressed on 
different target cells4. The high affinity IL-2 receptor complex is composed of IL-2Rα (CD25), IL-2Rβ (CD122), 
and the common gamma chain receptor IL-2Rγ (CD132) and is expressed constitutively on CD4+ FoxP3+ T-reg 
cells and transiently on activated T-cells5. The intermediate affinity receptor is composed of IL-2Rβ and IL-2Rγ 
and is expressed on resting T-cells, CD8+ effector memory T-cells, and NK-cells5,6. The IL-2Rα subunit is not 
required for downstream JAK-STAT signaling, but its association with IL-2Rβ and IL-2Rγ provides a 100-fold 
higher affinity to IL-2 compared to the heterodimeric receptor composed only of IL-2Rβ and IL-2Rγ6. Based on 
these receptor binding differences and cell-specific expression, it has been proposed that immunosuppressive 
T-regs serve as a buffer to consume low levels of IL-2 and create a threshold effect for IL-2-mediated expansion 
of effector lymphocytes7.

Because of its unique signaling properties, low dose rhIL-2 has been used in the clinic to stimulate T-regs to 
treat autoimmunity, while high-dose rhIL-2 (Proleukin®) was developed and approved for the treatment of meta-
static melanoma and metastatic renal cell carcinoma, with durable responses in 7–12% of patients8–13. However, 
its short half-life and narrow therapeutic window have created significant challenges for the safe and effective use 
of rhIL-2 in patients. Specifically, rhIL-2 has severe side effects including vascular leak syndrome, hypotension, 
and liver toxicities that have limited its use in cancer immunotherapy. It has been shown that the vascular leak 
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toxicity is related to the expression of the high affinity IL-2Rαβγ on vascular and lung endothelial cells leading 
to pulmonary edema14. The anti-tumor effects of rhIL-2 are further compromised by its preferential binding 
to the high affinity receptor on T-reg cells, blunting its efficacy as an anti-cancer therapy15,16. As an example, in 
melanoma patients receiving high dose rhIL-2 therapy, costimulator-positive (ICOS+) T-reg cells were found to 
be the most proliferative lymphocyte population in the blood after treatment with rhIL-2 and high numbers of 
ICOS+ T-regs corresponded with the worst patient outcomes17.

Due to the pleiotropic nature of native IL-2 and its associated limitations as a therapeutic molecule, there has 
been substantial effort in the field to engineer rhIL-2 variants that reduce dose-limiting toxicities and thereby 
broaden the therapeutic window18,19. Variant proteins that avoid the preferential activation of high-affinity IL-
2R-expressing cells such as T-regs and vascular endothelial cells is one approach to achieving this goal. In an effort 
to create such a molecule, groups have mutated the IL-2Rα binding interface on IL-2, attached poly-ethylene 
glycol to the IL-2 protein, created synthetic IL-2 proteins, and generated an antibody that blocks the IL-2Rα 
binding domain20–25. As an alternative to IL-2, other groups have engineered IL-15 variants that bind to IL-2Rβ/
IL-2Rγ subunits. The IL-15 receptor alpha subunit naturally binds to IL-15 in trans from antigen presenting 
cells, therefore an active IL-15 recombinant protein requires a single chain construct that expresses both IL-15 
and the IL-15 receptor alpha subunit26. Mutated cytokines have also been fused to antibodies or Fc domains 
to increase the in vivo half-life of the molecules and localize the cytokine to the site of the tumor18,27,28. While 
some of these engineered proteins have the desired functional activity, many of them suffer from high levels 
of immunogenicity in vivo and present challenges with in vivo stability and manufacturing24,29–32. Therefore, 
creating an anti-tumor agonist of the IL-2 pathway with the desired biological activity, safety profile, and ideal 
drug-like properties remains an unmet need in the field.

We took a novel approach that combines the favorable drug-like properties of antibodies with the functional 
behavior of a molecule that facilitates IL-2Rβ and IL-2Rγ association and downstream signaling. With these 
criteria in mind, we created a panel of fully human bispecific antibodies that simultaneously bind IL-2Rβ and 
IL-2Rγ subunits and therefore mimic the activity of IL-2 while avoiding binding to IL-2Rα. To create these 
bispecific antibodies, we used our unique next generation sequencing (NGS)-based antibody discovery platform 
using humanized rats (UniRats) to identify a large collection of binding domains with a wide range of agonist 
activity33,34. The resulting bispecific IL-2Rβγ agonist antibodies exhibit the desired activation and expansion of 
immune effector cells, while also avoiding preferential expansion of suppressive T-regs both in vitro and in vivo. 
Moreover, the bispecific agonist antibodies are well tolerated in non-human primates with no observation of 
vascular leak syndrome or other toxicities.

Results
Discovery of novel anti‑IL‑2Rβ and anti‑IL‑2Rγ heavy chain only antibodies.  Our design strat-
egy was to create a bispecific antibody that simultaneously targets both the beta and gamma subunits of the 
IL-2 receptor to induce activation of IL-2R signaling in human immune effector cells without preferentially 
activating T-regs, shifting the balance to the activation of T-effector and NK-cells. Using our NGS-based anti-
body repertoire discovery approach in UniRats, which produce heavy chain only antibodies with fully human 
variable domains (UniAbs), we sought to identify novel, anti-IL-2Rβ and anti-IL-2Rγ monospecific UniAbs that 
could be combined into bispecific molecules capable of binding and activating the intermediate affinity IL-2Rβγ 
receptor33.

Applying this sequence-based discovery approach to IL-2Rβ-immunized UniRats, 285 unique heavy chain 
only antibodies (representing 162 unique CDR3 clonotype families) were selected for high-throughput gene 
assembly, recombinant expression, and primary functional screening. The resulting UniAbs were assayed for 
binding to recombinant human IL-2Rβ protein by enzyme-linked immunosorbent assay (ELISA) and human 
IL-2Rβ expressing CHO cells by flow cytometry. Cross-reactivity to cynomolgus IL-2Rβ was also assessed by 
binding to recombinant cynomolgus IL-2Rβ protein by ELISA as well as binding to cynomolgus IL-2Rβ express-
ing CHO cells by flow cytometry. Upon completion of the primary screen, 6 UniAbs (representing 5 CDR3 
families) were identified that recognized both human and cynomolgus IL-2Rβ expressing cells (Fig. 1A).

Similarly, UniRats were immunized with IL-2Rγ and after NGS analysis, 333 unique UniAbs (representing 
165 unique CDR3 clonotype families) were selected for high-throughput gene assembly, recombinant expres-
sion, and primary functional screening. Following expression, the resulting UniAbs were assayed for binding to 
recombinant human IL-2Rγ protein by Octet off-rate analysis and human IL-2Rγ expressing M07e cells using 
flow cytometry. Cross-reactivity to cynomolgus IL-2Rγ was assessed by binding to HSC-F cells by flow cytom-
etry. At the conclusion of the primary screen, 12 UniAbs (representing 5 CDR3 families) were identified that 
recognized both human and cynomolgus IL-2Rγ (Fig. 1A).

Identification of IL‑2Rβγ bispecific antibody combinations with agonist activity.  The activation 
of the IL-2 receptor complex triggers a signaling cascade that results in the phosphorylation of STAT5 (pSTAT5), 
translocation of pSTAT5 dimers to the nucleus, and transcription of STAT5-regulated genes35,36. As a primary 
assay to determine if bispecific antibodies targeting the beta and gamma subunits of IL-2R could induce activa-
tion of IL-2R signaling, 5 anti-IL-2Rβ binding arms from unique CDR3 families and 5 anti-IL-2Rγ binding arms 
from unique CDR3 families were combined to make 25 bispecific UniAbs for conducting an all-by-all screen of 
agonist activity. The bispecific UniAbs were expressed on a silenced and stabilized human IgG4 Fc (CH1 domain 
deleted) using knobs-into-holes technology to facilitate heavy-chain heterodimer formation, with a single anti-
IL-2Rγ VH on the knob arm and a single anti-IL-2Rβ VH on the hole arm (Fig. 1)37–42.

A phospho-flow cytometry assay was used to measure and compare the phosphorylation of STAT5 by the 
25 IL-2Rβγ UniAb combinations compared to rhIL-2 on human CD8+ T-cells. STAT5 phosphorylation was not 
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observed with any of the anti-IL-2Rβ or anti-IL-2Rγ monospecific UniAbs. Similarly, STAT5 phosphorylation 
was also not observed when anti-IL-2Rβ and anti-IL-2Rγ monospecific UniAbs were tested as a mixture in the 
pSTAT5 assay, indicating that the bispecific format is necessary to bring the IL-2 β and γ receptors together to 
activate JAK/STAT signaling (Fig. 1B). In contrast, the bispecific UniAbs with one anti-IL-2Rβ arm and one 
anti-IL-2Rγ arm exhibited varying levels of agonist activity, summarized in Fig. 1C. Interestingly, the ability to 
induce phosphorylation of STAT5 agonist activity seemed highly dependent on the anti-IL-2Rβ arm present 
in the bispecific combination, while the degree of agonism appeared to be dependent on the anti-IL-2Rγ arm.

To identify antibodies with a greater range of agonist activity, a secondary diversity screen was initiated to sur-
vey other unique VH sequences in 3 of the 4 lead CDR3 clonotype families identified in the bispecific screen for 
STAT5 activity. These additional VH sequences were selected from the lead CDR3 clonotype families and contain 
sequence variation in CDR1, CDR2 and framework regions. In total, an additional 157 unique family members 
underwent a second round of high-throughput gene assembly, expression and were assessed for binding to IL-2R 
expressing cells. For IL-2Rβ, an additional 33 IL-2Rβ family 9 members and an additional 22 IL-2Rβ family 18 
members that bound to human and cynomolgus IL-2Rβ cells were identified in the diversity screen. A further 29 
IL-2Rγ family 16 members were identified that bound to human and cynomolgus IL-2Rγ recombinant protein 
and on cells in the diversity screen (Fig. 1A). This large and diverse set of novel IL-2R binding UniAbs enabled 
subsequent efforts to identify a set of lead IL-2Rβγ bispecific combinations with a range of functional activity.

In vitro characterization of IL‑2Rβγ bispecific UniAbs.  Based on the primary and secondary binding 
screening results as well as the STAT5 phosphorylation seen in the all-by-all bispecific UniAb screen, 6 IL-2Rβγ 
bispecific UniAb molecules were selected for additional in vitro characterization. The 6 IL-2Rβγ bispecific Uni-
Abs bound efficiently to both human and cynomolgus T-cells with a range of EC50 values (Fig. S1). Interestingly, 

Figure 1.   Bispecific antibodies specific to IL-2Rβ and IL-2Rγ induce phosphorylation of STAT5. (A) Summary 
of IL-2RB and IL-2RG monospecific UniAb binders identified during antibody lead discovery. (B,C,D) 
Heatmaps showing fold-induction of phosphorylated STAT5 (pSTAT5) in CD8+ T-cells from human PBMCs 
treated with individual monospecific UniAbs or αIL2Rβ and αIL2Rγ monospecific UniAbs in a 1:1 molar ratio 
mixture (B), αIL-2Rβ/γ bispecific UniAbs (C), or rhIL-2 positive control (D) at 50 nM for 1 h. In the antibody 
graphic on the right, the green and blue arms represent IL2RG and IL2RB binding domains, respectively. 
pSTAT5 levels were determined by flow cytometry and reported as geometric mean fluorescent intensity (gMFI) 
over the gMFI of unstimulated cells.
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the expression of IL-2Rβγ was approximately twofold higher on CD4+ T-cells than CD8+ T-cells across both 
species. None of the 6 bispecific UniAbs bound to other common gamma chain partners (IL-4R, IL-7R, IL-9R or 
IL-21R) or IL-2Rα by Octet off-rate analysis.

The ability of the 6 IL-2Rβγ bispecific UniAbs to stimulate IL-2R signaling in human conventional CD4+ T, 
CD8+ T, and NK-cells was confirmed by a dose-dependent increase of STAT5 phosphorylation (Fig. 2A-C and 
Fig. S2A). The bispecific UniAbs were compared to two positive controls, rhIL-2 and an rhIL-2 variant which 
contains mutations (F42A, Y45A, L72G) that have been shown to disrupt binding to IL-2Rα while retaining the 
ability to bind and activate the intermediate affinity IL-2Rβγ receptor28. On CD8+ T-cells, the bispecific UniAbs 
exhibit a range of EC50 values in the pSTAT5 assay, with multiple leads (BsAb-1, BsAb-3, BsAb-4) showing near 
equivalent activity with rhIL-2 and the rhIL-2 variant (Fig. 2A). However, this is in stark contrast to the level of 
pSTAT5 in CD4+ CD25+ FoxP3+ T-regulatory cells, where the bispecific UniAbs show significantly lower potency 
compared to rhIL-2 on cells that express high levels of IL-2Rα (Fig. 2D). Thus, IL-2Rβγ bispecific UniAbs avoid 
the preferential activation of T-regs, as they bind the dimeric and trimeric IL-2 receptors equivalently, unlike 
native IL-2 which binds to the IL-2Rαβγ receptor at an affinity 100-fold higher than binding to IL-2Rβγ alone. 
All 6 bispecific UniAbs were also confirmed to activate IL-2R signaling on cynomolgus CD8+ and CD4+ T-cells, 
establishing cynomolgus monkeys as a suitable non-human primate model in subsequent studies (Fig. 2E,F).

To further compare the functional activity among the 6 bispecific UniAbs and rhIL-2, a cell proliferation assay 
was performed. In response to treatment with the bispecific IL-2R agonist UniAbs, or the IL-2 cytokine controls, 
immune effector cells (T and NK-cells derived from healthy donor PBMCs) demonstrated dose dependent pro-
liferation (Fig. 2G-J and Fig. S2B). While a range of potencies was observed in the proliferation of CD8+ T-cells 
and NK-cells in PBMCs treated with the IL-2Rβγ bispecific UniAbs, several (BsAb-1, BsAb-3, BsAb-4) showed 
induction of proliferation at levels similar to rhIL-2 and the rhIL-2 variant control, while all molecules achieved 
similar levels of maximum proliferation (Fig. 2G,H). In contrast, rhIL-2 was more active than the bispecific 
agonist UniAbs and the rhIL-2 variant control on conventional CD4+ cells and on T-regs (Fig. 2I,J).

Cytokine release profiles of the bispecific IL-2R agonist UniAbs compared to rhIL-2 were assessed in an 
ex vivo human whole blood assay. After a 24-h incubation in the presence of the IL-2Rβγ bispecific UniAbs or 
rhIL-2, a dose-dependent increase in IFN-γ, TNF-α, IL-6, and IL-8 was observed for all test articles (Fig. 3A-
D). Two of the bispecific UniAbs (BsAb-3 and BsAb-4) induced cytokine levels (max concentration or EC50) 
at or above that of rhIL-2 in all tested cytokines, but the remaining four induced levels lower than the cytokine 
control. Notably, BsAb-1 and BsAb-2, displayed intermediate levels of cytokine production that were less than 
the highest levels of cytokine production elicited by the rhIL-2 control, but displayed greater than the lowest 
levels seen in BsAb-6.

In summary, 6 bispecific IL-2Rβγ antibodies were identified with a range of agonist activity. BsAb-1 dem-
onstrates agonist activity at a similar level to that seen with rhIL-2 in immune effector cells measured by phos-
phorylation of STAT5 and in the proliferation assay. In contrast, in the same in vitro assays, BsAb-2 shows 
reduced potency compared to rhIL-2 and BsAb-1. Both antibodies showed low aggregation measured by SEC, 
had favorable melting temperatures, and were stable at 37 °C for one month (Table S1). These results combined 
with the favorable cytokine release profiles of BsAb-1 and BsAb-2 led to the selection of these two bispecific 
antibodies for further in vivo characterization. (Fig. 3).

In vivo characterization of lead IL‑2Rβγ bispecific UniAbs.  Prior to conducting in vivo functional 
studies, the in  vivo stability and pharmacokinetics of the bispecific antibodies were measured in mice. The 
observed 5–7 day half-life of each bispecific antibody is consistent with the half-life of a human IgG4 antibody 
in mice (Fig. 4A)43. To assess the in vivo functional activity of the bispecific antibodies, an accelerated graph 
versus host disease (GVHD) model was used to compare the functional activity of BsAb-1, BsAb-2 and rhIL-2 
(Fig. 4B-D). In the first experiment, irradiated NSG mice were engrafted with human PBMCs, and the mice were 
subsequently treated with either vehicle, rhIL-2 daily, or one of the two bispecific agonist antibodies twice a week 
until sacrifice. As expected, animals treated with the vehicle control showed onset of GVHD, measured by body 
weight loss, around day 20 and were sacrificed with 20% body weight loss at approximately day 35. In contrast, 
the bispecific IL-2Rβγ agonist antibodies (BsAb-1, BsAb-2) as well as rhIL-2-treated animals exhibited onset of 
GVHD at approximately day 8 and were sacrificed with 20% body weight loss between days 9 and 13, indicating 
an acceleration of GVHD compared to the vehicle control, consistent with the enhanced activation of immune 
effector cells in treated mice (Fig. 4B).

A second study was conducted to directly measure the ability of BsAb-1 and BsAb-2 to stimulate the prolifera-
tion of immune effector cells in vivo. Similar to the first experiment, irradiated NSG mice were engrafted with 
human PBMCs that were labeled with CSFE and treated with vehicle, rhIL-2, BsAb-1, or BsAb-2. After day 5 of 
treatment, spleens were harvested and the proliferation of CD8+ T and CD4+ T-cells was compared between the 
4 treatment groups by measuring CSFE staining in the different lymphocyte populations. BsAb-1 and BsAb-2 
both showed significantly more proliferating CD8+ T-cells compared to rhIL-2 and the vehicle control (Fig. 4C, 
S3). CD4+ T-cells were expanded to a lesser extent; however, a significant increase in proliferating CD4+ T-cells 
was seen in BsAb-2 treated mice compared to the vehicle control (Fig. 4D).

An important aspect of the preclinical evaluation of the bispecific antibody agonists was establishing cyn-
omolgus monkeys as an appropriate in vivo model for measuring the pharmacodynamics of the molecules. To 
determine human and cynomolgus functional equivalency, the bispecific antibodies were confirmed to activate 
pSTAT5 signaling ex vivo in cynomolgus primary T-cells at a similar level (EC50s within tenfold) as seen in 
primary human T-cells (Fig. 2A,C,E,F). After establishing functional equivalency between human and cynomol-
gus, a cynomolgus study was conducted to further investigate the activity of BsAb-1 and BsAb-2 in vivo in a 
non-human primate model. The two bispecific agonist antibodies were administered to cynomolgus monkeys 
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Figure 2.   IL-2Rβγ bispecific UniAbs induce proliferation and STAT5 phosphorylation in PBMCs. (A to 
F) pSTAT5 dose curves for human CD8+ T-cells (A), CD56hi NK-cells (B), CD4+ Conventional T-cells (C), 
CD4+ Regulatory T-cells (D), cynomolgus CD8+ T-cells (E), and total CD4+ T-cells (F). pSTAT5 levels were 
determined by flow cytometry and were reported as a percentage of the indicated cell type. (G to J) Ki67 dose 
curves for human CD8+ T-cells (G), CD56hi NK-cells (H), CD4+ Conventional T-cells (I), CD4+ Regulatory 
T-cells (J). Ki67 levels were determined by flow cytometry and were reported as a percentage of the indicated 
cell type. CD4+ Conventional T-cells are defined here as CD3+CD4+Foxp3-. CD4+ Regulatory T-cells are defined 
here are CD3+CD4+CD25+Foxp3+.
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in groups of 2 that received a single intravenous (slow bolus) dose of 0.03, 0.1 or 0.3 mg/kg of either BsAb-1 
or BsAb-2. At all doses with both lead molecules, a marked expansion of peripheral CD8+ T and NK-cells was 
observed (Fig. 5 and Fig. S4). After an initial transient drop in lymphocyte numbers, CD8+ T, NK-cells, and to a 
lesser degree, CD4+ T-cells, showed dose dependent proliferation and expansion in the blood, peaking around 
day 4–7 before returning to baseline levels around day 14 (Fig. 5A-C,F–H and Fig. S4A-C, F–H). Importantly, 
CD4+ CD25+ FoxP3+ T-regulatory cell expansion occurred at levels that were proportionally equivalent with the 
expansion of CD8+ T cells, consistent with the bispecific agonist antibodies avoiding preferential activation of 
the trimeric IL-2 receptor (Fig. 5D,I and Fig. S4D,I). The expansion of a overall higher number of CD8+ T-cells 
was further confirmed by the ratio of CD8+ :CD4+ T-cells which was skewed in favor of the CD8+ T-cell subset 

Figure 3.   IL-2Rβγ bispecifics induce cytokine secretion in human whole blood. (A to D) Fresh human whole 
blood was incubated overnight with a range of doses of IL-2Rβγ bispecific UniAbs or IL-2. Plasma was then 
separated by centrifugation and tested by MSD for IFN-γ (A), TNF-α (B), IL-6 (C), and IL-8 (D).
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Figure 4.   BsAb-1 and BsAb-2 induce T-cell proliferation and accelerated GVHD in a mouse model engrafted with 
human PBMCs. (A) BALB/c mice (n=3 per group per time point) were administered 1 mg/kg BsAb-1 or BsAb-2 by 
tail-vein injection. Serum was collected at 6 time points over two weeks and tested together by ELISA for human IgG4 
using rhIL-2Rγ as a capture antigen. Error bars show SD. Pharmacokinetic parameters were determined using Phoenix 
pharmacokinetic software. (B-D) Irradiated NSG mice (5 per treatment group) were engrafted with 20 million 
human PBMCs each. Animals were then treated with either vehicle only, rhIL-2 (daily), or BsAb-1 or BsAb-2 (twice 
weekly) until ≥ 20% body weight loss. (B) Relative body weight of treated mice after injection of PBMCs. Horizontal 
lines indicate mean, and error bars show SEM. p values were calculated using a two-way RM ANOVA test. (C and D) 
Percentage of engrafted CD8+ T-cells (C) and CD4+ T-cells (D) which showed at least one round of division by CSFE 
staining. Representative histograms shown in Fig. S3. p values were calculated using a one-way ANOVA. Horizontal 
lines indicate mean, and error bars show SEM (B) or SD (C and D). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5.   BsAb-2 induces dose-dependent lymphocyte proliferation in cynomolgus monkeys. Healthy 
cynomolgus monkeys (n = 2 per treatment group [1 male + 1 female]) were treated once with 0.03, 0.1, or 
0.3 mg/kg body weight of BsAb-2 by intravenous injection. Peripheral blood was collected at 10 time points 
and cellular compartment was analyzed by flow cytometry. (A to E) Percentages of Ki67-expressing CD8+ 
T-cells (A), CD3-CD159a+ NK-cells (B), CD4+ T-cells (C), CD4+CD25+FoxP3+ Tregs (D), and CD3-CD20+ 
B-cells (E). (F to J) Absolute cell numbers of CD8+ T-cells (F), CD3-CD159a+ NK-cells (G), CD4+ T-cells (H), 
CD4+CD25+FoxP3+ Tregs (I), and CD3-CD20+ B-cells (J). Cell numbers determined using BD TruCount beads. 
(K) Ratio of CD8+ T-cells to CD4+ T-cells in cynomolgus peripheral blood.Data shown is the mean of the two 
subjects.
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(Fig. 5K and Fig. S4K). Moreover, the IL-2Rβγ agonist antibodies were well tolerated in the monkeys at all dose 
levels tested, with no indication of vascular leak syndrome or other overt toxicities based on clinical observations. 
The Institutional Animal Care and Use Committee (IACUC) of Charles River Lab did not approve the use of 
rhIL-2 (proleukin) in this study due to the known severe toxicity of IL-2 in cynomolgus monkeys.

Discussion
High-dose rhIL-2 (Proleukin®) is approved for the treatment of metastatic melanoma and renal cell carcinoma due 
to its anti-tumor efficacy in a subset of patients8–11. However, the effectiveness of high dose rhIL-2 is limited by its 
narrow therapeutic window due in part to the preferential activation and expansion of regulatory T-cells through 
the binding of the high-affinity IL-2 receptor composed of IL-2Rα, IL-2Rβ and IL-2Rγ subunits expressed on 
these cells. Adverse events, including vascular leak syndrome, further compromise its use in the clinic, limiting 
eligible patients and restricting its use to specialized treatment centers6. There has been substantial effort in the 
field to create mutations in the rhIL-2 protein which disrupt binding to the IL-2Rα subunit to avoid preferential 
binding to the high-affinity trimeric IL-2 receptor and overcome these unwanted side effects24,25,28. While achiev-
ing the desired function, these mutant proteins have also been shown to be immunogenic and must be further 
conjugated to a larger molecule to confer a longer in vivo half-life30,31,44.

In this study, we describe a novel approach for overcoming the limitations of rhIL-2 treatment by design-
ing a fully human bispecific agonist antibody that activates immune effector cells through simultaneous bind-
ing and activation of the IL-2R beta and gamma subunits while avoiding binding to the IL-2R alpha subunit. 
Our motivation for taking this approach was primarily influenced by the favorable drug-like properties of an 
antibody format along with the exquisite specificity of bispecific antibodies. A bispecific antibody has the dual 
benefits of achieving the desired biological activity in a format with well-established manufacturing processes 
and superior drug-like properties. In support of these considerations, the IL-2Rβγ bispecific agonists we created 
can activate immune effector cells while avoiding preferential activation of T-regs. While the bispecific agonists 
maintain equivalent binding to IL-2Rβγ on T-regs and effector cells, the large excess of effector cells compared 
to T-regs means that many more effector cells are activated by the bispecific antibodies compared to T-regs. This 
is in contrast to native IL-2 which binds to IL-2Rαβγ on T-regs at a 100-fold higher affinity than IL-2Rβγ, thus 
biasing the activity of IL-2 to T-regs. The biological activity of the molecules, combined with Fc-mediated half-
life extension, offers the opportunity to increase anti-tumor efficacy as well as reduce dose-limiting toxicities 
associated with rhIL-2 treatment.

Due to the pleiotropic nature of IL-2, there are benefits to considering alternative mechanisms of activating 
the IL-2 signaling pathway independent of IL-2, and IL-15 is one such alternative. While rhIL-15 has shown 
anti-tumor activity in clinical trials, it also exhibits considerable toxicity and a short serum half-life, similar to 
rhIL-245–47. One of the challenges with the clinical application of rhIL-15 is that the IL-15Rα subunit is expressed 
in trans on antigen presenting cells. With this consideration, recent efforts have focused on developing a single 
chain construct that combines rhIL-15 with the IL-15 receptor αSu fragment to avoid the high affinity binding 
to the IL-15Rα chain on monocytes and dendritic cells48–50. The IL-2R agonist activity induced by the bispecific 
IL-2Rβγ antibodies is similar to IL-15-induced signaling as both bind to the beta and gamma subunits of the 
IL-2 receptor and avoid preferential activation of T-regulatory cells through interaction with IL-2Rα.

The expansion of T-cells along with an increased ratio of CD8+ T-cells to T-reg cells has been correlated 
with superior responses in patients51–53. In a mouse model engrafted with human PBMCs, the IL-2Rβγ agonist 
bispecific antibodies described in this paper stimulate the activation and expansion of T-cells equivalent to or 
better than that of rhIL-2. Furthermore, in cynomolgus monkeys, these bispecific antibodies are capable of 
inducing both T and NK-cell proliferation without a preferential expansion of T-reg cells reflected by a greater 
CD8 to CD4 ratio (see Fig. 5K and Fig. S4K). These in vivo observations of effector T-cell proliferation suggest 
that the IL-2R antibody agonists could facilitate a beneficial anti-tumor response in humans. However, one of 
the risks associated with T-cell proliferation and activation is the increased production of proinflammatory 
cytokines. To address this potentially negative side-effect of an IL-2R agonist, cytokine release was measured 
in a whole blood ex vivo study. In addition to stimulating immune cell proliferation, BsAb-1 and BsAb-2 also 
induced less proinflammatory cytokines than rhIL-2 in the whole blood cytokine release assay as shown in Fig. 3. 
Furthermore, both BsAb-1 and BsAb-2 were well tolerated in cynomolgus monkeys, where pro-inflammatory 
cytokines such as TNF-α and IL-6 were undetectable in the serum, and there were no clinical signs of cytokine 
release syndrome or vascular leak toxicity.

An IL-2Rβγ bispecific antibody agonist with an improved safety profile that expands immune cells in the 
tumor and periphery may be particularly effective when used in combination with other approved cancer thera-
peutics such as immune checkpoint inhibitors, ADCC competent monoclonal antibodies, and bispecific T-cell 
engagers. Checkpoint inhibitor antibodies and T-cell engaging bispecific antibodies both rely on a prevalent 
reservoir of healthy T-cells. Likewise, monoclonal antibodies that act through an ADCC mechanism rely on 
an ample population of NK-cells. Therefore, co-treatment with a bispecific IL-2Rβγ agonist that increases the 
abundance of these effector cells should benefit these types of therapies provided the toxicity of the combination 
treatment is tolerable. As an example of such a combination approach, NKTR-214/BEMPEG has been shown to 
be safe and has increased efficacy in combination with a checkpoint inhibitor in clinical trials54. The use of the 
ADCC competent monoclonal antibody, rituximab, in combination with the fusion protein L19-IL2 has also 
been shown to enhance activity compared to rituximab alone in B-cell lymphoma models55. While it has not 
been explored in the clinic yet, a third intriguing possibility would be to combine an IL-2Rβγ bispecific antibody 
with a next-generation T-cell engager exhibiting minimal cytokine release in order to increase the population of 
effector T-cells that can be recruited to the site of the tumor.
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Other important considerations for an IL-2-based therapy is the localization and potency of the drug. There 
have been many efforts to conjugate IL-2 and other cytokines to monoclonal antibodies (immuno-cytokines) in 
an attempt to target the cytokine to the site of the tumor28,56. While this is a reasonable strategy to avoid off-tumor 
side effects, clinical benefit has been seen with multiple untargeted IL-2 variant molecules such as NKTR-214, 
THOR-707, and ALKS-423023,24,54,57. While lacking tumor targeting, it is also interesting to note that BsAb-1 
described in this study showed more potent in vitro activity compared to BsAb-2, but BsAb-2 had stronger in vivo 
effects compared to BsAb-1. This may be explained by BsAb-1 having a faster target-based clearance due to its 
higher binding affinity to the IL-2Rβγ receptor. Future studies will determine the pharmacokinetic properties 
of these bispecific antibodies in cynomolgus monkeys.

Taken together, the novel structure and mechanism of an IL-2Rβγ bispecific antibody agonist has many 
advantages for more fully exploiting the beneficial aspects of IL-2. Not only does the bispecific antibody achieve 
the desired biological activity, but it also has advantages of the well-established antibody format, and the approach 
we demonstrate in this study with IL-2R could be applied to other heterodimeric receptor signaling pathways. 
The in vitro and in vivo activity of the bispecific antibodies support the proposed biological mechanism that is 
consistent with other IL-2 variant proteins, and the preliminary results in cynomolgus monkeys provide evi-
dence that this is a safe and well-tolerated molecule. Future studies will establish the maximum tolerated dose 
and pharmacokinetics in non-human primates with the ultimate goal of developing a safe and effective therapy 
for human cancer patients.

Materials and methods
Immunizations, next‑generation sequencing, clonotype analysis and cloning.  Methods essen-
tially as described in Harris et al. Front Immunol. 2018 Apr 24; 9:88934. In brief, UniRat animals were immunized 
using standard adjuvants (Complete Freunds or Titermax/Ribi) along with recombinant protein antigens in a 
48-day protocol or DNA immunizations. For protein immunizations, boosts consisted of 10 µg of recombinant 
protein injected into each leg of each animal with the appropriate adjuvant. In the case of DNA immunizations, 
gold particles were coated with vectors containing cDNA of the target antigen, which were subsequently admin-
istered subcutaneously every 7 days, using a gene gun. Plasma samples were collected post-immunization to 
assess serum titers against the antigen by ELISA.

After approximately 7 weeks (protein antigen) or 10 weeks (DNA antigen) of immunization, draining lymph 
nodes were harvested and total RNA was isolated. Ig heavy chain sequences were amplified using first strand 
cDNA synthesis and 5′ RACE by PCR, following methods similar to those previously described in Harris et al. 
Front Immunol. 2018 Apr 24; 9:889 and then purified by gel extraction34.

Next-generation sequencing was completed using the MiSeq platform (Illumina) with 2 × 300 paired-end 
reads. To enable multiplexing of samples, indexing labels were added by primer extension. Approximately 100,000 
paired reads covered each sample, and those that showed alignment of less than 20 nucleotides to a human Ig 
locus were discarded. Merged forward and reverse reads of VH regions were translated into open reading frames 
and framework and CDR regions identified by IGBLAST (https://​www.​ncbi.​nlm.​nih.​gov/​igbla​st/). Clonotypes 
(defined by CDR3 protein sequences with at least 80% sequence similarity) were determined for samples using 
agglomerative clustering. CDR3 clonotypes were ranked by the percent of total reads in a sample defined by that 
clonotype. Those with the greatest abundance were prioritized for high-throughput cloning into an expression 
vector containing a CH1-deleted human IgG1 Fc region and validated by Sanger sequencing. Plasmids were 
transformed into E. coli grown in LB culture media and then purified to enable transient transfection of HEK 293 
cells in 96-well format. Following several days of expression, supernatants containing antibody were harvested 
and clarified by centrifugation.

High throughput ELISA.  Methods essentially as described in Harris et al. Front Immunol. 2018 Apr 24; 
9:88934. Briefly, recombinant proteins were coated overnight at 4 °C in 96-well plates using BupH Carbonate-
Bicarbonate buffer (human IL-2Rβ, Acrobiosystems; cynomolgus IL-2Rβ, Sino Biological). Plates were then 
washed with TBST (20 mM Tris, 150 mM NaCl, 0.05% Tween-20, pH 7.6) and blocked with blocking buffer 
(TBST with 1% dry milk powder). HEK 293 supernatants containing antibodies were diluted 1:100 in block-
ing buffer and added to antigen-coated plates. Detection of bound antibodies was accomplished using an 
HRP-labeled anti-human Ig secondary antibody together with chemiluminescent substrate. Luminescence was 
quantified (SpectraMax i3X, Molecular devices) and the signal for each well was normalized by dividing by 
the average background luminescence of antigen-coated wells that had been incubated with supernatant from 
untransfected HEK 293 cells.

Cell lines and PBMCs.  M07e cells were obtained from DSMZ and were grown in RPMI medium contain-
ing 10% Fetal Bovine Serum (FBS), 1% Penicillin/Streptomycin, and 10 ng/mL rhGM-CSF. HSC-F cells were 
obtained from The Nonhuman Primate Reagent Resource and cultured in RPMI medium supplemented with 
20% FBS, 1% Penicillin/Streptomycin and 55 μM β-Mercaptoethanol. 293-F were obtained from Gibco and 
grown according to their recommendations.

For creating stable cell lines expressing human IL-2Rβ or cynomolgus IL-2Rβ, expression constructs carried 
the full-length cDNA for the antigen and a NeoR selection cassette. Each expression construct was then linearized 
and used to electroporate CHO cells. Three days after transfection, cells were put under selection for 3–6 weeks 
using Geneticin treatments. At the end of the selection period, all untransfected and negative control cell lines 
were killed, while all transfected pools showed re-growth as expected for successfully transfected pools. Four 
pools of each target were then assayed by flow cytometry for binding to a positive control antibody. The culture 
media for the CHO cells is as follows—EX-CELL® 325 PF CHO media containing 8 mM L-glutamine, 0.1 µg/L 

https://www.ncbi.nlm.nih.gov/igblast/
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IGF-1, 5% dialyzed FBS, 0.45 mg/mL geneticin, and 0.45 mg/mL hygromycin. The cells were grown in suspen-
sion and maintained at a concentration between 0.5E6/mL to 2E6/mL.

Human PBMCs were isolated in-house from fresh leukapheresis packs (StemCell) by Ficoll® Paque Premium 
(GE Healthcare Life Sciences) density gradient centrifugation.

Cell binding by flow cytometry.  All washes and dilutions of cells, antibodies, and reagents were per-
formed using flow buffer (1X PBS, 1% BSA, 0.1% NaN3, pH 7.4). Staining was performed in a round-bottom 
96-well plate (Corning) seeded at 100,000 cells/well and all incubations were performed at 4 °C or on ice. For 
primary and secondary screens, the cells were incubated for 30 min with pre-diluted test antibodies (secondary 
screen and dose-curves) or 1:5 diluted HEK 293 supernatants containing antibodies (for primary screens and 
diversity screens) in a total volume of 50 μL. The cells were washed twice with 200 µL flow buffer. The cells were 
then incubated for 30 min with detection antibody (Goat F(ab’)2 Anti-Human IgG-PE, Southern Biotech) at 
0.625 µg/mL in flow buffer. Following 2 more washes, the cells were resuspended in a final volume of 150 µL of 
flow buffer. The cells were analyzed on a BD FACSCelesta or a Guava easyCyte 8-HT flow cytometer. At least 
3000 events were collected, and PE geometric mean fluorescence intensity was plotted as a fold over background 
(cells incubated with secondary detection antibody only). In some secondary screens involving human or cyn-
omolgus PBMCs, an additional CD4 antibody (BioLegend) and/or CD8 antibody (BioLegend) was included to 
further characterize cell binding.

pSTAT5 detection by flow cytometry.  For detection of pSTAT5 by flow cytometry, PBMCs were pre-
pared from either frozen whole blood (cynomolgus) or frozen LeukoPak (human). Cells were thawed, washed 
twice with complete RPMI medium and resuspended at 5e6 cells/mL. 100 µL/well of these cells was then trans-
ferred to a sterile, round-bottom, 96-well plate (Corning) and sealed with an AeraSeal™ (Excel Scientific). The 
plate was then incubated at 37 °C and 5% CO2 for 1 h. After the incubation, 100 µL of pre-diluted antibodies (or 
IL-2 / IL-2 variant) was added to the appropriate wells. A final concentration of 10 nM IL-2 (R&D Systems) was 
used in control wells to ensure detectable pSTAT5. The plate was then resealed and returned to the incubator 
for an additional 1 h. After the incubation, the cells were centrifuged and washed twice with PBS pre-chilled to 
4 °C. The cells were then blocked with Human TruStain FcX (BioLegend) and then subsequently stained for 30 
min with Fixable Viability Dye (Invitrogen) and antibodies against CD3, CD4, CD8, CD25, and/or CD56. After 
staining, the cells were again centrifuged and washed twice with pre-chilled PBS. The cells were then fixed with 
the addition of 200 µL/well Fixation Buffer (BioLegend) and incubated at room temp for 30 min. After fixation, 
the cells were centrifuged and washed twice with Flow Buffer (1X PBS, 1% BSA, 0.1% NaN3, pH 7.4). Next, the 
cells were permeabilized by resuspending in 200 µL/well True-Phos buffer (BioLegend) pre-chilled to -20 °C 
and transferred to a -20 °C freezer overnight. The following morning, the cells were centrifuged, washed twice 
with flow buffer, and subsequently stained for 30 min with anti-pSTAT5 (BD Biosciences). After two additional 
washes, the cells were resuspended in 125 µL/well flow buffer and acquired on a BD FACSCelesta.

Ki67 detection by flow cytometry.  For detection of Ki67 by flow cytometry, frozen human PBMCs (pre-
viously isolated in-house from a LeukoPak) were thawed and rested overnight in complete RPMI medium at 1e6 
cells/mL. The morning of the assay, the PBMCs were washed with complete RPMI and resuspended at 1e6 cells/
mL. Then, to each well of a sterile 96-well plate, 100 µL of PBMCs, 50 µL of 0.16× ImmunoCult (StemCellTech), 
and 50 µL of diluted antibody or rhIL-2 (R&D Systems) was added. 0.5× ImmunoCult was used for staining 
controls to ensure detectable Ki67 and CD25 signal for compensation. The plate was then covered and incubated 
at 37 °C and 5% CO2. After 3 days, the media was refreshed with 100 µL/well of the corresponding concentra-
tion antibody and ImmunoCult and then returned to the incubator. After 3 more days (6 days total), the cells 
were centrifuged and washed twice with PBS pre-chilled to 4 °C. The cells were then blocked with Human 
TruStain FcX (BioLegend) and then subsequently stained for 30 min with Fixable Viability Dye (Invitrogen) 
and antibodies against CD3, CD4, CD8, CD25, and/or CD56. After staining, the cells were again centrifuged 
and washed twice with pre-chilled PBS. The cells were then fixed and permeabilized for 1 h with 200 µL/well 
FoxP3/Transcription Factor Staining Buffer working solution (Invitrogen). After permeabilization, the cells were 
centrifuged, washed twice with permeabilization buffer, and subsequently stained for 30 min with anti-FoxP3 
(BioLegend) and anti-Ki67 (BioLegend). After two additional washes, the cells were resuspended in 125 µL/well 
flow buffer and acquired on a BD FACSCelesta.

Whole blood cytokine release assay.  Cytokine secretion was detected using fresh human whole blood 
(heparinized) obtained from AllCells. The following method was adapted from B. Wolf et  al. / Cytokine 60 
(2012) 828–83758. 12.5 µL of 20X concentrated (diluted in 1X PBS) test article was added to each well of a sterile 
96-well round bottom plate. To this, 237.5 µL of fresh, human whole blood was added to each well with minimal 
pipetting to reduce non-specific activation. The plate was the covered and incubated at 37 °C and 5% CO2 over-
night. The following morning, the plate was centrifugated at 1800 × g for 10 min and then 50 µL of serum was 
transferred to a 96-well microplate. The serum was then immediately tested by MSD (#K15010K-1 or a custom 
U-Plex plate) or frozen at − 80 °C for later testing.

Mouse pharmacokinetic (PK) evaluation.  The PK of BsAb-1 and BsAb-2 were each evaluated in 6 male 
BALB/c mice following a single tail vein injection of 1 mg/kg (n = 3 * 6 groups, Aragen Biosciences, Morgan Hill, 
CA). Serum samples were collected at selected time points over the course of 14 days post-dose.
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Mouse Accelerated GVHD Study.  Each immune-compromised NSG mouse (8–9 weeks old from 
Charles River, France) was irradiated with 1.5 Gy on study day − 1. Mice were divided into 4 groups (n = 5) and 
2 independent experiments were conducted using 2 different PBMC donors. On study day 0, each mouse was 
adoptively transferred IV with 20 million human PBMCs from one of the 2 donors and each mouse was treated 
with either vehicle control (100 µL), 22 µg rhIL-2 (350,000 IU/mice, Proleukin, Novartis) daily, 1 mg/kg BsAb-1 
twice a week or 1 mg/kg BsAb-2 twice a week. GVHD was assessed by measuring weight loss over time in all 
animals. Animals were euthanized when body weight loss of 20% was observed.

In the second experiment, NSG mice (8–9 weeks old from Charles River, France) were irradiated with 1.5 Gy 
on study day -1. Mice were divided into 4 groups and 2 independent experiments were conducted using 2 dif-
ferent PBMC donors. On study day 0, each mouse was adoptively transferred IV with 20 million CSFE-labelled 
human PBMCs from one of the 2 donors and each mouse was treated with either vehicle control (100 µL) (n = 7), 
22 µg rhIL-2 (350,000 IU/mice) daily (n = 6), 1 mg/kg BsAb-1 twice a week (n = 6) or 1 mg/kg BsAb-2 twice a 
week (n = 6). All animals were sacrificed on study day 5.

Immunophenotyping of the engrafted PBMCs by flow cytometry was performed on single-cell suspensions 
prepared from the mouse spleen on the day of sacrifice. The method of detection was largely the same as the above 
method for Ki67 detection by flow cytometry, but with different panels of antibodies to better distinguish the 
human PBMCs from the host cells. Cells were surface stained with anti-human CD45, CD3, CD4, CD8, CD25, 
CD16, CD19, and/or CD69. Following fixation and permeabilization, some of the cells were stained with anti-
human FoxP3. The samples were then collected on a flow cytometer and analyzed using FlowJo analysis software.

Cynomolgus pharmacodynamic (PD) study.  The PD profiles of BsAb-1 and BsAb-2 were evaluated in 
twelve 2–4 years old naïve cynomolgus monkeys following a single IV (slow bolus) dose of 0.03, 0.1 or 0.3 mg/
kg. Each treatment group contained 1 male and 1 female cynomolgus monkey (Charles River Lab, USA, Reno, 
NV). Blood samples were collected at selected time points for 21 days after dosing for analyses of hematology, 
serum chemistry, cytokines, and PD endpoints. After study termination, animals from the study were returned 
to the general colony. All procedures were approved by CRL IACUC and were performed in compliance with the 
Animal Welfare Act, the Guide for Care and Use of Laboratory Animals and the Office of Laboratory Animal 
Welfare.

Cynomolgus blood immunophenotyping.  A portion of the blood from each collected time point was 
used for immunophenotyping and quantification by flow cytometry. The method for Ki67 detection by flow 
cytometry was largely the same as described above, but with a different panel of cyno-reactive antibodies. Cells 
were surface stained with antibodies against CD3, CD4, CD8, CD20, CD25, and CD159a. After fixation and per-
meabilization, the cells were stained with antibodies against FoxP3 and Ki67. The samples were then collected on 
a flow cytometer and analyzed using FlowJo analysis software.

Simultaneously, a portion of each blood sample was transferred to BD TruCount tubes and stained with CD45 
for real time quantification of peripheral blood cell absolute counts. The cell subset percentages from the above 
blood analysis were applied to the total cell numbers from the corresponding TruCount tube.

αIgG4 ELISA.  Serum concentrations of BsAb-1 and BsAb-2 in mouse serum were determined using an anti-
gen capture ELISA. All washes and dilutions were performed with freshly made TBS-T (Accuris). All volumes 
should be assumed to be 100 µL/well except for coating, blocking and washing, which are at 200 µL/well. The 
night before the assay, Nunc MaxiSorp™ flat-bottom plates (Invitrogen) were coated with recombinant human 
IL2Rγ protein diluted to 1 µg/mL in carbonate-bicarbonate buffer (Thermo Scientific) and left at 4 °C. The next 
day, the plates were washed 5 times and then blocked with 1% BSA for 30 min. The plates were washed once 
and then multiple dilutions of the serum samples were added, along with a reference standard. Stocks of known 
concentration for BsAb-1 and BsAb-2 were used to make the standard curve. After 1 h at room temp, the plate 
was washed 8 times and then biotinylated anti-human IgG4-Fc (MABTECH) diluted to 3 µg/mL was added. 
The plates were incubated at room temp for another 30 min and then washed again 8 times. Next, the plates 
were incubated for 30 min with HRP-Streptavidin (Thermo Scientific) diluted 1:4000. Following an additional 
8 washes, the plates were incubated in the dark for 6 min with room-temperature 1-Step Ultra TMB (Thermo 
Scientific). The reaction was stopped with 100 µL/well 2 N sulfuric acid. Absorbance was assessed at 450 nm and 
570 nm.

Protein expression and purification.  Monospecific UniAbs were expressed in ExpiCHO cells follow-
ing the manufacturer’s instructions (ThermoFisher A29133, Standard Protocol). Clarified supernatants were 
harvested on day 7 and purified using Protein A magnetic beads, using the KingFisher Flex Platform (Ther-
moFisher). Antibodies were eluted in 0.1 M citrate, 0.1 M NaCl, 10% glycerol, 10% sucrose, pH 3.5.

To express bispecific UniAbs, ExpiCHO cells were transfected with two expression vectors (knob and hole 
vectors, knob vectors contain C-terminal His-tag) and were expressed in the ExpiCHO cells according to manu-
facturer’s instructions using the high titer protocol. Clarified supernatants were harvested and the antibodies 
were purified by IMAC (Ni Sepharose® Excel, Cytive Life Sciences), using an imidazole gradient for elution. 
The IL-2Rβγ bispecific UniAbs containing fractions were pooled, concentrated, and further purified on cation 
exchange to remove any product-related impurities (Mono S® 10/100 GL column (Cytiva Life Sciences)). All 
antibodies were analyzed by SEC-UPLC and SDS-PAGE to confirm their size and purity.

The cynomolgus IL-2Rγ sequence was obtained from Uniprot.org (UniProt Accession ID: G7Q2Z6,) and 
the extracellular domain (aa Met1-Asn254) was cloned into a proprietary vector containing the endogenous 
leader sequence and a C-terminal His-tag. The IL-2Rγ reagent was expressed in ExpiCHO cells, according to 
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the vendors instructions (high titer protocol, ThermoFisher). Cells were harvested on day 8 and supernatant 
was run on SDS-PAGE (NuPAGE 4–12% Bis Tris Gel) to verify target protein expression. Clarified harvest was 
purified by IMAC using Ni-Sepharose Excel resin (Cytiva Life Sciences), using an imidazole gradient for elution. 
The peaks were pooled and quantified using QiaXpert (Qiagen).

The cloning, expression, and purification of mutant IL-2 protein (T3A, F42A, Y45A, L72G, C125A) was 
completed at Lake Pharma. A C-terminal His-tag was added to enable purification by IMAC using standard 
procedures and elution with an imidazole gradient.

Octet‑based off‑rate measurements.  All off-rate measurements were performed on an Octet Qk384 
instrument (ForteBio), in 96-well microplates at 25 °C using anti-human IgG Fc capture (AHC, 18–5005) sen-
sors with a shake speed of 1000 rpm. For off-rate determination, the antibodies were loaded on the AHC sen-
sors at 5 μg/mL. Following a short baseline in kinetics buffer (0.02% Tween20, 0.1% BSA, 0.05% sodium azide, 
1× PBS). Offrate measurements were done for the following: human IL-2Rβ (AcroBiosystems), human IL-2Rγ 
(Sino Biological), cynomolgus IL-2Rβ (Sino Biological), cynomolgus IL-2Rγ (expressed and purified in house 
using ExpiCHO expression system followed by Ni–NTA His-tag purification), mouse IL-2Rγ (Sino Biological), 
mouse IL-2Rβ (Sino Biological), human IL-2Rα (Sino Biological), IL-4R (Sino Biological), IL-7R (Sino Bio-
logical), IL-9R (R&D Systems) and IL-21R (Sino Biological). The following antibodies were used as positive 
controls to verify target binding and reagent quality: anti-human IL-9R (R&D Systems), anti-human IL-21R 
(R&D Systems), anti-human IL-7R (R&D Systems) and anti-human IL-4Ra (R&D Systems). The loaded sensors 
were then submerged in wells containing antigen at 100 nM concentration for association step. Dissociation was 
monitored in kinetics buffer. The capture surfaces were regenerated for 60 s. ForteBio data analysis software was 
used to fit the data to a 1:1 binding model to extract an association rate and dissociation rate.

Octet‑based kinetics measurements.  All kinetics measurement experiments were performed on a 
ForteBio Octet Qk384 instrument using anti-human Fc capture (AHC, 18–5005) sensors. The bispecific UniAbs 
and antigens were diluted to final concentrations in Kinetics buffer (0.02% Tween20, 0.1% BSA, 0.05% sodium 
azide, 1X PBS). Kinetics measurements were against the following antigens: human IL-2RB (AcroBiosystems), 
human IL-2RG (AcroBiosystems), cynomolgus IL-2RB (Sino Biological), cynomolgus IL-2RG (expressed and 
purified in house using ExpiCHO expression system followed by Ni–NTA his-tag purification). The antibodies 
were loaded on the AHC sensors at 5 μg/mL for maximum loading. Following a short baseline in Kinetics buffer, 
the sensors were exposed to a series of analyte concentrations (7.8 nM to 500 nM) for association step and back-
ground subtraction was used to correct for sensor drifting. Dissociation was monitored in Kinetics buffer. The 
capture surfaces were regenerated for 60 s. All experiments were performed with shaking at 1000 rpm. ForteBio’s 
data analysis software was used to fit the data to a 1:1 binding model to extract an association rate and dissocia-
tion rate. The KD was calculated using the ratio kd/ka.

Biophysical characterization assay (Tm, Tagg).  Tm and Tagg were measured on the UNcle platform. 
Briefly, 9 µL of each sample was loaded in duplicate in a Uni (UNcle cassette) and run with a thermal ramp from 
20 °C to 70 °C at a constant rate of 1 °C/min. UNcle Analysis 3.1 software, was used to calculate the Tm of each 
sample using the first derivative of the barycentric mean (BCM) of the fluorescence intensity. The Tagg for each 
sample was calculated using the intensity of scattered light at 266 nm.

Thermal stress and stability characterization.  Bispecific UniAb leads were concentrated to 10 mg/
mL in 20 mM citrate and 0.1 M NaCl pH 6.2. Presence of high and low molecular weight species (%HMW and 
%LMW) was determined before and after temperature stress for 1 month at 2–8 °C and 37 °C by SEC on an 
analytical ThermoFisher UltiMate™ 3000 UPLC.

Ethics statement.  PBMCs from healthy, deidentified donors were isolated from LRS filters purchased from 
the Stanford Blood Center (Palo Alto, CA). Human PBMCs were collected in accordance with scientific, ethi-
cal, and regulatory guidelines. Animal studies were carried out in accordance with the recommendations in the 
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Rat maintenance and 
immunizations were carried out by certified animal facilities in the U.S. (Antibody Solutions, Sunnyvale, CA) and 
Germany (Aldevron and MfD Diagnostics GmbH, Freiburg, Germany) in accordance with national and inter-
national guidelines, with protocols reviewed by Institutional Animal Care and Use Committee (IACUC) boards 
in the U.S. and comparable government boards in Germany. Mouse and cynomolgus studies were performed by 
AAALAC accredited facilities following internal approval by their IACUC boards (Aragen Biosciences, Morgan 
Hill, CA; Charles River Labs, Reno, NV; INSERM, Nantes, France).

ARRIVE compliance.  All studies in this paper were carried out in compliance with the ARRIVE guidelines.
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