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Impact of race-independent equations 
on estimating glomerular filtration rate 
for the assessment of kidney dysfunction in liver 
disease
Frank Stämmler1†, Laurence Derain‑Dubourg2†, Sandrine Lemoine2, Jeffrey W. Meeusen3, Surendra Dasari3, 
John C. Lieske3,4, Andrew Robertson1 and Eric Schiffer1* 

Abstract 

Background Altered hemodynamics in liver disease often results in overestimation of glomerular filtration rate (GFR) 
by creatinine‑based GFR estimating (eGFR) equations. Recently, we have validated a novel eGFR equation based on 
serum myo‑inositol, valine, and creatinine quantified by nuclear magnetic resonance spectroscopy in combination 
with cystatin C, age and sex  (GFRNMR). We hypothesized that  GFRNMR could improve chronic kidney disease (CKD) clas‑
sification in the setting of liver disease.

Results We conducted a retrospective multicenter study in 205 patients with chronic liver disease (CLD), compar‑
ing the performance of  GFRNMR to that of validated CKD‑EPI eGFR equations, including eGFRcr (based on creati‑
nine) and eGFRcr‑cys (based on both creatinine and cystatin C), using measured GFR as reference standard.  GFRNMR 
outperformed all other equations with a low overall median bias (‑1 vs. ‑6 to 4 ml/min/1.73  m2 for the other equa‑
tions; p < 0.05) and the lowest difference in bias between reduced and preserved liver function (‑3 vs. ‑16 to ‑8 ml/
min/1.73  m2 for other equations). Concordant classification by CKD stage was highest for  GFRNMR (59% vs. 48% to 
53%) and less biased in estimating CKD severity compared to the other equations.  GFRNMR P30 accuracy (83%) was 
higher than that of eGFRcr (75%; p = 0.019) and comparable to that of eGFRcr‑cys (86%; p = 0.578).

Conclusions Addition of myo‑inositol and valine to creatinine and cystatin C in  GFRNMR further improved GFR esti‑
mation in CLD patients and accurately stratified liver disease patients into CKD stages.
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Introduction
Chronic liver disease (CLD) is commonly associated 
with impaired kidney function. Renal dysfunction in the 
context of CLD is a predictor of mortality [1], and also 
a strong prognostic predictor of orthoptic liver trans-
plantation (OLT) outcomes [2]. The influence of renal 
dysfunction is so well defined that it is a component of 
Model of End stage Liver Disease (MELD) prognostic 
score. Furthermore, the degree of renal dysfunction in 
CLD has wide-reaching clinical decision implications 
such as appropriate drug dosing, therapeutic interven-
tions, and suitability for OLT [3, 4]. Most treatments for 
complications of liver disease, such as nephrotoxic anti-
biotics, diuretics, and paracentesis, have further negative 
effects on renal function with the potential to precipitate 
or aggravate renal failure [5]. An accurate measure of 
renal function is therefore crucial in patients with CLD.

Tracer-measured glomerular filtration rate (mGFR) is 
considered the gold standard for determining GFR. How-
ever, it is not readily available in most centers. Hence, 
renal function is estimated using biomarker-based eGFR 
equations in clinical routine settings. The most current 
eGFR equations are based on models containing either 
serum creatinine (cr), cystatin C (cys), or both. The lead-
ing examples are the Chronic Kidney Disease Epidemi-
ology Collaboration (CKD-EPI) eGFR equations, which 
employ creatinine, age (A), sex (S), with or without race 
(R) [eGFRcr(ASR) or eGFRcr(AS)] or both creatinine and 
cystatin C [eGFRcr-cys(ASR) or eGFRcr-cys(AS)] [6–8]. 
Unfortunately, serum creatinine is inaccurate in the diag-
nosis of renal dysfunction in patients with CLD. Clinical 
features of this patient population, such as a reduction 
of total muscle mass, a reduced hepatic conversion of 
creatine to creatinine due to liver insufficiency, altered 
hemodynamics in ascites, and an increased tubular secre-
tion rate of creatinine are all likely to account for the fail-
ure of serum creatinine levels to increase despite obvious 
renal disease [9–11]. Additionally, numerous studies have 
demonstrated the poor performance of creatinine-based 
eGFR equations in patients with CLD and those being 
considered for OLT [5, 12, 13].

The alternative biomarker cystatin C, being a non-gly-
cosylated basic protein produced at a constant rate by all 
nucleated cells, has been introduced to estimate GFR [7]. 
Unlike creatinine, cystatin C is less influenced by body 
mass, sex, age, or serum bilirubin, and is mainly influ-
enced by GFR. Therefore, cystatin C is considered to be 
a superior GFR marker that can provide a more accurate 
prediction of GFR than creatinine [14]. Also, studies have 
demonstrated the superiority of estimating GFR using 
cystatin C in CLD patients compared to creatinine, and 
particularly the eGFRcys(ASR) for patients with ascites 
or significant renal disease [15]. Moreover, a recent 

meta-analysis in cirrhosis patients indicated that eGFR 
equations based on both creatinine and cystatin C were 
less biased than those based on creatinine alone, which 
overestimate GFR, and cystatin C alone, which tend to 
underestimate GFR [16].

Recently, an eGFR equation has been developed and 
validated based on nuclear magnetic resonance (NMR) 
measurement of serum myo-inositol, valine, and creati-
nine, in addition to the immunoturbidometric quantifica-
tion of serum cystatin C, age and sex  (GFRNMR) [17, 18]. 
NMR represents a multiplex analyzer capable to precisely 
quantify multiple unlabeled metabolites in a simultane-
ous physical measurement step. In that sense,  GFRNMR 
interprets biomarkers of glomerular filtration rate in 
combination with biomarkers reflecting CKD associated 
metabolic comorbidities. In addition, the quantifica-
tion of serum creatinine in adjunct to serum valine and 
myo-inositol by NMR limits the complexity of working 
streams and associated analytical costs in routine labo-
ratory settings compared to multiple single biomarker 
assays. Upon clinical validation in adults with and with-
out chronic kidney disease (CKD),  GFRNMR showed a 
lower median bias to tracer mGFR and a higher accuracy 
within 15% of mGFR, compared to the eGFRcr(ASR), 
eGFRcys(ASR), and eGFRcr-cys(ASR) CKD-EPI equa-
tions [17].

Given this noted superior performance of  GFRNMR in 
adults with and without CKD, this multicenter retrospec-
tive study sought to compare the performance of  GFRNMR 
with that of CKD-EPI equations based on creatinine only 
[eGFRcr(ASR), eGFRcr(AS)] or on both creatinine and 
cystatin C [eGFRcr-cys(ASR), eGFRcr-cys(AS)], against 
mGFR as reference standard, in 205 patients with CLD.

Patients and methods
Patients and samples
Bio-banked serum samples of adult individuals ≥ 18 years 
old with CLD were included in this study. These samples 
were a subset of those described by Stämmler et al. [17], 
and were selected from patients with CLD within the val-
idation cohort (i.e., not part of the development dataset) 
[17]. A total of 205 samples were included in this analy-
sis, collected from CLD patients in Rochester, MN, USA 
(n = 155) and Lyon, France (n = 50). Samples were stored 
at − 80 °C and underwent no more than one freeze–thaw 
cycle before NMR analysis, as previously described [17]. 
The study was conducted according to the guidelines 
of the Declarations of Helsinki and Istanbul, and was 
approved by the relevant Institutional Review Boards 
(Mayo Clinic IRB# 19–003,513, dated 16 May 2019, and 
Hospital Edouard Herriot IRB# DC-2012–1615, dated 2 
July 2012. All individuals gave informed consent before 
joining the study.
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mGFR, biomarker measurements and eGFR
Measured GFR (mGFR) reference standard was deter-
mined using iothalamate (Rochester samples) or inulin 
(Lyon samples) clearance, as previously described [15, 
17]. Serum creatinine was measured using enzymatic 
methods traceable to the National Institute of Standards 
and Technology, as described [17]. Serum cystatin C was 
measured using immunoassays, as explained [17]. NMR-
based measurement and quantification of serum creati-
nine, myo-inositol and valine were conducted as reported 
[17–19]. For this work we compared the performance of 
our recently introduced  GFRNMR equation [17, 18] to that 
of the different CKD-EPI eGFR equations: the 2009 cre-
atinine-based CKD-EPI equation [eGFRcr(ASR); [6]], the 
2012 creatinine- and cystatin C-based CKD-EPI equation 
[eGFRcr-cys(ASR); [7]], and the 2021 race-free deriva-
tives of the previous CKD-EPI equations [eGFRcr(AS) 
and eGFRcr-cys(AS); [8]].

Liver function scoring and definitions
The performance of eGFR equations was evaluated 
according to liver dysfunction severity. Two levels of liver 
function, namely ‘preserved liver function’ and ‘reduced 
liver function’, were defined based on the Child–Pugh 
(CP) score [20, 21] and the presence or absence of ascites. 
Preserved liver function was defined by a CP class A 
without ascites. Reduced liver function was defined by a 

CP class A with ascites, or a CP class B or C (regardless of 
the presence of ascites) (Fig. 1).

CP scores of the Rochester cohort were retrospectively 
calculated based on available clinical parameters [20, 21]. 
CP scoring was harmonized across the cohorts. Ascites 
was considered as either absent or present (‘mild/mod-
erate’ and ‘severe/permanent’ pooled categories). One 
score point was attributed in the absence of ascites and 
two points in its presence. In addition, presence, but 
not severity, of hepatic encephalopathy (HE) was docu-
mented at both centers. Therefore, one score point was 
assigned to samples without HE and two points for sam-
ples with HE. In case one out of the five clinical param-
eters required for CP score calculation was missing, 
one score point was arbitrarily attributed to the miss-
ing parameter to allow calculation of a CP score. In case 
more than one clinical parameter was missing, samples 
were excluded from analyses based on liver function, but 
included in the global performance analyses (Fig. 1).

Other variables
The performance of eGFR equations was also evaluated 
in terms of correct CKD staging (G1 to G5) [22], using 
mGFR as reference, in the whole population, in preserved 
versus reduced liver function subgroups, and according 
to the following liver and renal dysfunction parameters: 
(i) the severity of liver dysfunction based on the Model 
of End-stage Liver Disease (MELD) score [21, 23], with 

Fig. 1 Study flow diagram. Global performance analyses were conducted on all samples of patients with chronic liver disease (CLD; n = 205), while 
analyses according to liver function were conducted in CLD patients with a calculated Child–Pugh (CP) score (n = 203). Out of 203 samples with 
a CP score, 143 were defined a ‘preserved liver function’ (CP class A without ascites) and 60 were defined a ‘reduced liver function’ (CP class A with 
ascites, CP class B, or CP class C). The number of samples from the respective centers (Lyon, Rochester) is indicated
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a threshold of MELD > 15 for liver dysfunction, (ii) the 
presence or absence of ascites, and (iii) renal dysfunc-
tion (mGFR < 60 ml/min/1.73  m2). Other relevant clinical 
parameters are listed in Table 1.

Statistical analysis
Data were integrated and prepared according to 
Stämmler et al. [17]. All calculations, performance evalu-
ation and statistical tests were performed within R 4.0.2 
[24]. Most metrics were calculated with ModelMetrics 
(Version 1.2.2.2) [25]. Data structures were handled with 
data.table (Version 1.13.2) [26] and archivist (Version 
2.3.4) [27]. Bootstrap procedures were implemented via 
the boot package (Version 1.3–25) [28, 29]. Visualization 
was performed mainly with ggplot2 (Version 3.3.2) [30]. 
Descriptive summary tables were created via the gtsum-
mary (Version 1.3.5) package [31].

Key performance indicators (KPIs) for performance 
evaluation were selected as previously described [17]. 
Comparison of KPI performances by the different equa-
tions, overall and according to liver function, was per-
formed with the following statistical tests. Comparison of 
IQR (precision) was performed by the boostrap method. 
Comparison of median bias was performed by the Wil-
coxon-signed rank test [32, 33]. Comparison of accu-
racy measures (P30, P20, P15 and P10) was assessed by 
the McNemar’s chi square test [34]. All p-values were 
adjusted for multiple testing by Benjamini–Hochberg 
method (q-values). Statistical significance was deter-
mined by a p-value (adjusted) < 0.05.

The proportion of correct CKD staging (G1, G2, G3a, 
G3b, G4 and G5) by the different eGFR equations, com-
pared to mGFR, was calculated in the whole cohort and 
within subgroups (defined according to hepatic or renal 
dysfunction). Pairwise comparison of CKD staging by 
 GFRNMR vs. that by other equations was performed using 
the McNemar’s test. In case of incorrect CKD staging, 
the proportion of underestimation of CKD severity (i.e., 
an overestimation of GFR leading to assign a better CKD 
stage than that assigned based on mGFR) or overestima-
tion of CKD severity (i.e., an underestimation of GFR 
leading to assign a worse CKD stage than that assigned 
based on mGFR) was evaluated for the different eGFR 
equations.

Results
Patients’ characteristics
A total of 205 serum samples of patients with CLD 
were included in the performance analysis of eGFR 
equations. Performance evaluation was performed in 
the whole cohort and according to liver function (‘pre-
served’ versus ‘reduced’ liver function), based on CP 
scoring and the presence or absence of ascites (Fig. 1). 

Out of 205 samples, two could not be assigned a CP 
score and were excluded from the analysis per liver 
function. A total of 143/203 (70.4%) samples were 
assigned to the preserved liver function group and 
60/203 (29.6%) to the reduced liver function group 
(Fig.  1). Sample distribution per center showed a 
higher proportion of patients with severe liver dysfunc-
tion among CLD samples from Lyon (35/50 [70.0%]) 
compared to Rochester (25/155 [16.1%]) (Fig.  1). This 
was confirmed by evaluating liver dysfunction sever-
ity according to the MELD score, CP scoring classi-
fication, and the ascites status of patients (Figure S1). 
This agrees with the observation that most patients 
from Lyon were candidates for OLT, while patients 
from Rochester were mostly outpatients (thus with 
expected lower CLD severity). Patients’ characteristics 
in the preserved and reduced liver function subgroups 
are described in Table  1. Mean GFR estimated by the 
various equations [eGFRcr(ASR), eGFRcr(AS), eGFRcr-
cys(ASR), eGFRcr-cys(AS),  GFRNMR] in both groups of 
CLD patients is also presented, along with mean mGFR 
(Table 1).

Overall performance of eGFR equations
Global performance of  GFRNMR was compared to that 
of the four CKD-EPI equations on n = 205 collected 
samples. Median bias of  GFRNMR was significantly dif-
ferent from that of all four CKD-EPI equations (Table 2; 
p-values between 0.0024 and < 0.0001). Median Bias was 
lowest for  GFRNMR and eGFRcr(ASR), with -1 (-3 to 1) 
and 1 (-1 to 3) ml/min/1.73  m2, respectively (Table 2 and 
Fig. 2A). Moreover, the race-free  GFRNMR equation dem-
onstrated a lower median bias than its race-free CKD-EPI 
counterparts eGFRcr(AS) (4 ml/min/1.73  m2, p < 0.0001) 
and eGFRcr-cys(AS) (-4  ml/min/1.73  m2, p = 0.0024) 
(Table 2 and Fig. 2A).

Precision of  GFRNMR was significantly higher (i.e., 
lower IQR) than that of creatinine-based equations 
[eGFRcr(ASR) and eGFRcr(AS); p = 0.0025 and 0.0043] 
(Table  2) and was comparable to that of the creatinine- 
and cystatin C-based eGFR equations [eGFRcr-cys(ASR) 
and eGFRcr-cys(AS); p = 1 and 0.8495].

In addition, P30 and P20 accuracies of  GFRNMR were 
significantly higher than those of creatinine-only equa-
tions (p-values between 0.0142 and 0.0466) (Table  2, 
Table S1, Fig. 2B-C, and Figure S2) and were not different 
from those of creatinine and cystatin C CKD-EPI com-
bined equations (p-values between 0.2031 and 0.5778). 
Although  GFRNMR P15 and P10 accuracies were the high-
est (59.02% for P15, 41.95% for P10) (Table  2, Table S1, 
Fig.  2D, and Figure S2), these differences did not reach 
significance (p-values between 0.0737 and 0.5387).
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Table 1 Patients’ characteristics according to liver function. (To be placed after ‘Results’ subsection ‘Patient’s characteristics’)

Characteristics Na Preserved Liver 
Function,b N = 143

Reduced Liver 
Function,cN = 60

p-valued q-valuee

Center, n / N (%) 203  < 0.001  < 0.001
 Lyon (n = 48) 13 / 143 (9.0%) 35 / 60 (58.0%)

 Rochester (n = 155) 130 / 143 (91.0%) 25 / 60 (42.0%)

Age, Mean (SD) (years) 203 58.5 (12.6) 58.0 (10.0) 0.3 0.4

Age Group, n / N (%) 203 0.029 0.049
  < 40 years 12 / 143 (8.4%) 4 / 60 (6.7%)

 40–65 years 80 / 143 (56.0%) 45 / 60 (75.0%)

  > 65 years 51 / 143 (35.6%) 11 / 60 (18.3%)

Sex, n / N (%) 203 0.13 0.2

 female 53 / 143 (37.0%) 15 / 60 (25.0%)

 male 90 / 143 (63.0%) 45 / 60 (75.0%)

Ethnicity 203 0.3 0.4

 Black 5 / 143 (3.5%) 0 / 60 (0%)

 Non‑black 138 / 143 (96.5%) 60 / 60 (100%)

Height (cm), Mean (SD) 203 171.1 (10.3) 171.0 (8.8) 0.8 0.9

Weight (kg), Mean (SD) 203 88.6 (22.1) 84.1 (17.8) 0.3 0.4

BMI (kg/m2), Mean (SD) 203 30.2 (6.9) 28.7 (5.7) 0.2 0.3

BMI Category, n / N (%) 203 0.7 0.8

  < 20 3 / 143 (2.1%) 2 / 60 (3.3%)

 20–25 31 / 143 (22%) 14 / 60 (23.3%)

 25–30 49 / 143 (34%) 23 / 60 (38.3%)

  > 30 60 / 143 (42%) 21 / 60 (35.1%)

SBP (mmHg), Mean (SD) 203 129.4 (18.6) 120.5 (19.8) 0.001 0.003
DBP (mmHg), Mean (SD) 203 76.9 (11.4) 70.1 (11.4)  < 0.001  < 0.001
BP Category, n / N (%) 203 0.006 0.012
 Normal 35 / 143 (24.5%) 29 / 60 (48.0%)

 Elevated 22 / 143 (15.4%) 10 / 60 (17.0%)

 Stage I Hypertension 37 / 143 (25.9%) 9 / 60 (15.0%)

 Stage II Hypertension 49 / 143 (34.2%) 12 / 60 (20.0%)

 No BP Measurement 0 / 143 (0.0%) 0 / 60 (0.0%)

CKD Stage, n / N (%) 203 0.022 0.039
 G1 22 / 143 (15.0%) 12 / 60 (20.0%)

 G2 48 / 143 (34.0%) 13 / 60 (21.7%)

 G3a 36 / 143 (25.0%) 16 / 60 (26.7%)

 G3b 27 / 143 (19.0%) 6 / 60 (10.0%)

 G4 9 / 143 (6.3%) 12 / 60 (20.0%)

 G5 1 / 143 (0.7%) 1 / 60 (1.6%)

Encephalopathy, n / N (%) 203  > 0.9  > 0.9

 No 141 / 143 (98.6%) 59 / 60 (98.3%)

 Yes 2 / 143 (1.4%) 1 / 60 (1.7%)

Ascites, n / N (%) 203  < 0.001  < 0.001
 Not Present 143 / 143 (100.0%) 18 / 60 (30.0%)

 Present 0 / 143 (0%) 42 / 60 (70.0%)

MELD Score, Mean (SD) 197 10.4 (3.3) 19.4 (8.6)  < 0.001  < 0.001
(Missing, n) 1 5

Hepatic Dysfunction, n / N (%) 197  < 0.001  < 0.001
 MELD ≤ 15 130 / 142 (91.5%) 18 / 55 (33.0%)

 MELD > 15 12 / 142 (8.5%) 37 / 55 (67.0%)

 (Missing, n) 1 5



Page 6 of 15Stämmler et al. BMC Nephrology           (2023) 24:83 

Performance of eGFR equations by liver function
In CLD patients with preserved liver function (n = 143), 
all five eGFR equations revealed comparable perfor-
mances as to precision, bias, and accuracy (Table 2, Table 
S1, Figs.  3 and 4A), with a few exceptions. Specifically, 
median bias of  GFRNMR (-2 ml/min/1.73  m2) was signifi-
cantly different from that of eGFRcr(AS) (1 ml/min/1.73 
 m2, p = 0.0422), eGFRcr-cys(ASR) (-7  ml/min/1.73  m2, 
p < 0.0001) and eGFRcr-cys(AS) (-6  ml/min/1.73  m2, 
p < 0.0001) (Table 2 and Fig. 3A).

In CLD patients with reduced liver function (n = 60), 
however, differences in performances were observed 
between the compared eGFR equations. While  GFRNMR 
performed as well as the creatinine-cystatin C com-
bined CKD-EPI equations regarding precision and 
accuracy (p-values between 0.4114 and 1), it performed 
statistically significantly better than the creatinine-only 
equations as to precision, bias, and accuracy (Table  2, 
Table S1, Figs. 3 and 4B). The superior accuracy of the 
 GFRNMR and eGFRcr-cys equations over that of eGFRcr 
equations was statistically significant for P30, P20 and 
P15 (p-values between 0.0002 and 0.0206) (Table  2, 
Table S1, Figs.  3B-D and 4B). Moreover,  GFRNMR per-
formed best as to median bias (1 ml/min/1.73  m2) com-
pared to eGFRcr(ASR) (13 ml/min/1.73  m2, p < 0.0001), 
eGFRcr(AS) (16.5 ml/min/1.73  m2, p < 0.0001), eGFRcr-
cys(ASR) (2 ml/min/1.73  m2, p = 0.0448), and eGFRcr-
cys(AS) (2  ml/min/1.73  m2, p = 0.0007) (Table  2 and 

Fig.  3A). The superiority of  GFRNMR and eGFRcr-cys 
over eGFRcr in patients with reduced liver function 
was even visually apparent when directly comparing 
eGFR to the respective mGFR by scatter plot analysis 
(Fig.  5). This analysis further illustrated that the cre-
atinine-based equations systematically overestimated 
GFR in patients with reduced liver function (Fig. 5A,C 
versus B,D,E, red dots). These results were confirmed 
when comparing patients according to their MELD 
score (Figure S3) or their ascites status (Figure S4).

In addition, we evaluated the difference in perfor-
mance between both liver function status as an indi-
cator of performance stability.  GFRNMR showed the 
lowest difference in performance between preserved 
and reduced liver function as to precision (-0.5  ml/
min/1.73  m2), median bias (-3  ml/min/1.73  m2), and 
P10 accuracy (0.99%) (Table  2, last column). In line 
with the lowest difference observed between median 
bias in both liver disease severity groups,  GFRNMR 
showed a marginal under- and overestimation of GFR 
in preserved and reduced liver function (-2 and 1  ml/
min/1.73  m2, respectively) (Table  2 and Fig.  3A). The 
creatinine-based equations showed the highest differ-
ence in all cases (Table  2 and Table S1, last columns). 
eGFRcr-cys(ASR) and eGFRcr-cys(AS) showed the low-
est difference in P30 accuracy (Table  2, last column), 
and eGFRcr-cys(AS) showed the lowest difference in 
P20 and P15 accuracy (Table S1, last column).

Table 1 (continued)

Characteristics Na Preserved Liver 
Function,b N = 143

Reduced Liver 
Function,cN = 60

p-valued q-valuee

Child–Pugh Class, n / N (%) 203  < 0.001  < 0.001
 Class A 143 / 143 (100.0%) 6 / 60 (10.0%)

 Class B 0 / 143 (0.0%) 45 / 60 (75.0%)

 Class C 0 / 143 (0.0%) 9 / 60 (15.0%)

Serum Creatinine (mg/dL), Mean (SD) 203 1.36 (0.67) 1.14 (0.61)  < 0.001 0.002
Serum Cystatin C (mg/L), Mean (SD) 203 1.60 (0.65) 1.68 (0.78) 0.8 0.9

Serum albumin (g/dL), Mean (SD) 202 4.20 (0.41) 3.24 (0.58)  < 0.001  < 0.001

(Missing, n) 0 1

mGFR,f Mean (SD) 203 62.5 (26.5) 59.9 (31.5) 0.3 0.4

eGFRcr(ASR),f Mean (SD) 203 61.6 (26.9) 77.3 (31.2)  < 0.001 0.002
eGFRcr(AS),f Mean (SD) 203 64.3 (27.1) 80.1 (30.9)  < 0.001 0.002
eGFRcr‑cys(ASR),f Mean (SD) 203 54.5 (24.2) 61.5 (28.9) 0.10 0.2

eGFRcr‑cys(AS),f Mean (SD) 203 56.8 (25.0) 63.3 (29.6) 0.2 0.2

GFRNMR,f Mean (SD) 203 60.3 (23.5) 59.2 (25.4) 0.7 0.8

Abbreviations: AS age and sex, ASR age, sex and race, BMI body mass index, BP blood pressure, CKD chronic kidney disease, CP class Child–Pugh class, DBP diastolic 
blood pressure, eGFR estimated glomerular filtration rate, MELD Model for End-stage Liver Disease, mGFR measured glomerular filtration rate, SBP systolic blood 
pressure, SD standard deviation
a Two (out of 205) samples had no assigned Child–Pugh (CP) score and were therefore omitted from the calculations (see Fig. 1); bPreserved Liver Function, defined 
as CP class A without ascites; cReduced Liver Function, defined as CP class A with ascites, CP class B or CP class C;dStatistical tests performed: chi-square test of 
independence, Wilcoxon rank-sum test, Fisher’s exact test; eBenjamini & Hochberg correction for multiple testing; f ml/min/1.73  m2 of body-surface area
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CKD Staging performance by eGFR equations
Proper staging of renal dysfunction (defined accord-
ing to the Kidney Disease Outcomes Quality Initia-
tive (KDOQI) guidelines; [35]) is essential for accurate 
prognosis and patient management. With this in mind, 
performance of eGFR equations to assign a correct 
CKD stage (G1, G2, G3a, G3b, G4 or G5), compared to 
mGFR-based CKD staging as reference, was evaluated in 
the whole cohort and in subgroups defined according to 
hepatic or renal dysfunction (i.e., preserved or reduced 
liver function, MELD score ≤ or > 15, absence or presence 
of ascites, mGFR ≥ or < 60 ml/min/1.73  m2) (Table 3).

In the overall population,  GFRNMR showed the best 
CKD staging (120/205 [58.5%] correct CKD stages), as 
well as a balanced proportion of under- and overesti-
mation of CKD severity in case of incorrect CKD stag-
ing (37/205 [18.1%] and 48/205 [23.4%], respectively) 
(Table 3). While the race-free CKD-EPI equations (“AS”) 
slightly improved CKD staging compared to their “ASR” 
counterparts, they were both biased toward either 

underestimating (eGFRcr) or overestimating (eGFRcr-
cys) CKD severity (Table 3).

In subgroup analyses, the best CKD staging was 
achieved by  GFRNMR and eGFRcr-cys(AS) (Table  3). In 
contrast, creatinine-based equations were the least per-
formant, especially in subgroups with severe liver dys-
function (Table 3). As for the overall population,  GFRNMR 
showed a balanced proportion of under- and overestima-
tion of CKD severity in most subgroups, except for renal 
dysfunction. Here,  GFRNMR overestimated CKD severity 
in 33/96 (34.4%) patients with mGFR ≥ 60  ml/min/1.73 
 m2 compared to only 6/96 (6.2%) underestimates of CKD 
severity in these patients. In patients with reduced renal 
function (mGFR < 60  ml/min/1.73  m2), all equations 
tended to either overestimate (eGFRcr-cys) or underes-
timate (eGFRcr,  GFRNMR to a lesser extent) CKD sever-
ity. Noteworthily, the creatinine-based equations were 
the most biased equations toward underestimating CKD 
severity in patients with reduced liver function and in 
patients with ascites (Table 3).

Table 2 KPIs overall (n = 205) and by liver function (preserved liver function, n = 143; reduced liver function, n = 60). (To be placed 
after ‘Results’ subsection ‘Overall performance of eGFR equations’)

Abbreviations: IQR interquartile range, KPI key performance indicator, PLF preserved Liver Function; RLF Reduced Liver Function
a Precision defined as the interquartile range (IQR) of the difference to mGFR (ml/min/1.73  m2); bBias defined as the median difference to mGFR (ml/min/1.73  m2); cP10 
and P30 accuracy defined as the percentage of samples within an error tolerance to mGFR of 10% (P10) or 30% (P30) (%). Numbers in brackets show the bootstrapped 
95% confidence intervals (n = 1000). Bold marked values show the best value for the given KPI over all five equations in the given subgroup. Symbol * indicates 
statistical significance (any p‐values < 0.05) in the pairwise tests against  GFRNMR for each KPI. The last column shows the difference between reduced and preserved 
liver function in the given KPI for each equation as a measure of disparity

KPI Equation Overall Preserved Liver Function (PLF) Reduced Liver Function (RLF) Difference in KPI 
between RLF and 
PLF

Precision:  IQRa eGFRcr(ASR) 19 [12–22]* 12.5 [10.5–16.5] 29.25 [23–35.5]* ‑16.75 [‑23.5–‑8.01]

eGFRcr(AS) 19 [12–22.97]* 13 [10.5–16] 31.5 [24–37.74]* ‑18.5 [‑25.25–‑10.26]

eGFRcr‑cys(ASR) 14 [12–17] 10 [9–12.5] 15.25 [10.25–21.24] ‑5.25 [‑10.75–0.75]

eGFRcr‑cys(AS) 13 [10–15] 11 [9–14] 13.5 [9–21] ‑2.5 [‑10.25–2.5]

GFRNMR 14 [12–16] 14 [11–16] 14.5 [10–22.49] -0.5 [-8.99–4]
Bias: median  biasb eGFRcr(ASR) 1 [-1–3]* ‑3 [‑5–‑1] 13 [9–25]* ‑16 [‑28–‑11]

eGFRcr(AS) 4 [2–7]* 1 [-2–2]* 16.5 [12–28.99]* ‑15.5 [‑28–‑10.01]

eGFRcr‑cys(ASR) ‑6 [‑8–‑5]* ‑7 [‑10–‑6]* 2 [‑2.5–4.5]* ‑9 [‑13–‑4.5]

eGFRcr‑cys(AS) ‑4 [‑6–‑3]* ‑6 [‑7–‑4]* 2 [0–5]* ‑8 [‑11–‑5]

GFRNMR -1 [-3–1] ‑2 [‑4–0] 1 [-3.5–2.5] -3 [-5–2]
Accuracy:  P10c eGFRcr(ASR) 35.61 [29.27–41.95] 41.96 [33.57–49.65] 21.67 [11.67–31.67] 20.29 [6.63–32.55]

eGFRcr(AS) 38.54 [31.22–44.88] 46.15 [37.76–53.85] 21.67 [11.67–31.67] 24.49 [10.73–37.28]

eGFRcr‑cys(ASR) 31.22 [24.88–37.07] 30.77 [23.08–38.46] 31.67 [20–43.33] -0.9 [-15.52–13.29]
eGFRcr‑cys(AS) 35.12 [28.29–41.45] 35.66 [27.97–43.36] 33.33 [21.67–45] 2.33 [‑12.02–16.09]

GFRNMR 41.95 [35.12–48.29] 42.66 [34.27–51.05] 41.67 [30–55] 0.99 [-13.74–15.35]
Accuracy:
P30c

eGFRcr(ASR) 75.12 [69.28–81.46]* 88.81 [83.22–93.71] 45 [33.33–56.67]* 43.81 [30.48–57.04]

eGFRcr(AS) 74.15 [68.29–80.49]* 87.41 [82.52–92.31] 45 [33.33–56.67]* 42.41 [29.35–55.64]

eGFRcr‑cys(ASR) 85.85 [81.46–90.72] 88.81 [83.22–93.71] 78.33 [66.67–88.33] 10.48 [-0.64–22.57]
eGFRcr‑cys(AS) 85.85 [80.99–90.24] 88.81 [83.22–93.71] 78.33 [66.67–88.33] 10.48 [-0.48–22.58]
GFRNMR 83.41 [78.54–88.78] 87.41 [82.52–92.99] 73.33 [61.67–85] 14.08 [1.71–26.61]
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Fig. 2 Key performance indicators (KPI) of eGFR equations in the whole dataset (n = 205). KPI evaluated were: median bias of eGFR to mGFR (A) 
and accuracy of eGFR measured as the percentage of samples with eGFR within 30% (P30) (B), 20% (P20) (C), and 15% (P15) (D) of mGFR. Error bars 
indicate bootstrapped 95% confidence interval (n = 1000). Dots represent the KPI of all data points. Each eGFR equation is represented by a different 
color, as indicated
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Fig. 3 Key performance indicators (KPI) for each eGFR equation stratified by liver function (preserved vs. reduced). KPI evaluated were: median 
bias of eGFR to mGFR (A) and accuracy of eGFR measured as the percentage of samples with eGFR within 30% (P30) (B), 20% (P20) (C), and 15% 
(P15) (D) of mGFR. Error bars show the bootstrapped 95% confidence intervals (n = 1000). Solid lines of the error bars indicate the performance 
in the subgroup of patients with preserved liver function, while dashed lines indicate performance in patients with reduced liver function. Each 
eGFR equation is represented by a different color, whereas the tone of the color indicates the family of equations, with purple and pink encoding 
for creatinine‑only equations [eGFRcr(ASR) and eGFRcr(AS)], dark and bright green encoding for creatinine and cystatin C‑containing equations 
[eGFRcr‑cys(ASR) and eGFRcr‑cys(AS)], and blue encoding for the  GFRNMR equation
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Discussion
In patients who suffer from CLD, renal impairment has 
significant implications, not only as a predictor of sur-
vival in the MELD score, yet also on drug dosing, inter-
ventions, and assessment for OLT. The very nature of 
CLD with distorted creatinine metabolism and ascites-
associated hemodynamic instability renders creati-
nine-based GFR estimation unreliable to determine 
renal insufficiency [5, 10, 13, 36]. This study therefore 
undertook a performance comparison of  GFRNMR and 
the most widely used eGFR equations in a population 
of patients with CLD with mGFR as gold standard 
reference.

When considering the whole CLD population,  GFRNMR 
showed the least median bias. In contrast, eGFR equa-
tions incorporating both creatinine and cystatin C 

(eGFRcr-cys) underestimated GFR, while creatinine-
only eGFR equations overestimated GFR. Accuracy of 
 GFRNMR was superior to that of eGFRcr equations and 
comparable to that of eGFRcr-cys equations. In patients 
with severe liver dysfunction, the superiority of  GFRNMR 
over eGFRcr was further confirmed, and  GFRNMR showed 
the smallest difference in bias between patients with 
reduced and preserved liver function, demonstrating its 
robustness regardless of liver disease severity. Determi-
nation of CKD stage in CLD is of major importance to 
determine if a combined hepatic and kidney transplanta-
tion should be performed. Clinical decision making based 
on a more accurate and less biased eGFR equation like 
 GFRNMR, irrespective of the degree of liver impairment, is 
essential to reliably evaluate the renal functional reserve 
(RFR) and better predict patient recovery after OLT.

Fig. 4 Accuracy levels of eGFR equations in patients with preserved and reduced liver function. Percentage of samples with eGFR within varying 
error tolerance compared to mGFR, for each eGFR equation among patients with preserved (A) and reduced (B) liver function. Each eGFR equation 
is represented by a different color. Red dashed vertical lines indicate error tolerance cutoffs at 10% (P10), 15% (P15), 20% (P20) and 30% (P30) (from 
left to right, respectively). Panel (B) demonstrates the inferior accuracy of creatinine‑only eGFR equations in patients with reduced liver function
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Our findings confirm previous works demonstrating 
that creatinine-based equations significantly overestimate 
mGFR [5, 13, 15, 16, 36], and validate the benefit of cysta-
tin C as a biomarker of renal function in CLD [15, 16, 37]. 
Hemodynamic instability seen in ascites, in combination 
with an altered creatinine physiology and muscle mass 
catabolism seen in liver failure, is a likely driver of the 
unreliability of eGFRcr in our CLD cohort. The addition 
of cystatin C and further biomarkers in the NMR con-
stellation (valine, myo-inositol) seem to improve the bias 
and accuracy of GFR estimations in decompensated liver 

failure. Similar results were obtained by De Souza et al. in 
subgroup analyses on comparing eGFR equations based 
on creatinine to equations based on cystatin C alone or 
in combination with creatinine, in patients with increas-
ing ascites severity and those with a MELD score > 15 
[15]. Furthermore, these results are in accordance with 
other studies suggesting that patients with ascites are 
more likely to have an overestimation of their GFR with 
creatinine-based eGFR [13], and that cystatin C corre-
lates with GFR in end-stage liver failure, giving a diagnos-
tic advantage in the detection of lower GFR in patients 

Fig. 5 Scatterplot of estimated GFR (eGFR) versus measured GFR (mGFR) according to liver function. Estimated GFR calculated by each eGFR 
equation (A-E) is shown relative to the respective mGFR. The solid line indicates identity. Dashed black lines indicate P30 boundaries (values within 
identity and the dashed borders are considered within 30% of mGFR). Red dots indicate patients with reduced liver function (Child–Pugh Class A 
with Ascites, or Child–Pugh Class B, or Child–Pugh Class C; n = 60). Green dots indicate patients with preserved liver function (Child–Pugh Class A 
without Ascites; n = 143)
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Table 3 eGFR equation performance in enabling accurate CKD staging (G1, G2, G3a, G3b, G4, G5). (To be placed after ‘Results’ 
subsection ‘CKD Staging performance by eGFR equations’)

a Correct CKD staging marks the number of samples an equation correctly predicted CKD staging (against staging by mGFR), and symbol * indicates statistical 
significance (any p‐values < 0.05) in pairwise McNemar’s tests of  GFRNMR against each CKD-EPI equation; bml/min/1.73  m2. Numbers in parenthesis represent 
corresponding percentage of total patients within the given subgroup. Additionally, when CKD staging was not correctly predicted, under- and overestimation of CKD 
severity (corresponding to over- and underestimation of eGFR, respectively) was evaluated. Percentages sum up to 100% over all three columns

Subgroup Samples (N) Equation Correct CKD Staginga Error in CKD Staging

Underestimation of CKD 
severity

Overestimation 
of CKD severity

Overall 205 eGFRcr(ASR) 98 (47.8%) 64 (31.2%) 43 (21.0%)

eGFRcr(AS) 104 (50.7%) 74 (36.1%) 27 (13.2%)

eGFRcr‑cys(ASR) 104 (50.7%) 23 (11.3%) 78 (38.0%)

eGFRcr‑cys(AS) 109 (53.2%) 31 (15.1%) 65 (31.7%)

GFRNMR 120 (58.5%) 37 (18.1%) 48 (23.4%)

Preserved liver function 143 eGFRcr(ASR) 78 (54.5%) 26 (18.2%) 39 (27.3%)

eGFRcr(AS) 84 (58.7%) 34 (23.8%) 25 (17.5%)

eGFRcr‑cys(ASR) 67 (46.9%) 8 (5.5%) 68 (47.6%)

eGFRcr‑cys(AS) 71 (49.7%) 14 (9.7%) 58 (40.6%)

GFRNMR 85 (59.4%) 22 (15.4%) 36 (25.2%)

Reduced liver function 60 eGFRcr(ASR) 20 (33.3%)* 36 (60.0%) 4 (6.7%)

eGFRcr(AS) 20 (33.3%)* 38 (63.3%) 2 (3.4%)

eGFRcr‑cys(ASR) 35 (58.3%) 15 (25.0%) 10 (16.7%)

eGFRcr‑cys(AS) 36 (60.0%) 17 (28.3%) 7 (11.7%)

GFRNMR 33 (55.0%) 15 (25.0%) 12 (20.0%)

MELD ≤ 15 148 eGFRcr(ASR) 78 (52.7%) 37 (25.0%) 33 (22.3%)

eGFRcr(AS) 80 (54.1%) 46 (31.1%) 22 (14.8%)

eGFRcr‑cys(ASR) 73 (49.3%) 12 (8.1%) 63 (42.6%)

eGFRcr‑cys(AS) 76 (51.4%) 20 (13.5%) 52 (35.1%)

GFRNMR 87 (58.8%) 26 (17.6%) 35 (23.6%)

MELD > 15 49 eGFRcr(ASR) 18 (36.7%) 21 (42.9%) 10 (20.4%)

eGFRcr(AS) 22 (44.9%) 22 (44.9%) 5 (10.2%)

eGFRcr‑cys(ASR) 26 (53.1%) 9 (18.4%) 14 (28.5%)

eGFRcr‑cys(AS) 28 (57.1%) 9 (18.4%) 12 (24.5%)

GFRNMR 28 (57.1%) 9 (18.4%) 12 (24.5%)

Ascites not present 163 eGFRcr(ASR) 86 (52.8%) 35 (21.5%) 42 (25.7%)

eGFRcr(AS) 93 (57.1%) 43 (26.4%) 27 (16.5%)

eGFRcr‑cys(ASR) 80 (49.1%) 11 (6.7%) 72 (44.2%)

eGFRcr‑cys(AS) 84 (51.5%) 18 (11.1%) 61 (37.4%)

GFRNMR 97 (59.5%) 26 (16.0%) 40 (24.5%)

Ascites present 42 eGFRcr(ASR) 12 (28.6%)* 29 (69.0%) 1 (2.4%)

eGFRcr(AS) 11 (26.2%)* 31 (73.8%) 0 (0.0%)

eGFRcr‑cys(ASR) 24 (57.1%) 12 (28.6%) 6 (14.3%)

eGFRcr‑cys(AS) 25 (59.5%) 13 (31.0%) 4 (9.5%)

GFRNMR 23 (54.8%) 11 (26.2%) 8 (19.0%)

mGFR ≥  60b 96 eGFRcr(ASR) 56 (58.3%) 21 (21.9%) 19 (19.8%)

eGFRcr(AS) 59 (61.5%) 24 (25.0%) 13 (13.5%)

eGFRcr‑cys(ASR) 53 (55.2%) 4 (4.2%) 39 (40.6%)

eGFRcr‑cys(AS) 61 (63.5%) 6 (6.2%) 29 (30.3%)

GFRNMR 57 (59.4%) 6 (6.2%) 33 (34.4%)

mGFR <  60b 109 eGFRcr(ASR) 42 (38.5%)* 43 (39.4%) 24 (22.1%)

eGFRcr(AS) 45 (41.3%)* 50 (45.9%) 14 (12.8%)

eGFRcr‑cys(ASR) 51 (46.8%) 19 (17.4%) 39 (35.8%)

eGFRcr‑cys(AS) 48 (44.0%) 25 (23.0%) 36 (33.0%)

GFRNMR 63 (57.8%) 31 (28.4%) 15 (13.8%)
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with liver failure [38]. These results support the view that 
the use of creatinine-based equations to determine GFR 
in CLD is limited and tends to worsen in correlation with 
the degree of severity of liver disease. Although the addi-
tion of cystatin C can improve the accuracy and bias of 
estimation, further addition of myo-inositol and valine 
in  GFRNMR appears to further improve the estimation of 
GFR.

To our knowledge, this is the first study to examine 
NMR-derived GFR estimations in CLD patients. The 
strengths of this study were the use of gold standard ref-
erence for GFR and its multicenter nature. Our study 
presents a few limitations. First, only 42/205 (20.5%) 
enrolled patients were documented as having ascites, 
which resulted in an imbalanced group of patients with 
reduced liver function (n = 60) compared to those with 
preserved liver function (n = 143). Second, there were 
some differences in ascites diagnostic criteria between 
both centers that needed retrospective CP scoring har-
monization. Although this allowed a uniformized CP 
scoring, it might have biased clinical CP class assign-
ments as our measure of liver dysfunction. However, 
our findings were confirmed by analyses according to 
MELD score or ascites status, limiting overall risk of 
bias. Third, despite the international nature of this study, 
only five patients were self-declared as black. As a result, 
this study group may not reflect the racial diversity seen 
in most liver centers in the USA and limit our findings 
to Caucasian patient populations. Fourth, our sample 
set comprised only n = 10 patients with GFR < 30  mL/
min/1.73  m2. Thus, further studies are warranted in 
patients in CKD stages G4/5 to fully validate the clinical 
value  GFRNMR in patients with very low GFR.

Conclusions
Creatinine-based equations are inaccurate in estimating 
GFR in patients with chronic liver disease. Despite the 
incorporation of cystatin C into the equation, errors are 
still seen especially with regards to accurate staging of 
CKD and in patients with more advanced liver disease. 
This study demonstrated that additional metabolites 
measured by NMR spectroscopy improve on shortfalls 
of creatinine- and cystatin C-based equations, particu-
larly with regards to accuracy and bias. Since more than 
a decade, diagnostic NMR spectroscopy as such is readily 
available in nationally operating central clinical reference 
laboratories for low-density lipoprotein particle quan-
tification in advanced cardiovascular risk assessment. 
Hence,  GFRNMR can also be available soon for assessment 
of renal functional reserve in patients with advanced 
chronic liver disease in conventional overnight services.
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