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Synopsis
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Di�usion-encoding gradient waveforms are a key parameter of experimental design in di�usion magnetic resonance imaging. Their optimization is important for e.g. maximizing the e�ciency in
B-tensor encoding, or improving the sensitivity and speci�city to microstructure parameters of biophysical models. The main challenge in optimizing gradient waveforms and trajectories is the large
dimension of the search space and the constraints associated with physical and physiological limitations. Here we propose an original piecewise polynomial representation, which natively enforces the
linear constraints that arise from refocusing and regularity. We illustrate the basis on B-tensor encoding and Monte-Carlo simulation of the di�usion signal.

Introduction
Gradient waveforms in di�usion MRI play a central role to encode di�usion properties in the spin-echo signal attenuation. As a generalization to the pulsed gradient proposed in the seminal work of
Stejskal and Tanner , several studies have shown the interest to re-design the time-varying encoding gradient . The motivation to change the gradient waveform can be practical, e.g. for the

reduction of eddy-currents induced distortions ; this is also essential to probe particular microstructural properties with di�usion MRI. In biophysical modeling, the gradient waveforms  and
trajectories  can be optimized to increase the sensitivity to microstructure parameters of interest. For q-space trajectory imaging with B-tensor encoding, the e�ciency of the gradient trajectories can
be optimized, to obtain the maximum di�usion ponderation in a given echo time , with mitigation of the gradient duty cycle and concomitant (Maxwell) gradients.

Optimizing gradients is complex due to the in�nite dimension of the space of admissible gradient waveforms. Besides, working with a discrete representation of the gradient usually requires
interpolation when using the gradient for simulation or implementation in an MRI pulse sequence, which may introduce errors (partial refocusing or gradient slewrate over�ow). To overcome some of
these limitations, some studies have introduced continuous representations, either based on polynomials  or sines and cosines .

In this work, we propose a piecewise polynomial representation, which natively embeds the gradient waveforms requirements that can be expressed as linear constraints. We illustrate the usefulness
of this compact representations for B-tensor encoding and for Monte-Carlo simulations.

Methods

We created a family of $K$ functions , in order to represent the x-, y- and z-components of . The functions are de�ned as piecewise polynomials in  intervals

 (such that  and ). We used scaled and shifted Bernstein polynomials up to order  as building blocks for these functions, for the convenient relationship they o�er between

values (and derivatives) at both ends of the intervals and the coe�cients.

A number of constraints can be directly transcribed into linear constraints on the Bernstein coe�cients in every interval:
• 

• 

• 

•  and  are continuous at each node 

• the gradient is symmetric: .

Once solved, these constraints give a family of functions; we orthogonalize them for the dot product  so that we obtain an orthonormal basis of functions.

Use case scenario 1: B-tensor encoding

Unlike for linear encoding, optimizing the waveforms for spherical or planar B-tensor encoding is non-trivial since some orthogonality constraints need to be respected between gradient components.

The B-tensor is de�ned  as . When the components  are represented our orthogonal basis with coe�cients , the B-tensor simply rewrites as

. The problem of �nding a gradient trajectory with maximized b-value (trace of the B_matrix) consists in solving a constrained optimization problem with a simple cost function.

Use case scenario 2: Monte-Carlo simulations

Monte-Carlo simulations is one of the methods of choice in order to study the di�usion signal in complex geometries. By observing that the accumulated phase for each spin is linear with the gradient
waveform , we have an e�cient method to generate the signal for any gradient trajectory, once the phase accumulated was computed for the basis functions.

Results
We report on Fig. 1 the basis generated for piecewise constant functions, with linear transitions between ramps. This illustrates that the framework is general and naturally encompasses pulsed
gradients. We also report a piecewise polynomial basis, with  chunks and maximum order . The original number of degrees of freedom is 35, but this reduces to 5 once all linear
constraints reported above are ful�lled.

Next, we show how the gradient trajectories can be optimized to obtain the maximum b-value for a spherical B-tensor encoding; this is compared to the original method using discrete
representation .

Last, we demonstrate the use of the framework in the context of Monte-Carlo simulation in a complex geometry, modeling a brain cell . In particular, we searched for gradient trajectories with
matched spherical B-tensor and ms/µm  minimizing (resp. maximizing) the di�usion signal. This paves the way to the design of family of gradients specialized to certain geometries.

Discussion and conclusion
We introduced a piecewise polynomial function basis for the representation of the di�usion-encoding gradient waveforms. The basis is useful since it provides a continuous representation and
naturally encodes common constraints on the waveforms. Two applications of the basis are illustrated, for the constrained optimization of gradient waveforms. First to �nd e�cient waveforms for
B-tensor encoding; second, to obtain new and speci�c contrast for a given cell geometry. We think that this framework, with the low dimension representation of gradient trajectories it o�ers, opens
new possibilities to the complex problem of gradient waveforms optimization.
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Figure 1. Example of two bases of gradient waveforms (arbitrary y-axis unit) for two gradient-encoding blocks of 45ms separated by 10ms dedicated to play the refocusing RF pulse (gray area). On the
left, a solution is given for piecewise constant chunks separated with 2ms linear ramps; separation between chunks and ramps are indicated by dashed vertical lines. On the right, the solution

corresponds to piecewise polynomial gradients of order 3 with  smooth transitions between the chunks.

Figure 2. Gradient trajectories (x-, y- and z-gradients are represented in red, green and blue respectively) for spherical B-tensor encoding. The waveforms are optimized under constraints to maximize
the trace of the B-tensor ( mT/m in each axis). The basis (left) is de�ned on 8 chunks with order 3, for a total of 15 degrees of freedom per axis. This is versatile enough to compare to the

optimized solution obtained with NOW and 100 timesteps.

Figure 3. Example of a complex geometry, modeling a brain cell. The gradient trajectories reported next correspond to minimizing (left) or maximizing (right) the response signal, for the same target
spherical B-tensor and b-value 3ms/µm .
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