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transmission landscapes in a diversity 
of environments
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Aung Myint Thu5, Jade Dean Rae5,6,7, Laurent Lehot1, Sokhna Dieng1, Gilles Delmas5,7, François Nosten5,7, 
Jean Gaudart8 and Jordi Landier1,5 

Abstract 

Background In the Greater Mekong Subregion, case–control studies and national-level analyses have shown 
an association between malaria transmission and forest activities. The term ‘forest malaria’ hides the diversity of eco-
systems in the GMS, which likely do not share a uniform malaria risk. To reach malaria elimination goals, it is crucial 
to document accurately (both spatially and temporally) the influence of environmental factors on malaria to improve 
resource allocation and policy planning within given areas. The aim of this ecological study is to characterize the asso-
ciation between malaria dynamics and detailed ecological environments determined at village level over a period 
of several years in Kayin State, Myanmar.

Methods We characterized malaria incidence profiles at village scale based on intra- and inter-annual varia-
tions in amplitude, seasonality, and trend over 4 years (2016–2020). Environment was described independently 
of village localization by overlaying a 2-km hexagonal grid over the region. Specifically, hierarchical classification 
on principal components, using remote sensing data of high spatial resolution, was used to assign a landscape 
and a climate type to each grid cell. We used conditional inference trees and random forests to study the association 
between the malaria incidence profile of each village, climate and landscape. Finally, we constructed eco-epidemi-
ological zones to stratify and map malaria risk in the region by summarizing incidence and environment association 
information.

Results We identified a high diversity of landscapes (n = 19) corresponding to a gradient from pristine to highly 
anthropogenically modified landscapes. Within this diversity of landscapes, only three were associated with malaria-
affected profiles. These landscapes were composed of a mosaic of dense and sparse forest fragmented by small 
agricultural patches. A single climate with moderate rainfall and a temperature range suitable for mosquito presence 
was also associated with malaria-affected profiles. Based on these environmental associations, we identified three 
eco-epidemiological zones marked by later persistence of Plasmodium falciparum, high Plasmodium vivax incidence 
after 2018, or a seasonality pattern in the rainy season.

Conclusions The term forest malaria covers a multitude of contexts of malaria persistence, dynamics and popula-
tions at risk. Intervention planning and surveillance could benefit from consideration of the diversity of landscapes 
to focus on those specifically associated with malaria transmission.
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Background
The Greater Mekong Subregion (GMS) has made pro-
gress towards malaria elimination during the past 
decades. Between 2000 and 2016, the number of 
malaria cases declined sevenfold, dropping from approxi-
mately 2,400,000 cases to 325,000 due to improvements 
in early access to diagnosis and treatment, and targeted 
interventions for the most affected populations (i.e. 
migrant workers and displaced persons) [1–3]. These 
interventions were focused on Plasmodium falciparum 
to prevent the spread of multidrug-resistant parasite lin-
eages [4]. The GMS now aims to eliminate all forms of 
malaria [1].

In the GMS, studies based on aggregated surveil-
lance data associated malaria transmission with forested 
areas [5, 6]. Individual-scale studies consistently identi-
fied occupation-related risks factors, such as male sex, 
age over 15  years, or ‘going into the forest’ [7, 8]. ‘For-
est malaria’ is often reported to be responsible for the 
remaining foci of transmission in the region, and is con-
sidered an obstacle to malaria elimination [9–11]. How-
ever, the term ‘forest’ is generic and covers a diversity 
of ecosystems in the GMS. Studies do not usually char-
acterize the diversity and health of ‘forest environments’ 
to which individuals are exposed with respect to biodi-
versity, structure (size, fragmentation), seasonal variabil-
ity, level of anthropogenic disturbance or conservation 
status.

Malaria transmission requires the presence of specific 
vectors and a sufficient density of human hosts over long 
enough periods of time to allow the parasite to complete 
its life cycle. It is therefore likely that the risk of malaria 
is not uniform across different types of forested ecosys-
tems in the GMS. Activities related to these ecosystems 
(e.g. farming, rubber tapping, hunting, collecting forest 
products, logging, mining, patrolling) expose individuals 
to diverse environments, at different times.

As the incidence of malaria continues to decrease, 
the targeting of programmed or reactive interventions 
becomes increasingly relevant. According to the  World 
Health Organization guidelines, to be most effective, 
interventions must be guided by malaria stratification, 
taking into account the intensity of transmission and 
the receptivity of ecosystems [9]. Malaria stratification 
is often only based on clinical incidence data, such as 
the annual parasite index. Receptivity of an ecosystem 
can be quantified  through entomological studies, but 
these require significant human and financial resources. 
Ecosystems have to harbour a combination of suitable 

environment conditions for vector development and 
human presence to be receptive. The study of environ-
ments and associated human activities could therefore 
provide proxies [10]. It is crucial to determine accurately 
the influence of environmental factors on the risk of 
malaria transmission to improve stratification, resource 
allocation and effectiveness of elimination efforts.

Within the GMS, Myanmar accounts for 90% of 
malaria cases and remains the country with the highest 
malaria burden. In 2016, the countrywide incidence of 
malaria reached 0.45 cases per 1000 individuals at risk. 
However, Myanmar exhibits high regional and local spa-
tial heterogeneity, with local foci of high malaria inci-
dence persisting in mountainous-forest borderlands, 
such as Karen/Kayin State [1, 12]. In response to this het-
erogeneity, thorough malaria stratification is particularly 
relevant. We thus aimed to study and map the heteroge-
neity of malaria dynamics according to its relationship 
with environmental factors. We also aimed to improve 
malaria stratification by examining detailed descrip-
tions of malaria incidence together with information on 
diverse environments in Karen/Kayin State.

Methods
Study design and setting
Karen/Kayin State is largely covered by the north–south-
oriented, forested, Dawna range, which reaches an alti-
tude of 2080  m above sea level. Settlements are located 
on the slopes and in the valleys (i.e. agricultural villages, 
refugee or military camps) of this mountain range. The 
density of villages is higher on the plain to the west of the 
mountains [11].

The Malaria Elimination Task Force (METF) pro-
gram was initiated in 2014 in this region to eliminate 
artemisinin-resistant P. falciparum. We use the term 
‘METF region’ to represent the area where the pro-
gram was implemented, which covers four townships 
in Karen/Kayin State: Myawaddy, Kawkareik, Hlaing-
bwe and Hpapun [13]. This program provided access 
to early diagnosis and treatment through community-
based malaria posts (MP) in 95% of the villages identi-
fied in the target region by 2016. Cases of fever were 
systematically tested by a Plasmodium falciparum-
Plasmodium vivax rapid diagnostic test (SD Bioline Ag 
P.f./P.v.) at the MPs, which send weekly reports speci-
fying the number of diagnosed cases, by age group and 
gender, of P. falciparum and P. vivax to METF [13]. 
In addition, mass drug administration (MDA) was 
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conducted in villages where real-time quantitative pol-
ymerase chain reaction surveys detected high malaria 
prevalence [12, 13]. During the first year of the METF 
program (May 2014–April 2015), the incidence of P. 
falciparum was 39 cases per 1000 person-years, while 
the incidence of P. vivax was 63 cases per 1000 person-
years [12]. Following 4 years of program implementa-
tion, there was a significant reduction in the incidence 
of P. falciparum and P. vivax in the four townships. 
Specifically, P. falciparum incidence decreased by 97% 
(1 case per 1000 person-years), and P. vivax incidence 
decreased by 71% (18.5 cases per 1000 person-years) in 
the period from May 2019 to April 2020.

The first aim of this ecological study was to describe 
ecological landscapes and climate diversity in Karen/
Kayin State. We described forest landscapes at the 
METF region level. We then focused on a single town-
ship (corresponding to Hpapun/Mutraw administra-
tive township; hereafter ‘Northern Township’) where 
malaria incidence was highest [12]. Second, we con-
ducted an association study between village incidence 
profiles (for P. falciparum and P. vivax), MDA, cli-
mate and distance between villages and landscapes at 
the METF region scale and at the Northern Township 
scale. Based on this association study, we established a 
map of eco-epidemiological zones in the METF region, 
i.e. described climate and landscapes that likely drive 
local heterogeneity in malaria dynamics.

Data
Outcome: malaria incidence profiles
This study was based on previous work that described 
malaria incidence heterogeneity in Karen/Kayin State 
from March 2016 to February 2020 for 662 villages [14]. 
Based on P. falciparum and P. vivax weekly incidence 
reported by MPs, villages sharing similar dynamics were 
grouped in P. falciparum and P. vivax ‘incidence pro-
files’. Incidence profiles were determined by partition-
ing around medoids clustering combined with dynamic 
time warping distance  following functional time series 
smoothing. The methodology is described in this earlier 
study [14].

Eleven P. falciparum and 11 P. vivax incidence profiles 
were identified in this previous work [14] and are used 
as the outcomes in the present study. Plasmodium fal-
ciparum incidence profiles distinguished villages by the 
amplitude of the incidence (Very low, Low vs. Hotspot) 
and the occurrence of seasonal sporadic annual peaks 
(Rainy 2017, Rainy 2018, Cold 2018–2019, etc.). Plas-
modium vivax incidence profiles also separated villages 
according to incidence amplitude (Very low, Low, vs. Per-
sistent), but also by intra-annual patterns with one or two 
annual peaks, their seasonality and tendency (Cold, Rainy 
increasing, Rainy decreasing, etc.) (Fig. 1). We named the 
P. falciparum or P. vivax incidence profiles that were dif-
ferent from the Very low clusters (i.e. that grouped the 10 
other clusters) ‘malaria-affected incidence profiles’.

Fig. 1 Malaria incidence profiles. A Plasmodium falciparum and B Plasmodium vivax incidence profiles of the 662 villages. Coloured lines correspond 
to the central village (medoid) of each cluster. Grey lines represent functional incidence rate of all villages included in the cluster across study 
period. This original figure presents data and results published previously [14]
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Malaria-affected incidence profiles (n = 123 for P. fal-
ciparum and n = 205 for P. vivax) were grouped in the 
Northern Township of Karen/Kayin State, and along the 
Thailand-Myanmar border for P. vivax (Additional file 1: 
Fig. S1) [14].

Environmental data
We described the climate and landscape over the entire 
region regardless of the location of the villages. To 
characterize environment systematically, a 2-km-wide 
hexagonal grid was overlaid over the study region and 
environmental raster data were extracted for each grid 
cell.

Climate
Meteorological information was obtained using Google 
Earth Engine and the rgee package to access MODIS data 
(MODIS/006/MOD11A2) for day and night land surface 
temperature (at about 1-km spatial resolution) and Cli-
mate Hazards Group InfraRed Precipitation with Station 
(CHIRPS) data (UCSB-CHG/CHIRPS/DAILY) for daily 
rainfall (at about 5.5-km spatial resolution) [15, 16]. The 
2014–2020  time series (i.e. corresponding to the METF 
project period) obtained for each cell were averaged 
as monthly values and a principal component analysis 
(PCA) followed by a hierarchical ascendant clustering 
(HAC) was applied to identify cells sharing similar cli-
mates. Principal components explaining 99% of the vari-
ance were selected in the HAC, assuming that residual 
information was noise. Information on temperature 
for June, July and August was excluded from the PCA 
because of too many missing data points due to cloud 
cover during the rainy season. Information on rainfall for 
November, December, January, February and March, the 
cold dry season, was also excluded from the PCA because 
of the occurrence of rare, local, intense thunderstorms 
which could have influenced the PCA. Each village was 
assigned the climate of the cell where it was located.

Landscape
To characterize landscapes in detail, we produced a land 
use land cover (LULC) map for the entire METF target 
region based on Sentinel-2 satellite images from 2019 to 
2020 using object-based image analysis with eCognition 
software. These images have high spatial (10–60 m) and 
temporal resolutions (~ 5  days). In order to validate the 
accuracy of the LULC, the METF field team described 
LULC of 300 sites which were used as ground truth data. 
We completed the coverage provided by these observa-
tions with 300 photo-interpreted points from Google 
Earth (which shows very high spatial resolution satellite 
images that are recent but cannot be precisely dated). 

We extracted elevation and slope data of the METF 
target region from the GMTED 2010 digital elevation 
model (7.5 arc seconds, 220  m) [17]. We used HAC on 
PCA results to define landscapes, including fragmen-
tation indices from LULC classification, elevation, and 
slope for each grid cell (Additional file  1: Method S1). 
We produced two sets of landscape profiles: one cover-
ing the METF region, and one for the Northern Town-
ship. We excluded from the analysis rare landscapes that 
covered < 1% of the METF region or Northern Township. 
For every village, we calculated the distance to the near-
est cell of each landscape. More details on this are pro-
vided in the supplementary materials (Additional file  1: 
Method S1).

Mass drug administration
MDA interventions were conducted in 69 villages as part 
of the METF program; these were carried out in 35 vil-
lages before March 2016 and in 34 villages during the 
study period (Additional file 1: Fig. S2). MDA may have 
influenced the malaria dynamics by inducing a transient 
decrease of P. vivax incidence and a long-term reduction 
of P. falciparum incidence [18, 19]. For P. vivax, we con-
sidered MDA campaigns undertaken during the study 
period (i.e. from March 2016 to February 2020). For P. 
falciparum, we considered MDA campaigns undertaken 
before the study period to distinguish villages that may 
have been at high risk before the study period. We did 
not consider the MDA during the study period for P. 
falciparum because it was implemented in villages with 
high prevalence, and thus was associated with high inci-
dence [12].

Statistical analysis
Figure 2 provides an overview of the statistical plan fol-
lowed for P. falciparum and P. vivax data analysis. Analy-
ses were conducted using R 4.0 and fda, TSclust, dtw, 
party, FactoMineR, and factoextra packages [20]. Maps 
were produced with QGIS 3.6.3 software [21].

Association between environmental factors and incidence 
profiles
We used conditional inference trees (CIT) and condi-
tional random forests (CRF) to explore the association 
between P. falciparum and P. vivax incidence profiles, 
landscapes, climate, and MDA. CIT is a method similar 
to classification and regression tree (CART) that limits 
CART bias in covariate selection [22]. We used the fol-
lowing CIT parameters:  cquad test, distribution estima-
tion by Monte Carlo method with 100,000 replications, 
0.95 = 1—α as splitting criteria value of statistic test, 
and no minimum of node sample size. The CIT method 
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provides an interpretable tree for covariate effects and 
interaction. We also used CRF to quantify covariate 
importance. We used the following CRF parameters: 
10,000 trees, and number of covariates randomly selected 
for each tree equal to the minimum of the number of 
covariates included divided by 2 [22, 23].

Both mosquito dispersion and human mobility occur 
within a limited radius around the Karen villages 
included in this study [24, 25]. We applied a logarith-
mic transformation to the distance to landscape to give 
a heavier weight to landscapes within 1  km of the vil-
lages. Second, to limit the influence of environments 
beyond the range of reasonable occasional mobility, 
only landscapes at a median distance of ≤ 10  km from 
villages were considered. We conducted sensitiv-
ity analyses with 5  km and 15  km cut-offs to test the 
influence of variable selection on the robustness of the 
CIT and CRF results. These analyses were carried out 
separately at the METF-region and Northern-Township 
scales and for P. falciparum and P. vivax.

Definition of eco‑epidemiological zones
Eco-epidemiological zones were defined based on vari-
ables significantly associated with P. falciparum and P. 
vivax incidence profiles obtained with CIT and con-
firmed by CRF. Specifically, we crossed CIT nodes 
regrouping malaria-affected incidence profiles and 

defined by their proximity to an environmental varia-
ble. Successive crossing tables of selected nodes defined 
eco-epidemiological zones as follows: 1/region vs. 
township scale for P. falciparum; 2/region vs. township 
scale for P. vivax; 3/P. falciparum vs. P. vivax.

Results
Climate description
The temperature and precipitation data defined five cli-
matic zones in the METF region. These displayed a 
gradient of temperature (22–38  °C during the day and 
15–25  °C at night, not modified by the period June–
August) and precipitation (1290–3550  mm annually, 
without considering the period November–March). The 
High mountain climate had the lowest precipitation and 
temperature, the West plain climate the highest precipi-
tation, and the Foothills climate the highest temperature. 
Villages with malaria-affected incidence profiles predom-
inantly belonged to the Midland climate category: 92% 
(113/123) of villages affected by P. falciparum and 79% 
(161/205) by P. vivax. Midland climate presented moder-
ate rainfall (1490 mm annually) and temperatures (24 °C 
on average) (Fig. 3a; Additional file 1: Fig. S3).

Description and selection of landscapes
The final LULC classification produced from Sentinel-2 
images from 2019 to 2020 includes the following 10 
classes: dense forest, sparse forest, plantation, cropland, 

Fig. 2 Schematic of the statistical plan. Hierarchical ascendant clustering (HAC) on principal components analysis (PCA) built up landscapes 
and climates based on land use land cover (LULC) or rainfall and temperature data. Conditional inference trees (CIT) and conditional random 
forests (CRF) realized at region and township scales explored associations between environmental factors and malaria incidence profiles. 
Eco-epidemiological zones were constructed based on climates and distance to landscapes significantly associated with Plasmodium falciparum 
and Plasmodium vivax incidence profiles in CIT and CRF. METF Malaria elimination task force
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grass/shrubland, bare soil, wetland, road, water, built-up. 
The comparison with the observed field points indicated 
a satisfactory classification with a Cohen’s kappa coeffi-
cient of 0.73 (0.66 with the ground truth points only, and 
0.80 with the Google Earth observed points only). Con-
fusion in the classification mainly arises between bare 
ground and crops, or between herbaceous areas and scat-
tered woodland, which can be confounded depending on 
the date when the data were recorded. Weaker agreement 
with the data recorded in the field can be explained by 
the fact that these were often recorded at points on the 
side of roads, and therefore near other landscapes, and 
not at the centre of the landscapes they represented. In 
total, forested areas represent 76% of the surface area, 
and up to 78% if plantations and orchards are included. 
The Northern Township presented the most important 
surface area of dense forest (45%) compared to the rest 
of the METF region (12.5%). During the study period, no 
large-scale forest loss was detected in the METF region 
that drastically affected forest cover [26]. Croplands rep-
resented 3% of the METF region, but were widely hetero-
geneous between mountains and plains (from 0.5% in the 
north to 17% in the west) (Additional file 1: Fig. S4).

We merged water and wetland classes and excluded 
roads to obtain eight LULC classes. By analysing the 
percentage of surface covered by each class, fragmen-
tation indices, slope and altitude, we could classify the 

entire region into 17 landscapes. These landscapes were 
diverse, with gradients of sparse and dense forest (up to 
90% forest), altitude (averaging 17–1020  m above mean 
sea level) and with multiple combinations of cropland 
(0–96.5%), grassland/shrubland, or plantation (Addi-
tional file 1: Figs. S5, S6). Eleven landscapes were covered 
by >  50% forest. The type of landscape that was closest 
to most villages was dense and sparse forest only. The 
mean distance from villages to this landscape was 5 km 
(range 0–52 km) (Additional file 1: Fig. S7). Seven land-
scapes were retained for the analysis at the METF region 
scale; eight rare landscapes were excluded because they 
accounted for < 1% of the region’s surface; and two were 
excluded because they were too distant (median distance 
from village to landscape > 15  km) (Fig.  3b; Additional 
file 1: Fig S7A).

Likewise, seven landscapes were retained for analy-
sis in the Northern Township (of the 13 identified, four 
rare and two distant landscapes were excluded) (Fig. 3c; 
Additional file 1: Fig. S7B). These seven landscapes were 
all characterized by > 50% sparse and dense forest cover. 
Four landscapes combined sparse forest with patches of 
cropland, grassland/shrubland or plantation. Two land-
scapes were specifically identified in the Northern Town-
ship: Dense forest, sparse forest, cropland (DSC) and 
Dense forest, sparse forest, grassland (DSG). These two 
landscapes mostly comprised dense and sparse forest 

Fig. 3 Climate and landscapes covariates. A Map of climates constructed at the METF region scale. B Map of identified landscapes that were 
included in the association analysis at the METF region scale. C Map of identified landscapes included in the association analysis when restricting 
the analysis to the Hpapun/Mutraw administrative township (Northern Township). Black braces indicate landscapes with a median distance of 
≤ 10 km from villages. Red brace indicates landscapes identified only in the Northern Township. For abbreviations, see Fig. 2
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(86% on average, of which 38% was dense and 48% sparse 
forest) with small patches of low vegetation, respec-
tively, cropland (4% of the total surface, mean patch 
size = 4000   m2) or grassland/shrubland (8%; 4000   m2) 
(Additional file  1: Fig. S8). DSC and DSG landscapes 
corresponded to fragmented landscapes with two of the 
highest numbers of patches (n = 329 and 333, respec-
tively) and the highest proportion of patches of sparse 
forest (40 and 32%, respectively) interspersed with crop-
land and grassland/shrubland.

Association between malaria incidence profiles 
and climate
CIT identified an association between Midland climate 
and malaria-affected P. falciparum and P. vivax incidence 
profiles in the METF region (P < 0.001) (Fig.  4). When 
limiting the analysis to the Northern Township, Midland 
climate was also associated with malaria-affected profiles 
for P. falciparum (P = 0.044) and for P. vivax (P < 0.001) 
(Fig.  5). CRF identified climate as the most impor-
tant variable in the METF region and the second-most 

Fig. 4 Association study between malaria incidence profiles and environment in the METF region by CITs. A 10-km cut-off was applied to select 
landscape covariates. A CIT of Plasmodium falciparum incidence profiles with respect to five landscapes, climates, and mass drug administration 
(MDA) before March 2016. B Location of villages depending on their nodes obtained with P. falciparum CIT. C CIT of Plasmodium vivax incidence 
profiles depending on five landscapes, climates, and MDA after February 2016. D Location of villages depending on their nodes obtained with P. 
vivax CIT. (In CIT, ‘node’ refers to a group of villages.) For other abbreviations, see Fig. 2
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important variable in the Northern Township concern-
ing P. vivax, which was consistent with the CIT results 
(Additional file 1: Figs. S9, S10). These results were con-
sistent with those of the sensitivity analyses, with a 5-km 
or 15-km cut-off (Additional file 1: Figs. S7, S11, S12, S13, 
S14).

Association between malaria incidence profiles 
and landscapes in the METF region
At the scale of the METF region, proximity to landscape 
was not associated with malaria-affected incidence pro-
files for P. falciparum and P. vivax with a 10 km cut-off 
(Fig. 4). Proximity to Sparse forest, grassland (SG) land-
scape (≤ 900 m; P < 0.001) was significantly associated 
with malaria-affected profiles for P. vivax in the analysis 

with a 15-km cut-off (Additional file 1: Fig. S11C). SG 
comprised 35% grass/shrubland, 34% sparse forest and 
22% cropland (Additional file 1: Fig. S6). SG landscape 
was only selected when using the 15-km cut-off (Addi-
tional file  1: Fig. S7A). These villages were localized 
in the southeast area of the METF region (Additional 
file 1: Fig. S11D).

Association between malaria incidence profiles 
and landscapes in the Northern Township
At the scale of the Northern Township, one main land-
scape was associated with malaria-affected incidence 
profiles for P. falciparum and P. vivax: DSC (Fig. 5). Prox-
imity to DSC landscape was significantly associated with 
the highest proportion of malaria-affected incidence 

Fig. 5 Association study between malaria incidence profiles and environment in Northern Township by CIT. A 10-km cut-off was applied to select 
landscape covariates. A CIT of Plasmodium falciparum incidence profiles depending on five landscapes, climates, and MDA before March 2016. 
B Location of villages depending on their nodes obtained with P. falciparum CIT. C CIT of Plasmodium vivax incidence profiles depending on five 
landscapes, climates, and MDA after February 2016. D Location of villages depending on their nodes obtained with P. vivax CIT. For abbreviations, 
see Figs. 2 and 4
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profiles for P. falciparum (≤ 2  km, P < 0.001) with a sec-
ondary climate-related division which distinguished only 
11 villages located outside, but near, the Midland climate 
(P < 0.001) (Fig. 5a, b).

For P. vivax, a second landscape, DSG, was also asso-
ciated with malaria-affected incidence profiles (≤ 7.5 km, 
P = 0.048) (Fig.  5c, d). Within Midland climate, DSC 
and DSG landscapes defined specific groups of villages 
with different proportions of P. vivax incidence profiles. 
The group located < 2.5  km from DSC included 80% 
of P. vivax-affected profiles. The group > 2.5  km away 
from DSC and located within 7.5 km of DSG landscape 
included 29 of the 82 villages (35%) with an increasing P. 
vivax incidence. CRF confirmed the importance of DSC 
and DSG landscapes. Subdivision by DSG landscape was 
significant according to first-order risk of 0.05 (P = 0.048), 
but was not confirmed by the sensitivity analysis (Addi-
tional file 1: Fig. S13C). All other results were consistent 
with the sensitivity analysis (Additional file 1: Figs. S13, 
S14).

Identification and description of eco‑epidemiological 
zones
Combining the climates and landscapes associated with 
malaria-affected incidence profiles (SG, DSC, DSG) pro-
duced seven eco-epidemiological zones (Fig. 6; see Addi-
tional file 1: Table S1 for details).

The combination of midland climate and proximity 
(< 2.5  km) of DSC landscape defined the highest envi-
ronmental risk zone (zone 1) and included 129 villages 
of the Northern Township. Plasmodium falciparum inci-
dence was the latest persistent until 2018. Cases occurred 
predominantly during the cold season (2.5 more villages 
with cold season profiles than rainy season profiles). Plas-
modium falciparum incidence decreased after 2018 and 
P. vivax incidence remained stable, without clear season-
ality. In addition, 10 adjacent villages sharing the same 
landscape and the same malaria dynamics were identi-
fied as a separate zone (zone 2) because of their warmer 
climate (Foothills). Zones 1 and 2 also stood out due to 
their high proportion of malaria cases among children 

Fig. 6 Description of eco-epidemiological zones. A Map of eco-epidemiological zones. Geographic localization of zones was determined 
at hexagon level according to their landscape and climate characteristics. B Description of the seven zones according to observed Plasmodium 
falciparum and Plasmodium vivax monthly incidence during the study period. DSC Dense forest, sparse forest, cropland landscape; DSG dense forest, 
sparse forest, grassland landscape; SG sparse forest, grassland landscape; HM high mountain climate; WP west plain climate; Z zone
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under 5 years of age compared to other zones (40.8% vs. 
19.5% mean for P. vivax, 20.2% vs. 12.3% mean for P. falci-
parum, respectively) (Additional file 1: Fig. S15).

The next zone, zone 3, included 82 villages of the 
Northern Township located in Midland climate, away 
from DSC (> 2.5 km) and near DSG (< 7.5 km). Plasmo-
dium falciparum incidence was low and P. vivax inci-
dence exhibited a strong persistent increase in 2018. 
Out of the 82 villages in this zone, 32 (39%) showed Low 
increasing, 15 (18%) Rainy increasing, five (6%) 2018 
increasing and nine (11%) Persistent (n = 3, 4%) incidence 
profiles, geographically distributed throughout the zone.

Another zone was located in the southeastern part of 
the region, along the border (zone 4). These 24 villages 
were located near SG landscape and exhibited very low 
P. falciparum incidence and highly seasonal P. vivax inci-
dence during the rainy season. The stable overall mean 
incidence does not reflect the opposing trends of P. 
vivax incidence profiles included in this zone (i.e. Rainy 
decreasing or Persistent profile). This zone differed from 
the others in having the highest proportion of P. vivax 
cases in males over the age of 15 years (39.5%), and the 
lowest proportion of P. vivax cases in children (9.8%) 
(Additional file 1: Fig. S15).

The three remaining zones were only located in the 
South midland climate, Midland climate and/or were suf-
ficiently far away from at-risk landscapes. They presented 
low, very low and zero malaria incidence, respectively 
(Fig. 6).

Discussion
Summary of the results
This geo-epidemiological study identified a high diver-
sity of landscapes within the METF region correspond-
ing to a gradient from intact (i.e. dense forest) to heavily 
human-modified landscapes, characterized by different 
types of agriculture. Within this diversity of landscapes, 
three landscapes  (DSC, DSG, SG) and a single climate 
were associated with malaria-affected profiles. Three eco-
epidemiological zones with contrasting dynamics were 
identified by combining these environmental risk fac-
tors. One of these zones exhibited longer persistence of 
P. falciparum, up until 2018; another zone showed high P. 
vivax incidence after 2018; and the third displayed stable 
seasonal P. vivax incidence without P. falciparum.

The role of climate was consistent with the literature
One major climate (Midland climate) was linked to 
malaria-affected profiles irrespective of species or spa-
tial scale. This climate presented optimal conditions for 
mosquito and parasite development, according to the 
literature: moderate rainfall between April and October, 

an annual mean temperature between 18 and 32 °C, and 
limited temperature variation [27, 28].

Forest is not a homogeneous environment against malaria
Residing in villages at the forest fringe or inside forested 
areas was identified as a risk factor for malaria infection 
in the GMS [29]. Forest covers 76% of the surface of the 
METF region. Of the 19 landscapes (17 at the region scale 
and two specifically identified in the Northern Town-
ship), 13 landscapes (70%) had ≥50% of their surface cov-
ered by forests. An association of sparse and dense forest 
only was identified as the closest landscape for most vil-
lages. This illustrates how in this study area, most of the 
villages were at the forest fringe or inside the forest. Yet 
we previously identified heterogeneous malaria transmis-
sion within this region [14]. Only three landscapes were 
associated with malaria-affected incidence profiles, con-
firming the heterogeneity of forested environments rela-
tively to malaria risk.

The interface between forest and agricultural lands 
is at high risk of malaria in the Northern Township
In the Northern Township, DSC and DSG landscapes 
were associated with malaria-affected incidence profiles. 
They stood out due to their high proportion of forest 
(≈90%) fragmented by patches of cropland or grassland/
shrubland. Another landscape (Sparse forest, cropland) 
that was not associated with incidence profile, was highly 
fragmented but had a higher cover of cropland (32%) and 
a lower proportion of forest (58%), especially dense for-
est (20%). The other landscapes had the same propor-
tion of forest cover, but the forest was less fragmented by 
agricultural patches. In the literature, the role of forest 
fragmentation in malaria transmission, specifically with 
respect to the type and proportion of forest or agricul-
ture, remains unclear [30–33]. These findings highlight 
that, in the Northern Township, a balance between three 
components (the relative proportions of forest cover, for-
est fragmentation and agricultural fields) defines at-risk 
landscapes for malaria, which combine sustained human 
presence in farms and Anopheles-favourable environ-
ments in nearby forest [34–36].

In addition, we identified specific dynamics in relation-
ships with specific agricultural types. Long P. falciparum 
persistence and stable P. vivax incidence (zone 1) cor-
responded to cropland located in broad valley bottoms, 
indicative of inundated rice paddies. Shorter P. falcipa-
rum persistence and increasing P. vivax incidence (zone 
3) corresponded to patches of grassland/shrubland 
located on slopes, a pattern matching traditional Karen 
taung yar agriculture, a rotational farming, 10-year cycle 
which is practised on slopes [37]. This suggests that the 
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type of agriculture in forested areas could be used as a 
proxy for topographical and land-use conditions that 
support heterogeneous dynamics and malaria persis-
tence. It is also possible that inundated rice fields, when 
located at the forest fringe, directly support higher 
transmission.

In the Northern Township, the persistent malaria bur-
den in children under the age of 5 years suggests that 
transmission may still take place within villages, while 
the lower incidence in adults may be explained by partial 
immunity.

The specific context of the southeast border
In the southeast border area of the study region, eco-
epidemiological zone 4 stood out due to its proximity to 
the SG landscape associated with highly seasonal P. vivax 
cases in adult males and few P. falciparum cases. Two 
factors may have contributed to this unique dynamic. 
First, the predominance of P. vivax over P. falciparum 
likely resulted from longer access to early diagnosis and 
treatment for malaria, which depletes the P. falciparum 
reservoir faster than that of P. vivax [2, 12]. Second, a 
combination of environmental changes and occupational 
exposure may also explain this specific epidemiology. 
In contrast with the Northern Township, the landscape 
associated with this dynamic has been mostly covered by 
sparse forest and agricultural land since intense deforest-
ation between 2004 and 2010 [26]. The exact occupation 
responsible for higher malaria exposure is unclear, but 
we hypothesize that it may be related to seasonal farm-
ing activities carried out outside villages. Such activities 
usually involve adult males (e.g. seasonal migrant work-
ers), who live on the farm over prolonged periods from 
the onset of the rainy season until harvest. The vectors 
to which they are potentially exposed may originate from 
small patches of sparse vegetation (e.g. along streams) 
rather than rarer, dense forest or forest fringes.

Study strengths
Using the unique dataset of weekly malaria case reports 
collected by the METF MP network, we were able to 
study the association between malaria incidence and for-
ested environments in unprecedented detail. This data-
set allowed the study of malaria incidence at village scale 
without requiring further spatial aggregation. Compared 
to the annual parasite index, incidence profiles allowed 
the temporal characterization of intra- and inter-annual 
variation in amplitude, seasonality, and tendency over a 
4-year period. They enabled us to identify villages that 
were long-term hotspots or showed malaria persistence. 
Plasmodium falciparum and P. vivax dynamics could 
also be studied in parallel or combined. This was espe-
cially relevant as METF interventions were targeted at 

P. falciparum and had less impact on P. vivax, leading to 
different persistence patterns.

In addition, malaria transmission through mosquito 
bites can occur within villages or in remote locations 
where there is human activity and the precise location 
of infection is usually unknown. It is therefore difficult 
to estimate the distance between households and trans-
mission sites, as this depends on the particular activity 
carried out (e.g. agriculture, logging, etc.), geographi-
cal accessibility (topography, road access) and means of 
travel. To overcome this, we described the climate and 
landscape over the entire region regardless of the loca-
tion of the villages. We also relied on high-resolution 
land use and land cover data, and used fragmentation 
indices, which are key determinants of landscapes at risk 
for malaria in the Northern Township. Fragmentation 
indices are important for the characterization of inter-
faces between types of natural environment, such as for-
est, and human-modified environment (e.g. cropland), 
and where the probability of contact between vectors and 
humans is higher.

To study the association between malaria incidence 
profiles and environment, we chose to use a tree-based 
model and random forests to overcome intrinsic issues 
associated with regression models, i.e. small sample size 
for some incidence profiles, unknown distribution, and 
potential correlation or interaction between covariates 
(i.e. climate and landscape).

This analysis ultimately identified eco-epidemiologi-
cal zones, which included villages within a similar risk 
area but with heterogeneous malaria incidence profiles. 
Beyond following World Health Organization recom-
mendations concerning malaria risk stratification (i.e. 
based on transmission and receptivity), this approach is 
of interest in an elimination context where outbreaks are 
more stochastic, as illustrated by P. falciparum incidence 
profiles [9]. These results could help in the targetting and 
planning of surveillance by identifying villages where 
outbreaks are more likely. They could also be used for the 
planning of routine activities to target additional effort 
where it is needed.

Study limitations
The first challenge in this study was the overall low 
malaria incidence in the METF region over the study 
period. Indeed, 81% of the villages were classified as hav-
ing a very low incidence profile for P. falciparum, and 
69% a very low incidence profile for P. vivax. The other 10 
profiles only corresponded to a small number of villages 
(from one to 46). The imbalance in these distributions 
limited the subsequent analysis of factors associated with 
each incidence profile and the use of regression models. 
The CIT analysis mostly distinguished malaria-affected 
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from malaria-free incidence profiles, except for P. vivax 
incidence in the Northern Township. However, by com-
bining environmental factors associated with both Plas-
modium species, we were able to describe sub-regional 
eco-epidemiological zones, which corresponded to 
specific local environments and were characterized by 
specific trends and at-risk populations. These results 
suggested a relationship between malaria dynamics and 
environment at a spatial scale higher than that of the vil-
lage. These findings agree with previous reports of P. fal-
ciparum prevalence hotspots clustering within a radius of 
10 km in this region [12].

We relied on the incidence of clinical cases of malaria 
diagnosed by MP as a proxy of malaria transmission. This 
assumption likely led to the underestimation of transmis-
sion, since individuals with sufficient immunity will not 
necessarily develop  clinical malaria episode upon infec-
tion. On the other hand, using the incidence of clinical 
cases of malaria to determine transmission, we could not 
distinguish P. vivax infections resulting from an infective 
bite from those due to a relapse. This could have resulted 
in an overestimation of P. vivax transmission, or inability 
to identify some seasonal patterns (e.g. zone 1). However, 
in the analysis of 1441 recurrent episodes pooled from 
two trials conducted in the same setting, 95% of P. vivax 
recurrences (88% relapses and 12% reinfections) were 
detected upon active follow-up, while only 5% were asso-
ciated with sufficient symptoms to trigger an intercur-
rent consultation [38]. In these trials, active participant 
follow-up may have led to early detection and preventive 
treatment of some relapses before they became clinical. 
Despite this potential underestimation, clinical relapses 
are thought to only moderately modify the incidence 
dynamics.

Finally, even if the LULC classification allowed a 10-m 
resolution, validated with field observations, there were 
still some classes that were difficult to distinguish, i.e. 
roads from rivers, and agricultural patches from low 
vegetation. These elements of the environment may 
modulate vector presence and thus the association of 
environmental factors with incidence profiles. In addi-
tion, this study focused on land cover patterns, such as 
fragmentation and vegetation density. Identifying differ-
ences in floristic composition  across forested areas was 
not feasible here, but could allow for further characteri-
zation of forest heterogeneity.

Generalizations and perspectives
The aims of this study of malaria dynamics at the local 
level were to improve our understanding of the epide-
miology of this disease in an increasingly heterogeneous 
context and to contribute to intervention planning. The 
analysis identified eco-epidemiological zones with higher 

malaria incidence where specific interventions could be 
targeted (for more details, see [14]). These zones aggre-
gated villages sharing similar environments, and thus 
receptivity, beyond local incidence heterogeneities. The 
use of this type of zoning is valuable for the identification 
of areas prone to malaria resurgence, where surveillance 
is strategic. Indeed, at low transmission levels, favourable 
environmental conditions are necessary, but not suffi-
cient on their own, as the presence of a parasite reservoir 
is also required.

Health systems often rely on the collection of aggre-
gated surveillance data (geographically, temporally, and 
by age). This study demonstrates how rich surveillance 
data could inform an understanding of malaria epidemi-
ology  and intervention planning, especially in a highly 
heterogeneous context. Our results support the current 
trend of investing in state-of-the-art epidemiological 
information systems. However, the size of the eco-epi-
demiological zones reported here suggest that analyses 
performed at the scale of a health facility catchment area 
(e.g. a dozen villages) could yield relevant results for 
larger regions or country-wide studies.

Additionally, eco-epidemiological zones were charac-
terized by differences in climate, landscape, and agricul-
tural systems, which are biologically relevant factors that 
may be applicable to other forested areas. Studying struc-
tural environmental factors at a broader scale in the GMS 
could help identify areas favourable to Anopheles pres-
ence and determine proxies of human exposure. Combin-
ing existing lower resolution LULC with other remotely 
sensed data sources (forest loss data, or the detection of 
logging or fires leading to deforestation) could provide 
community-level assessments of receptivity and human 
activities in or at the fringe of forested areas [39].

Conclusions
This study shows that the generic term ‘forest’ hides a 
substantial diversity of environments, which can differ 
with respect to malaria persistence, dynamics and popu-
lations at risk. This diversity highlights the fact that there 
is no one-size-fits-all approach for forest malaria with 
respect to policy planning, modelling approaches and 
implementation. The existence of diverse human popu-
lations within heterogeneous eco-epidemiological set-
tings should be taken into consideration when designing 
malaria elimination strategies.
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Additional file 1: Figure S1. Maps showing incidence profiles. Mapped 
villages in the malaria elimination task force (METF) target region accord-
ing to malaria incidence profiles. A Plasmodium falciparum incidence 
profiles and B Plasmodium vivax incidence profiles; inset shows a map 
of the Hpapun/Mutraw administrative township (Northern Township). 
This original figure presents raw data and results published previously [14]. 
Method S1. Landscape. Figure S2. Villages receiving mass drug admin-
istration (MDA) according to the year. MDAs were conducted in high 
prevalence hotspots identified by prevalence surveys [13]. At the begin-
ning of the METF program there was little knowledge about the location 
of malaria hotspots. Prevalence surveys were therefore conducted in 
randomly selected villages, and followed an east (closer to Thailand) to 
west pattern related to the gradual deployment of the program from the 
border with Thailand towards the interior of Myanmar. The spatial analysis 
of prevalence measured in the first surveys revealed spatial clustering 
of hotspot villages: there was a higher likelihood of finding a hotspot 
within 10 km of another one [12]. In addition, hotspots also displayed 
a higher incidence of clinical malaria. After 2015, surveys were targeted 
based on these two criteria. As a result of this, MDAs were concentrated 
in the Northern Township. Figure S3. Climate description. Ombrothermic 
diagram of the five climates identified at region scale. Temperature data 
of June, July and August were excluded from the analysis because of too 
many missing data points due to cloud cover in the rainy season (dotted 
lines). Rainfall data of November, December, January, February and March, 
corresponding to the cold dry season, were also excluded because of the 
occurrence of rare, local and intense thunderstorms. Figure S4. Land use 
and land cover classification description. A Map of the land use and land 
cover (LULC) classification. B Distribution of the LULC class at the region 
scale and the Northern township scale. Figure S5. Landscape map at 
region scale. A Landscape map. B Altitude map. Figure S6. Landscape 
description at region scale. LULC description of landscapes representing 
more than 1% of the region surface, included in association analysis (A) 
or excluded (B). C Description of landscapes identified at region scale 
according to altitude. Figure S7. Covariates selection. Landscapes were 
selected according to their median distance to villages at region (A) 
and township (B) scale. Landscapes with a median ≤ 10 km (red dotted 
and solid lines) were included. Sensitive analysis was conducted with 
cut-offs of 5 km (grey dotted line) and 15 km (blue dotted and solid lines). 
Landscapes selected with the 10-km and 5-km cut-offs were similar. 
Figure S8. Landscapes in the Northern Township. A Description of the 
two landscapes specifically identified in the Northern Township accord-
ing to the LULC classification. The other landscapes were also identified 
at region scale and described in figure S5. B Map of the most common 
landscapes identified at the township scale. Figure S9. Study association 
between malaria incidence profiles and environment in the METF region 
by conditional random forests (CRF). A 10-km cut-off was applied to 
selected landscape covariates. A CRF of Plasmodium falciparum incidence 
profiles depending on landscapes, climates, and MDA before March 2016. 
B CRF of Plasmodium vivax incidence profiles depending on landscapes, 
climates, and MDA after February 2016. Figure S10. Study association 
between malaria incidence profiles and environment in the Northern 
Township by CRF. A 10-km cut-off was applied to select landscape covari-
ates. A CRF of P. falciparum incidence profiles depending on landscapes, 
climates, and MDA before March 2016. B CRF of P. vivax incidence profiles 
depending on landscapes, climates, and MDA after February 2016. 
Figure S11. Association study between malaria incidence profiles and 
environment in METF region by conditional inference trees (CIT). A 15-km 

cut-off was applied to select landscape covariates. A CIT of P. falciparum 
incidence profiles depending on landscapes, climates, and MDA before 
March 2016. B Location of villages depending on their nodes obtained 
with P. falciparum CIT. C CIT of P. vivax incidence profiles depending on 
landscapes, climates, and MDA after February 2016. D Location of villages 
depending on their nodes obtained with P. vivax CIT. In CIT, ‘node’ refers 
to a group of villages. Figure S12. Association study between malaria 
incidence profiles and environment in METF region by CRF. A 15-km 
cut-off was applied to select landscape covariates. A CRF of P. falciparum 
incidence profiles depending on landscapes, climates, and MDA before 
March 2016. B CRF of P. vivax incidence profiles depending on landscapes, 
climates, and MDA after February 2016. Figure S13. Association study 
between malaria incidence profiles and environment in the Northern 
Township by CIT. A 15-km cut-off was applied to select landscape covari-
ates. A CIT of P. falciparum incidence profiles depending on landscapes, 
climates, and MDA before March 2016. B Location of villages depending 
on their nodes obtained with P. falciparum CIT. C CIT of P. vivax incidence 
profiles depending on landscapes, climates, and MDA after February 2016. 
D Location of villages depending on their nodes obtained with P. vivax CIT. 
In CIT, ‘node’ refers to a group of villages. Figure S14. Association study 
between malaria incidence profiles and environment in the Northern 
Township by CRF. A 15-km cut-off was applied to select landscape covari-
ates. A CRF of P. falciparum incidence profiles depending on landscapes, 
climates, and MDA before March 2016. B CRF of P. vivax incidence profiles 
depending on landscapes, climates, and MDA after February 2016. Figure 
S15. Description of eco-epidemiological zones according to age and 
gender malaria cases. Proportion of reported P. falciparum (A) and P. vivax 
(B) cases during the study period by malaria posts depending on gender 
(male, female), age, and eco-epidemiological zones. The total number 
of malaria cases is specified in the legend. Five classes described cases 
by age and gender: woman and men between 0 and 5 years (W/M 0-5), 
women between 5 and 15 years (W 5-15), women older than 15 years 
(W 15-99), men between 5 and 15 years (M 5-15), men older than 15 
years (M 15-99). Table S1. Eco-epidemiological zone construction. Tables 
present the number of villages in each node and proportions in brackets. 
A Plasmodium falciparum zone construction by cross analysis between CIT 
results at region and township scale. B Plasmodium vivax zone construc-
tion by cross analysis between CIT results at region and township scale. C 
Cross analysis between P. falciparum and P. vivax. DSC Dense forest, sparse 
forest, cropland landscape; DSG dense forest, sparse forest, grassland 
landscape; SG sparse forest, grassland landscape; M midland climate; SM 
south midland climate; N node.
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