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Abstract: Conformational flexibility plays an essential role in antibodies’ functional and structural
stability. They facilitate and determine the strength of antigen–antibody interactions. Camelidae
express an interesting subtype of single-chain antibody, named Heavy Chain only Antibody. They
have only one N-terminal Variable domain (VHH) per chain, composed of Frameworks (FRs) and
Complementarity Determining regions (CDRs) like their VH and VL counterparts in IgG. Even when
expressed independently, VHH domains display excellent solubility and (thermo)stability, which
helps them to retain their impressive interaction capabilities. Sequence and structural features of VHH
domains contributing to these abilities have already been studied compared to classical antibodies. To
have the broadest view and understand the changes in dynamics of these macromolecules, large-scale
molecular dynamics simulations for a large number of non-redundant VHH structures have been
performed for the first time. This analysis reveals the most prevalent movements in these domains. It
reveals the four main classes of VHHs dynamics. Diverse local changes were observed in CDRs with
various intensities. Similarly, different types of constraints were observed in CDRs, while FRs close to
CDRs were sometimes primarily impacted. This study sheds light on the changes in flexibility in
different regions of VHH that may impact their in silico design.

Keywords: molecular dynamics simulation; flexibility; mobility; disorder; structural alphabet; Protein
Blocks; nanobody; single-chain antibody; sybody; antibody

1. Introduction

Antibodies (Abs) are the basis of the immune system in many species. Classical
antibodies, such as Immunoglobulin Gamma (IgGs), are large macromolecular molecules
composed of two chains forming a heterodimer. The IgG comprises: (i) a heavy chain
with four distinct domains and (ii) a light chain with two distinct domains. At their N-
terminus, a VH domain (for heavy chain) and VL domain (for light chain) are the binding
sites to the epitope. Single-chain immunoglobulin is found in vertebrate species such as
the nurse shark and the camelids. The latter is composed of genera of the ancient world of
Camelus (Bactrian camel, dromedary camel) and from the new world of Llama (guanaco,
llama) and Vicugna (alpaca, vicuña). They all have—in addition to IgGs—Heavy Chain
Only Antibody (HCAb). HCAbs lack the light chain and have a smaller heavy chain with
only one VH (named then VHH and sometimes, for commercial purposes, Nanobody).
Individually expressed VHH domains retain their ability to bind their epitope efficiently
as classical antibodies. As they are small in size (<150 residues), they are being used in
bio-therapeutics, e.g., against acquired thrombotic thrombocytopenic purpura [1], against
rheumatoid arthritis [2,3], and recently against SARS-CoV-2 with variable potencies [4–14].

Int. J. Mol. Sci. 2023, 24, 4511. https://doi.org/10.3390/ijms24054511 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24054511
https://doi.org/10.3390/ijms24054511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4302-7030
https://orcid.org/0000-0002-0909-6155
https://orcid.org/0000-0001-7112-5626
https://doi.org/10.3390/ijms24054511
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24054511?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 4511 2 of 22

VH/VL domains dictate antibody binding for IgGs, as do VHH for HCAbs. They all
have interspersed amino acid regions with varying sequence conservation called Frame-
work Regions (FRs) and Complementarity Determining Regions (CDRs). The former is
expected to be preserved in sequence and structure, forming a very characteristic structural
base; they are often denoted as FR1 to FR4. The three CDRs (CDR1 to CDR3) are inter-
spersed with the FRs. Mostly the CDRs contact the epitope and are particularly variable in
sequence and conformation, contributing to the specificity of each antibody [15].

VHH domains have gathered an enormous interest in the antibody community with
an impressive number of patents [16] and an extraordinary increase in deposited structures
in the Protein Data Bank (PDB) [17] in the last years (more than 200 X-ray structures in
3 years) [18].

Due to the above reasons, investigating pertinent features of VHHs would be very valu-
able. For instance, we published one of the first studies on the conformational diversity of
FRs. It emphasised that even FRs show conformational diversification [19]. Similarly, we ex-
plored the sequence–structure relationship of VHHs, which is not composed of successively
conserved Framework Regions (FRs) and hypervariable (CDRs) regions but something
more complicated [20]. These results explain why despite their supposed simplicity, it is
not unchallenging to propose a relevant structural model of a given VHH domain [21].

The above analyses provide insights into conformational diversity in 3D structures
and models but also suffer from apparent limitations. The most obvious is that only
one conformation is considered in the conformational landscape. Hence, it is difficult to
ascertain how conformational diversity in one region influences another similar region. For
instance, in the case of the VHH domain, how do FR/CDRs influence other FRs/CDRs, or
FRs influence conformational diversity in CDRs? Molecular Dynamics (MD) simulations
are a perfect tool to apprehend the dynamics of these specific domains, and so to understand
various macromolecular phenomena.

Using MDs to understand the stability of VHH domains has increased significantly in
the past decade employing several kinds of MD techniques. Early studies on unbinding
mechanics of a camelid VHH and its lysozyme target were carried out using steered
molecular dynamics [22,23]. Replica exchange MD was used to understand the influence
of multiple amino acid substitutions in hypervariable loop regions of a Llama VHH [24].
Classical MDs at two different temperatures were used to understand the influence of amino
acid substitutions and VHH yield in experimental conditions [25]. Investigations of VHH
domain thermostability were assessed using classical MD at eight different temperatures for
a specific VHH by analysing the conservation of native contacts and changes in flexibility
for in FRs and CDRs [26].

In contrast, in another study, seven different VHHs were analysed using classical
MDs at three different temperatures [27]. The latter looked at the improvement in ther-
mostability; their main observation about the change of CDR1 residues was experimentally
validated [28]. Another study showed that MD could efficiently evaluate binding affinity
(modelled and docked) from VHH-target simulations [29]. A recent study has explored the
differences in stability of VHH mutants and assessed the conformational space between
two VHHs, which differ only by nine amino acids [30]. Recently, Fernandez-Quintero and
collaborators showed an excellent agreement of (i) NOE-derived distance maps obtained
from NMR and (ii) MD simulations for an anti-GFP-binding VHH; they observed similar
conformational spaces for the simulations [31].

Classical MD simulations were performed on VHH domains in complex with HIV
capsid protein p24, and binding energy calculations from these MD studies helped the
researchers identify key interfacial residues [32]. Another study used MD simulations of the
stably expressed VHH proteins from phage libraries to ascertain whether the VHH clones
used in the study possessed the required diverse CDR3 confirmations [33]. MD simulations
were also used to assess chemical-induced VHH dimerisation to generate bivalent domains
for biotechnological applications [34]. All these studies shed light on individual VHH
dynamics using classical or advanced MDs.
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This study aims further to simulate 88 non-redundant VHH domains at longer time
scales using classical MD. The classical approaches, such as Root Mean Square Fluctua-
tions (RMSFs), were used to analyse the different regions of VHHs characterising different
behaviours of VHHs ranging from rigid to flexible. Additionally, an in-house developed
method, structural alphabet (Protein Blocks) [35] offers a unique and more precise ob-
servation of the rigid and flexible regions occurring in proximity. Two more specific
behaviours, mobility and deformability, can be hidden by the ‘term’ flexibility. A rigid
region trapped between two flexible regions is collectively called a ‘mobile region’. In
contrast, a deformable region can be defined by the inclusion of a flexible region trapped
between two rigid regions [36]. These additional classifications allow for a more precise
definition of local protein conformation and even add a continuum between the rigidity
and flexibility of ordered proteins and disordered regions [37,38]. These properties are
important, especially in the context of VHHs docking, where in most algorithms, only the
CDR loops are considered flexible regions for binding.

The current large-scale study of these domains aims to provide a better understanding
of different properties such as flexibility, mobility and deformability in different regions to
identify unexpected underlying differences between VHH domain trajectories.

2. Results
2.1. Dataset Description

88 VHH domains were chosen for classical MD simulations as in [20]. The 88 VHH
sequences were aligned using ClustalOmega [39]. Figure 1A presents the sequence conser-
vation in the aligned regions of the dataset. The extent of conservation is striking in the
FRs and CDRs, as previously seen [20,40]. Additionally, the conserved residues such as
C22, W45, F85 and C113 are observed (see the multiple sequence alignment in Figure S1).

Figure 1B provides the corresponding secondary structures at each aligned position.
The β- strands forming the β-sheets of immunoglobulin fold as seen in alignment positions
4–9, 10–13, 17–24/25, 45–50, 56–62, 75–78, 85–90, 95–100, 109–115, 139–149, respectively.
The connecting loops within FRs are also well conserved in terms of secondary structures.
These loops are often associated with conserved turns and bends (FR1, positions 14–15,
FR2, positions 52–54, FR3, from positions 79 to 84 and 91 to 94). Even with 310-helix
(FR3, positions 105–107), the FRs are well conserved and can be identified clearly. As
expected, the CDR1 region (positions 26–44), CDR2 region (positions 63–74) and CDR3
region (positions 113–140) show secondary structure conservation, mainly in the positions
close to FRs that showed some slight conservation with the extension of β-sheets (positions
44, 63, 75–77, 114–116, and 139). A turn is observed at the N-Cap region of CDR2 (positions
64–65). Interestingly, one can note the specific region (see alignment at positions 91–95) that
is debated in the literature to be an additional fourth complementarity-determining region
named CDR4 [41]. This region shows a conserved amino acid sequence (Figure 1A) but
a slightly less conserved SSE signature (in Figure 1B). It is reported as a potential fourth
CDR [42]. Position 83 (in Figure 1B) in 20% of the structures shows a β-bridge, which could
be explored further.

Another way to look at local protein conformations is to use a structural alphabet such
as Protein Blocks (PBs, [43]). It describes more precisely the local conformation [44]. The
PB alignment shown in Figure 1C represents the corresponding PB assignment at each
residue position of a given VHH domain aligned according to the MSA, where 10–20%
diversity is observed in FR1 (positions 3–25), FR2 (45–62) and FR3 (77–113) regions, es-
pecially in the loop between the β-stands (represented by the Protein Block d). The PB
analysis shows no residue is associated with the coil state. As expected, the CDRs show no
particular PB conservation, even if slightly higher conservations in the PB series are seen in
positions 71–72.
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Figure 1. Sequence and structure characteristics in VHH dataset. Conservation of (A) amino acid
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in each figure.



Int. J. Mol. Sci. 2023, 24, 4511 5 of 22

2.2. Assessment of Flexibility

Both experimental and simulated flexibility were analysed to gain insights into the true
nature of conformational flexibility at each position of the VHH dataset. The (experimental)
flexibility in these domains was assessed by looking at the distribution of normalised Cα

B-factors (see Figure S2A). It presents an expected extreme distribution with a classical
median value of −0.20. Low (negative normalised) B-factor values are considered rigid,
while higher positive values are considered flexible.

The simulated flexibility came from four independent replicates for each VHH, leading
to eighty-eight simulations of 1µs concatenated trajectories. It is classically analysed using
Root Mean Square fluctuations. Comparison of normalised B-factors and normalised
RMSF (see Figure S2B) shows a correlation coefficient of only 0.42 (equivalent to previous
analyses [45,46]). Another measure of conformational diversity based on Protein Blocks,
namely Neq, was also used to quantify position-wise conformational diversity. FRs have a
median value of 0.63, 0.51, 0.54 and 0.51 Å (see Figure S3A–D). For CDRs, it is slightly higher,
with 0.96, 0.70 and 0.78 Å for CDR1, CDR2 and CDR3, respectively (see Figure S3E–G).
These results agree with the general idea that CDRs are more flexible than FRs. Nonetheless,
this result must be interpreted cautiously as some FRs have high RMSF values, while CDRs
can be associated with low RMSF values.

The median values for Neq in FR1, FR2, FR3 and FR4 are all 1.0 (see Figure S4A–D).
The most rigid FR is FR2 with no change (Neq is always 1); while, for all others, some Neq
values can be higher than 2 and sometimes 3, with certain underlying plasticity. Rigidity
order can be proposed with FR2 > FR4 > FR3 > FR1.

The median of Neq values for CDR1, CDR2 and CDR3 are 1.35, 1.12 and 1.18, re-
spectively (see Figure S4E–G); almost 50% of residues in the CDRs do not show any
conformational diversity during the simulation. This shows the importance of considering
metrics other than Cα RMSF that provide a simplified version of the flexibility, and that
some mobile/deformable (frustrated) regions can be found in CDRs.

Comparison of Cα RMSF and normalised Cα B-factors show weak correlation for
FRs, 0.50, 0.68, 0.51 and 0.60 for the FR1, FR2, FR3 and FR4 regions, respectively (see
Figure S5A–D). This correlation decreases again with values of 0.42, 0.32 and 0.29 for CDR1,
CDR2 and CDR3 regions (see Figure S5E–G), highlighting the fact that most complex links
are to be found in CDRs.

2.3. Flexibility at Each Residue Position

The experimental flexibility of each residue was analysed with normalised B-factors.
The values were computed according to the corresponding positions of the MSA, i.e., a
residue must be present to be taken into account in the average value. Figure 2A shows
all individual 88 VHHs, while Figure 3A presents extracted information with mean values
and associated standard deviation. Interestingly, higher normalised Cα B-factor values
are found mainly in FRs (see Figure 4A for a 3D depiction of FRs and CDRs). The highest
value is FR2, followed by FR3 and FR1. Some regions of FRs are associated with low values
(i.e., position 20 for FR1, position 45 for FR2 and 101 for FR3). CDRs rarely have flexible
values. This result is really counterintuitive, but it should be noted that when VHHs are in
complex, the CDRs are highly rigid; the FRs are then more flexible than the latter as they
are not blocked in interactions.

Analysis of RMSF (see Figures 2B, 3B and S3B) shows high values in RMSF in the
CDRs (23–44, 63–74 and 113–139 MSA positions). Interestingly, the FR2 region (46–52) and
FR3 (77–79 and 89–95) are also associated with high values. At first glance, the whole of
FR2 (18 residues) is highly flexible except for two regions between 44–47 and 55–63. The
region 89–95 is a small loop in the FR3, the additional fourth complementarity-determining
region (CDR4) (also shown as the purple loop in Figure 4A and the thicker putty red region
in Figure 4C [41]; it does not show amino acid sequence variation and SSE variation, but it
is highly flexible in terms of RMSF.



Int. J. Mol. Sci. 2023, 24, 4511 6 of 22

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 22 
 

 

VHHs are in complex, the CDRs are highly rigid; the FRs are then more flexible than the 
latter as they are not blocked in interactions. 

 
Figure 2. Flexibility metrics at each residue position. (A) Representation of normalised Cα 
B-factors; the x-axis is the residue position in the MSA and the y-axis the normalised Cα B-factor 
values. (B) Representation of Cα RMSF values. (C) Representation of Neq values. The three CDR 
regions are highlighted using three red-coloured regions at the bottom of the plots. The average 
values of each metric are shown in dotted red lines. 

 
Figure 3. Tendencies of flexibility metrics at each residue position. Mean and standard deviation of 
(A) normalised Cα B-factors, (B) Cα RMSF and (C) Neq. Occurrence is shown as a histogram. CDR 
positions are shown as ref lines. 
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(B) Representation of Cα RMSF values. (C) Representation of Neq values. The three CDR regions are
highlighted using three red-coloured regions at the bottom of the plots. The average values of each
metric are shown in dotted red lines.
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We further assessed the 88 VHH MD trajectories by assigning Protein Blocks to each
snapshot of each concatenated trajectory for changes in PB frequencies at each position
during simulations. The resultant PB entropy calculated from PB frequencies at each
position for each VHH concatenated trajectory is shown in Figure 2C. Surprisingly, some
of the CDR1 residues in some trajectories at the termini of the loop (loop beginning 23–25
and ending 38–40 residue positions) show high Neq values, as seen in the CDR3 region.
Other amino acid regions such as positions 5–10 and 15–18 in FR1, 55–60 in FR2, 90–100
and 103–105 in FR3 show higher values of Neq (closer to two most often but may increase
up to four), suggesting that these regions could be the flexible regions trapped between
two rigid regions, and might play a role in overall motion. The mean Neq values are
shown in Figure 3C to understand the trend in VHH trajectories. Similar to the putty
representations for mean B-factors and mean RMSF values, the putty representation for
Neq values at each position is illustrated in Figure 4D. While the blue-coloured regions
represent no change in the PB assignment, the green, yellow and red regions represent a
higher mean Neq value at respective positions.

2.4. Clustering of VHH Trajectories

To investigate the underlying trends in dynamics, the 88 trajectories were clustered
using hierarchical clustering using RMSF values, which resulted in four dense clusters
and three singletons, as presented in Figure 5. The four dense clusters will be referred
to henceforth as RMSF clusters. The largest RMSF cluster (blue color, 42 VHHs, 47.7%) is
associated with nearly half of VHH trajectories; it is close to RMSF cluster 2 (green color,
22 VHHs, i.e., 25.0%). RMSF cluster 3 (cyan color, 11 VHHs, 12.5%) and RMSF cluster 4
(yellow color, 10 VHHs, 11.3%) are separated from the first two and related to one singleton
(pink color), while the two singletons are clear outliers.
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This classification is made on RMSF value along the VHH protein sequences. The
average distribution of RMSF is shown in Figure 3B and is also visualised in Figure 5C
on the 3D structures. The structure parts concerned with the RMSF values of each RMSF
cluster are now presented in Figure 6C,G,K,O, respectively (see also Figures S6–S8).

The evaluation of the four RMSF clusters underlines the contributions of different
regions to the clustering. CDR3 (MSA positions 113–139) shows the most significant
variability between the four RMSF clusters. At these positions, the RMSF values for
RMSF clusters 3 and 4 (see Figures S6C,D and S7C,D) are much higher than those for
RMSF clusters 1 and 2 (see Figures S6A,B and S7A,B). RMSF cluster 1 is the closest to the
general distribution, with only a slight increase in rigidity (on average, around 1.0 Å, see
Figures 3B and S8A), RMSF cluster 2 is the most rigid (decrease of RMSF value around
1.0 Å) while its extremities are more flexible. In contrast, RMSF cluster 3 is the most rigid
for CDR3 (increase around 1.5 Å). There is, therefore, a clear gradient from flexible to rigid
RMSF cluster 2 > cluster 1 > cluster 4 > cluster 3 for CDR3. Surprisingly, the long CDR3s,
which are therefore the rarest, have shown specificities. For the positions 125–127 (of the
MSA), the clusters behave contrary to the general trend. These positions have less than 10%
occurrence in any of the clusters. RMSF clusters 3 and 4 are more flexible, while the other
two are more rigid when Cα RMSF and Neq values are considered (see Figures S8–S11). It
should be noted that this rigidity is relative, as CDR3 is a reasonably flexible area.

The second most contributing region is CDR1 (positions 25–44 of MSA). Most of the
RMSF clusters are relatively close to the mean value of the distribution, and only RMSF clus-
ter 2 has an increase in its rigidity (see Figure 6G and corresponding Figures S7B and S8B).
RMSF cluster 1 has a slight increase in flexibility (around 0.5 Å); differences are negligible
for the others (see Figures 6K,O, S7C,D and S8C,D).

The other regions show little specificity in their contribution to clustering. FR3 in
its central part (position 90 in the MSA) offers a variation close to CDR1, with slight
rigidification for RMSF clusters 2 and 3 and slightly more flexibility for the other two.
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CDR2 had little variability (low standard deviation) and thus had minimal variation
in the clusters. Only the terminal parts of RMSF clusters 1 and 2 have some variations
(slightly more flexible for RMSF cluster 1, somewhat more rigid for RMSF cluster 2).

Interestingly, the analysis of associated normalised Cα B-factor presented in Figure 6B,F,J,N,
respectively (see also Figures S9–S11), reveals only a partial correlation with RMSF val-
ues. RMSF cluster 1 differs only slightly from general VHH tendencies (see Figure 3A)
for CDR3 and CDR2, but the N-cap of CDR1 is largely more rigid (around 0.8 Å, see
Figures S9A, S10A and S11A). RMSF cluster 2 shows more rigid residue in CDR3 (around
1.0 Å, see Figures S9B, S10B and S11B). For RMSF clusters 3 and 4, differences are more
striking. RMSF cluster 3 has more rigid residues in FR1 and CDR1 N-cap (around 1.5 Å,
see Figures S9C, S10C and S11C); CDR2 and CDR3 are more flexible; RMSF cluster 4 had a
succession of more rigid, more flexible and finally more rigid residues in CDR1 (around
1.0 Å, see Figures S9D, S10D and S11D); CDR2 is slightly more rigid at its C-terminal
positions, as is CDR3. It shows a somewhat different view than with RMSF data.

Localisation of protein parts concerned by the RMSF values of the different RMSF
clusters are now presented in Figure 6D,H,L,P, respectively (see also Figures S12–S14).
Figure 3C showed that CDRs have average Neq values around two (MSA positions 25–43,
63–74 and 114–139), and some regions of FRs too (5–8, 55–60, 83–85, and 90–95). Figure 2C
also showed that some individual VHH could reach relatively higher values, e.g., CDRs 1
and 3 can sometimes reach an impressive Neq value of eight, i.e., a value mainly associated
with disordered regions (see [37]) where large-scale fluctuations can be seen between
VHH domains.

This also allows us to see what has been considered in the clustering. It underlines
how FR1’s main specificity is an increase of flexibility for RMSF and B-factor of cluster
3 and a decrease for cluster 2. It also indicates that CDR3 is crucial once again, with an
increase in rigidity for B-factor, RMSF and Neq of cluster 3 and RMSF and Neq of cluster 4,
while the latter had an increase in flexibility in B-factor. The C-terminal loop in the FR2
region and the N-terminal loop in the FR3 region (or the presumed CDR4 loop) behave
differently with respect to the metrics. This difference is the main inference drawn from
this analysis: that the c-terminal loop included in the FR2 region shows high RMSF values,
although the changes in backbone conformational flexibility assessed using Neq remain
hardly noticeable. This is the classic case of mobility where the whole loop fragment is
observed to be in motion with no apparent change in its backbone conformations. The
other example is the N-terminal loop enclosed inside the FR3 region. This loop shows
higher RMSF and Neq values but not at all the residue positions, making this region a true
example of a deformable region (see also Table S1). An important point to underline is that
B-factor, RMSF and Neq do not have a direct link and are sometimes slightly opposed in
terms of dynamical tendencies [36,47,48].

2.5. Backbone Conformational Changes in Terms of Protein Blocks

PBs occurrence observed for the 88 VHHs trajectories is shown in Figure 7A. This
figure reaffirms the general idea that the CDRs (MSA positions 25–47, 62–75, 113–140) are
conformationally diverse, and FRs are less varied, as seen previously (5–10, 79–82, and
91–95). These last FR zones thus seem to have two different sets of conformations. The
classical β-stand representative PB d is consecutively (although with interruptions) seen in
the FR regions with a high occurrence, e.g., 72 positions with PB d represented more than
80% of the time. The regions 48–62 and 98–113 are the two regions which have retained
the most conserved PBs. Figure 7C–F provide the PB occurrence associated with each
RMSF cluster, while Figure 7B shows the Neq of each RMSF cluster. This lets us see that
conformational diversity is demarcated with high Neq values, e.g., Neq values between
8 and 12 in CDR1 and CDR3 regions at almost all the residue positions. Hence, FR1,
FR2 and FR4 are highly similar in terms of Neq for all clusters, while FR3 (around MSA
position 95) is more complex with Neq values less than two for RMSF cluster 4 (pink line),
so slightly rigid, while the others can reach ‘four’ as in case of RMSF cluster 2 (in green),
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e.g., flexible. Around MSA position 85 of the same FR, they all have the same Neq value of
three as that of MSA position 10 of FR1. They are the most prominent positions in terms
of Neq for FRs. In FR2, RMSF cluster 2 has a higher value than the average distribution
(in green 8, i.e., disorder vs. high flexibility in red 6, see Figure 7B), while RMSF cluster
4 is only at 3. It is observed that the low Neq values of position 70 are mainly due to the
low occurrence number at this position for RMSF cluster 2. For CDRs, the situation is, as
expected, more complex.
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Figure 7. Local backbone diversity at the light of PBs. (A) PB map of all VHH trajectories aligned ac-
cording to MSA, (B) Neq values (red line—all VHH trajectories, sky blue—VHH trajectories belonging
to RMSF cluster 1, green—VHH trajectories belonging to RMSF cluster 2, purple—VHH trajectories
belonging to RMSF cluster 3 and pink—VHH trajectories belonging to RMSF cluster 4), PBs map of
VHH trajectories belonging to (C) from RMSF cluster 1, (D) from RMSF cluster 2, (E) from RMSF
cluster 3 and (F) from RMSF cluster 4. The x-axis represents the residue positions, and the y-axis
represents the types of PBs or the Neq.

Interestingly, the same antagonism can be observed in CDR1 for RMSF clusters 2
and 4 (e.g., in the C-terminal region, Neq > 9 for RMSF cluster 2, Neq of 7 on average
and of 4 for RMSF cluster 4). For CDR3, the situation is different, with high average Neq
corresponding to very different disorder conformations. Here, it is mainly RMSF cluster
4 that is more rigid, with Neq values around six or less. Very few qualitatively distinct
regions are seen when these four PB maps are compared. As a consequence, a comparison
of amino acid frequencies and PB frequencies in the structural dataset and PB frequencies
in the cumulative PB frequencies from trajectories belonging to each cluster were assessed
in order to obtain clarity (the sequence logos for amino acid and Protein Blocks for the
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four clusters are shown in Figures S16 and S17). To understand how each cluster differs
from the whole dataset, the difference in the frequencies of amino acid or PB at each
residue position of that cluster is subtracted from that of the whole dataset. The sum
of absolute values of the resultant frequency difference at each residue position gives a
quantitative estimate of the variability in amino acids or PBs (∆AA and ∆PB overlays of all
four clusters are seen in Figure S18A,B, respectively). At first glance, one can appreciate the
stark differences in amino acid and PB frequencies, suggesting a certain tolerance level for
backbone conformations to amino acid variations in the FR regions (1–25, 45–63, 77–113,
140–150) albeit with some deviations in the C-terminus loops inside the FR 1, 2 and 3 and
the CDR4 (N-terminal loop) present in FR3 region. This difference is also reflected in the
PB analyses of trajectories shown in Figure 8. A correlation between amino acid frequency
difference and PB difference of the four clusters in most residue positions confirms that
FRs show less diversity in both AA and PBs than CDRs (see Figure S20A–D).
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Figure 8. PBs’ differences in terms between each RMSF cluster. (A) ∆PB (with RMSF cluster 1 in sky
blue, with RMSF cluster 2 in green, with RMSF cluster 3 in purple and with RMSF cluster 4 in pink);
CDRs are shown with red line. 3D visualisation on structures of ∆PB values for (B) RMSF cluster 1,
(C) RMSF cluster 2, (D) RMSF cluster 3, and (E) RMSF cluster 4.

2.6. Regions-Wise Correlation between Amino Acid Sequence and PB Sequences

To understand which residue positions, in different regions, show the most variabil-
ity in terms of amino acids (AA) and PBs, and how they are correlated, a region-wise
examination of different residue positions is presented below.



Int. J. Mol. Sci. 2023, 24, 4511 13 of 22

2.6.1. Framework Region 1

In FR1, seven residue positions for ∆AA and five residue positions for ∆PB show
no change with respect to the dataset. Gly8, Gly9, Gly15, Ser17, Leu18, Leu 20 and the
characteristic Cys 22 are the conserved positions in all the clusters. Regarding PBs, residue
positions 19, 20, 21, 22 and 23 are clearly observed to be the extended confirmation of PB ‘d’
in all the clusters. The residue positions between 10 to 17 also show very few variations
in terms of PBs, as the ∆PB in this region for all the clusters is in the range of 0.02 to 0.04,
suggesting that the PBs between a particular cluster and the dataset are not significantly
diverse. This observation is corroborated by the dynamics of VHH belonging to each cluster
in this region (1–25) in Figure 8A. This analysis reveals, through two types of observations,
that Gly8 and Gly9 positions should not be altered because they preserve the flexibility in
the region as denoted by the diverse PB set (PB a, e, i and h). Whereas, positions 19 and 21
tolerate mainly AA substitutions that are hydrophilic (Ser, Thr, Arg, Lys).

2.6.2. Framework Region 2

It comprises the region between 45–62 residue positions in the MSA. There is only
one conserved amino acid residue position: the Trp47. Residue position 52 is almost
always represented by Proline except in limited cases where Threonine is found in VHH
belonging to cluster 3. The residue positions 48, 55, 56 and 58 are those known to undergo
hydrophilic amino acid substitutions compared to their VH counterparts. Regarding PBs,
positions 46–50 and 57 show no variations between clusters and the dataset. Surprisingly,
none of the residue positions show more than 0.3 values in ∆PB. This is also observed
in PB assignments of trajectories in the regions 45–62 in Figure 7A, where we see mostly
conserved PB assignments indicated by the intensity of the red colour.

2.6.3. Framework Region 3

The region comprises 77–113 residue positions in the MSA. It has a few conserved
residue positions [49] such as the Cys113, Arg85, Phe86, Ser89, Asp91, Leu99, Leu104,
Asp109, Thr110 and Ala111. The change in ∆AA never exceeds 0.45, and the ∆PB is notably
high only for one residue position 93, which is in the hypothesised CDR4 or the DE loop.
Next, almost all the residue positions from 98 to 113 show very insignificant change in ∆PB
values, suggesting this region is conserved in terms of local conformation (see Figure S20C).
Another notable observation is that this is the region that does not undergo high AA
substitutions (>0.4 for more than 90%) or changes in local conformations (>0.2 for more
than 95%), suggesting it is the most conserved region in the structure. This is also reflected
in the dynamics in Figure 8A; in the FR3 region between 77–113, cluster 4, cluster 3 and
cluster 1 show higher ∆PB values in the CDR4 region (89–93) and at the beginning of the
FR3 region.

2.6.4. Framework Region 4

It comprises a region between 140–150. It is eleven residues long and is the most
conserved region, with seven residue positions, 141, 143, 144, 146, 147, 149 and 150, showing
the same frequencies in all the clusters compared to the dataset. Residue 140 is mostly
tryptophan, other than arginine, lysine and tyrosine occurring in a few domains. The most
varying position of the alignment is 140 in cluster 3 and cluster 4. Regarding ∆PB, the
residue positions 146 and 147 are almost always conserved. This is also reflected in PBs in
the dynamics (see Figure 7B); PB diversity is hardly seen in clusters 1, 2, and 3 (Neq ~ 3).
Only cluster 4 shows higher values of Neq.

2.6.5. Complementary Determining Regions

For CDRs, it is not as simple as for FRs to perform the analysis as mentioned above.
As expected, the ∆AA and ∆PB are uncorrelated. However, if cluster-wise values are
considered (see Figure S20E–G), cluster 3 and cluster 4 show higher values in all three
CDRs, which are generally observed in the literature too.
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3. Discussion

This study carried out a large-scale conformational exploration of VHH domains for the
first time. A set of 88 VHH domain trajectories of 1µs were analysed with the principal aim
towards understanding the flexibility in different regions of VHH domains, using classical
methods such as Cα RMSF and innovative in-house methods such as Protein Blocks.

Substantial analyses were performed to reveal the differences in metrics used to denote
flexibility experimentally and theoretically. A startling observation is shown in Figure 4,
where there is a discrepancy between the mean B-factor (Figure 4B), mean RMSF (Figure 4C)
and the mean Neq values (Figure 4D). This Figure underlined that regions with high B-factor
values can be associated with low RMSF and Neq values. It suggests that not all residues
with high-normalised B-factor values must be always considered conformationally diverse
residues. In previous studies on a large set of globular proteins, it was determined that
B-factor and RMSF have a correlation of 0.42–0.45, while it is less than 0.15 with Neq [50–52].
These values may seem low, but the experimental approaches and simulations each have
their own limitations (crystalline contact, locally limited sampling, etc.). The differences
between RMSF/B-factor and Neq are expected; the first being values calculated globally,
while the Neq is local (over five residues) [36,46].

Hierarchical clustering was then used to cluster the VHH trajectories using RMSF
values. The distance calculation was guided by the MSA of VHH sequences in the dataset;
only RMSF values of aligned residue positions were used. Four dense clusters show varying
degrees of flexibility in FRS and CDRs. A first look at the normalised B-factors of structures
from these four clusters reveals almost entirely flexible regions in FR4 and FR1, except for
residue regions (21–25). The C-terminal loop in FR2 is almost always flexible in all four
clusters (54–56), see Figure 5. Even the so-called CDR4 loop is flexible in all four clusters.
When the RMSF values were compared in these clusters in the flexible regions mentioned
above, they were almost always in the regions mentioned above except for a few residues
at the extremities. This often gives a wrong impression about conformational diversity.

To enable a much deeper understanding of conformational diversity, the residues in the
three CDR loops are categorised based on two thresholds for normalised RMSF (2.0) and Neq
(3.0) to classify the mobile and flexible regions. The quadrant with normalised RMSF > 2.0
and Neq > 3.0 was considered flexible. The quadrant with normalised-RMSF > 2.0 and
Neq < 3.0 was considered mobile. Both regions in all the CDRs showed normalised B-factor
values in the positive and negative range, suggesting that B-factors alone as a criterion for
flexibility is insufficient.

We attempt to further delineate flexibility in CDRs by assessing the correlation between
normalised RMSF and Neq variables, as shown in Figure S18A,D,G for CDR1, CDR2 and
CDR3, respectively. Four regions in these plots were delineated using two cut-off values
arbitrarily determined. This value was two for normalised RMSF and three for Neq. This
choice is based on our previous experiences of analysis of classical MD simulations of
ordered and disordered regions of proteins. We have focused on two quadrants with
high-normalised RMSF (above two): (i) the one with low Neq below three, the residues are
considered mobile, and (ii) the one with Neq above three, where the residues are considered
flexible. The question is whether these behaviours are already seen in experimental values,
namely B-factors. Hence, the normalised B-factors for these residues from the original
crystal structures are shown in the distributions next to the scatter plots. The second vertical
panel is for the flexible region with CDR1 (see Figure S21B), CDR2 (see Figure S21E) and
CDR3 (see Figure S21H). The third vertical panel (Figure S21C,F,I) is for the mobile region
in the same order.

Both panels for all the CDRs show a range of normalised B-factors from negative
to positive, suggesting that regions, which are otherwise classified as rigid based on
normalised B-factors, show conformational diversity. Median values are also equivalent, so
that no difference can be observed directly from these experiments.

After further examination of the differences in amino acid content in the two quadrants,
surprisingly, both regions had the most similar presence of amino acids; however, some
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were exclusive to each group. For example, glutamate, methionine, proline and histidine
were exclusive to the flexible quadrant, whereas asparagine, isoleucine and tryptophan
were exclusive to the mobile quadrant for CDR1. Interestingly, proline is present in the
mobile region for CDR2 along with aspartate, and like in the case of CDR1, glutamate is
exclusive to the flexible region.

The amino acids cystine and lysine are exclusive to the flexible region of CDR3, and
phenylalanine, asparagine, and methionine are exclusive to the mobile quadrant.

Our previous study observed that the distance between CDR1 terminal residues in
the VHH domains is not conserved and can vary ±3 Å in the dataset. In this current study,
we wanted to verify where the deviation is conserved in simulation in the case of CDR1
termini, and if there are any observable changes in CDR2 and CDR3.

This analysis is shown in Figure 8, where the mean and standard deviation in the
termini length observed for all the CDRs for concatenated 1 µs trajectories of 88 VHH have
been shown. The CDR1 termini length distributions shown in Figure 9A convey that there
is, on average, 0.1 Å std for all the CDR1 in the dataset. However, it is strange to note
that the mean extremity lengths in some cases are noticeably lower. In the case of CDR2
(Figure 9B), two VHH trajectories show a high mean termini distance compared to the rest
of the trajectories. In the case of CDR3 (Figure 9C), cases show more than 0.1 Å differences
in mean CDR3 termini distance. This analysis reveals that the CDR2 and CDR3 termini are
less displaced due to each other’s terminal residue, whereas the CDR1 terminal residue
shows much more preference towards the displacements.
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The current study is the first to attempt to underline the RMSF variations used to
classify entire domains as they are known to be influenced by amino acids at their respective
positions, which in turn influence local conformational flexibility.
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In our further analysis to specify the residue positions, which change local confor-
mational flexibility in FRs, we looked at the correlation between amino acid frequency
conservation and PB frequency conservation in a specific cluster with respect to the dataset.
This analysis showed a fascinating observation (reference Figure S20A–D) that shows that
the FR1 and FR4 show greater changes in ∆PB to ∆AA in the regions. In contrast, the FR2
region shows a lesser degree of PB (local conformational flexibility) diversity with higher
diversity of AA in all clusters, most conspicuously in cluster 4. The most conformational
conserved region is FR3; it does not show many variations in amino acids, except in the
‘CDR4 region’ (89–90 residue position in the MSA), which is also preserved in terms of PB
assignments in structure and dynamics (Figure 8A).

Of course, our approach has shortcomings and could be improved by adding new
structures of VHHs, but also by continuing the analysis towards docking. An interesting
point would be to test metrics other than a Euclidean distance. To understand the diversity
in RMSF across the length of VHH, it is reflected in terms of PBs. We conducted another
clustering analysis, this time using average ∆PB (see Figure S22). This analysis also
resulted in four distinct clusters. A PB map of the concatenated trajectories and their initial
starting structures are shown in Figure 10. A confusion matrix was calculated between the
clusters obtained by RMSF and average ∆PB (see Table S2). This analysis revealed that
the largest cluster in hierarchical clustering using RMSF values was distributed among
all the four clusters obtained using average ∆PB as the criteria. The 42 cluster members
from cluster 1 (RMSF clustering) are found to belong to cluster 1 (Average ∆PB clustering):
15, cluster 2 (Average ∆PB clustering): 11, cluster 3 (Average ∆PB clustering): 12 and
cluster 4 (Average ∆PB clustering): 4. This brings us to ask whether local conformation-
based clustering may provide more meaningful full comparisons between the dynamics of
homologous domains, especially in VHH, to understand their behaviours.
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4. Materials and Methods
4.1. Protein Structure Databank

We selected 88 VHH protein structures from the Protein Data Bank [17]. They are
non-redundant, as described in [20]. Multiple Sequence Alignments were performed with
ClustalOmega tool [39].

4.2. Molecular Dynamics

The MD protocol follows the same principle as our previous works [46,47]. The do-
mains were simulated using GROMACS 2016.4 software [53,54] with the AMBERff99SBildn
force field [55], with TIP3P water molecules added to solvate, surrounding the VHH in
the centre of a dodecahedron periodic box with a side of at least 10 Å between the edge
of the box and the protein. Hydrogen atoms were added to represent protonation states
at pH 7. In each case, the system was neutralised, and then 150 mM of NaCl was added
to match the physiological conditions. Again, the entire system’s periodic electrostatics
was calculated using Particle Mesh Ewald (PME). The minimisation was performed using
the steepest descent algorithm for 50,000 steps. An equilibration run was performed using
an NVT ensemble to heat to 300 K using a modified Berendsen thermostat; then, an NPT
was run with Parrinello−Rahman coupling for pressure control at 1 atm. All bonds were
constrained with the parallel LINCS method, with short-range no bonded electrostatic
interactions calculated with a cut-off of 10 Å and van der Waals with a cut-off of 10 Å.
Each production run was completed for 250 ns total using a 2 fs time step in four replicates



Int. J. Mol. Sci. 2023, 24, 4511 18 of 22

amounting to 1 µs for each protein. The coordinates and the velocities were calculated at
every 10 ps interval.

4.3. Molecular Dynamics Analysis

The analysis of MD trajectories is performed using classic tools, such as the Root-
Mean-Square Fluctuation (RMSF) of the Cα atoms using scripts from GROMACS software,
and other more innovative approaches such as PBxplore [56], available on GitHub (https:
//pypi.org/project/pbxplore/ accessed on 8 January 2023). PBxplore allows it to assign
Protein Blocks (see below) throughout the MD trajectories (see Method S1 for more details).

Protein Blocks (PBs) are a structural alphabet composed of 16 local prototypes [43].
PBs give a reasonable approximation of all local protein 3D structures [44]. PBs are very
efficient in tasks such as protein superimpositions [57–59] and MD analyses [36], even for
disorder proteins [38]. PB assignments are performed for each residue of the C-domain and
over every snapshot extracted from MD simulations. The equivalent number of PBs (Neq)
is a statistical measurement similar to entropy, representing the average number of PBs for
a residue at a given position. Neq is calculated as follows [43]:

Neq = exp

(
−

16

∑
x=1

fx ln fx

)

where fx is the probability of PB x. A Neq value of 1 indicates that only one type of PB
is observed, while a value of 16 is equivalent to a random distribution. To underline the
main differences between any two sets of trajectories/structures for each position, the ∆Neq
value is computed. ∆Neq is the absolute difference between corresponding Neq values.

However, the same ∆Neq value can be obtained with different types of PB in similar
proportions. To detect a change in the PB profile, a ∆PB value was calculated. It corresponds
to the absolute sum of the differences for each PB between the probabilities of a PB x present
in the first and the second forms (x goes from PB a to PB p). ∆PB is calculated as follows [47]:

∆PB =
16

∑
x=1

∣∣∣( f 1
x − f 2

x

)∣∣∣
where f 1st

x and f 2nd
x are the percentages of occurrence of a PB x in respectively the first

and the second system. A value of 0 indicates perfect PBs identity between the 1st and 2nd
systems, while a score of 2 indicates a maximum total difference.

4.4. Protein Structure and Trajectory Visualisation

Visualisation of original structures was performed using PyMOL (The PyMOL Molec-
ular Graphics System, Version 1.7.2 Schrödinger, LLC) [60,61]. The trajectories were visu-
alised using VMD [62]. Secondary structure assignment was performed using DSSP (ver-
sion 2.2.1 available at GitHub, https://github.com/cmbic/xssp accessed on 8 January 2023)
with default parameters [63].

4.5. Metric Normalisation

Normalised B-factors were calculated from experimental B-factors as mentioned in
the study [64], wherein the B-factor of the Cα atom was extracted for all the residues of the
protein, and B-factor of (ith residue) was treated with the mean and standard deviation (Bσ

of all the B-factors of Cα atoms of a given domain like in the formula, a similar method
was applied to normalised RMSF also):

BNorm = (Bi − Bµ)/Bσ

https://pypi.org/project/pbxplore/
https://pypi.org/project/pbxplore/
https://github.com/cmbic/xssp
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4.6. Hierarchical Clustering of VHH Dynamics

RMSF were used to compare VHH dynamics and propose a clustering. A simple nor-
malised Euclidean distance metric was used in our previous study [65,66]. Only positions
with aligned amino acids are used for the distance calculation using the following formula:

d(v, w) =

√
1

n − m

n

∑
i=1

(v(i)− w(i))

d(v,w) is the distance between RMSF of VHH v and VHH w, n represents the total
length of the alignment and m the number of gaps. From the distance matrix of d values for
the 88 VHHs, hierarchical clustering with a complete metric is performed with R software.

4.7. Scripting

All the scripts for analysing VHH structures were performed using Python 3.6 with NumPy
library [67] and R 3.3.3 [68]. Sequence alignments were performed by the ClustalOmega tool
(version 1.2.4) with default parameters [39] and visualised with Jalview (version 2.11.2.3) [69].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms24054511/s1.
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