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Abstract 21 

Objective: Physical activity has been associated with a decreased risk for dementia, 22 

but the mechanisms underlying this association remain to be determined. Our 23 

objective was to assess whether cardiovascular risk factors mediate the association 24 

between physical activity and brain integrity markers in older adults. 25 

Methods: Participants from the Age-Well study underwent, at baseline, a physical 26 

activity questionnaire, cardiovascular risk factors collection (systolic blood pressure, 27 

body mass index [BMI], current smoker status, HDL-cholesterol, total-cholesterol, 28 

insulin) and multimodal neuroimaging (structural-MRI, diffusion-MRI, FDG-PET, 29 

Florbetapir-PET). Multiple regressions were conducted to assess the association 30 

between physical activity, cardiovascular risk factors, and neuroimaging. Mediation 31 
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analyses were performed to test whether cardiovascular risk factors mediated the 32 

associations between physical activity and neuroimaging.  33 

Results: 134 cognitively unimpaired older adults (≥65 years) were included. Higher 34 

physical activity was associated with higher grey matter (GM) volume (ß=0.174, 35 

p=0.030) and cerebral glucose metabolism (ß=0.247, p=0.019), but not with amyloid 36 

deposition or white matter integrity. Higher physical activity was associated with lower 37 

insulin and BMI, but not with the other cardiovascular risk factors. Lower insulin and 38 

BMI were related to higher GM volume, but not to cerebral glucose metabolism. 39 

When controlling for insulin and BMI, the association between physical activity and 40 

cerebral glucose metabolism remained unchanged, while the association with GM 41 

volume was lost. When insulin and BMI were entered in the same model, only BMI 42 

remained a significant predictor of GM volume. Mediation analyses confirmed that 43 

insulin and BMI mediated the association between physical activity and GM volume. 44 

Analyses were replicated within Alzheimer’s disease-sensitive regions, and results 45 

remained overall similar. 46 

Conclusions: The association between physical activity and GM volume is mediated 47 

by changes in insulin and BMI. In contrast, the association with cerebral glucose 48 

metabolism seems to be independent from cardiovascular risk factors. Older adults 49 

practicing physical activity have cardiovascular benefits, through the maintenance of 50 

a lower BMI and insulin, resulting in greater structural brain integrity. This study has 51 

strong implications as understanding how physical activity affects brain health may 52 

help developing strategies to prevent or delay age-related decline. 53 

Trial Registration Information: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-54 

44; ClinicalTrials.gov Identifier: NCT02977819. 55 

  56 
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Introduction  57 

Physical activity is important in preventing pathological aging and dementia, including 58 

Alzheimer’s Disease (AD).1 Growing evidence indicates that older adults engaging in 59 

a higher amount of physical activity have greater brain integrity,2,3 including increased 60 

grey matter (GM) volume,4  cerebral glucose metabolism,5,6,7 WM microstructural 61 

integrity,8 along with reduced amyloid burden7,6,9 and white matter hyperintensities 62 

(WMH).8 However, the relationship between physical activity  and brain structure and 63 

function is still not fully understood as i) some inconsistencies remained10 and ii) the 64 

mechanisms by which physical activity exerts its benefits on brain health remain to be 65 

determined. Animal studies suggest that physical activity promotes neurogenesis, cell 66 

survival, expression of neurotrophic factors, and synaptic plasticity,3 while human 67 

studies also propose indirect effects of physical activity, via a reduction in 68 

cardiovascular risk factors.11,12 In fact, physical activity has been proven to efficiently 69 

reduce cardiovascular risk factors,13,14 which are known to increase dementia risk 70 

and negatively affect brain structure and function.15 Nevertheless, the role of 71 

cardiovascular risk factors on the association between physical activity and brain 72 

integrity remains unknown. Most of the studies only controlled for cardiovascular risk 73 

factors and found no changes after such correction,16 but contradictory findings have 74 

also been reported.17 75 

The scarcity of studies combining several neuroimaging modalities in the same 76 

sample, and exploring the role of cardiovascular risk factors in the association 77 

between physical activity and neuroimaging biomarkers, make it difficult to 78 

understand how physical activity contributes to brain health. We investigated whether 79 

the association between physical activity and multimodal neuroimaging, including GM 80 
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volume, cerebral glucose metabolism, amyloid burden, WMH load, and WM 81 

microstructure, is mediated by cardiovascular risk factors.  82 

 83 

Methods 84 

Participants  85 

Participants from the baseline visit of the Age-Well randomized clinical trial (Medit-86 

Ageing European Project),18 were included (Figure 1). Individuals were recruited from 87 

the general population from November 2016 until March 2018. They were all native 88 

French speakers, retired for at least 1 year, had at least 7 years of education, and 89 

performed within the normal range on standardized cognitive tests. The main 90 

exclusion criteria were antecedent of major neurological or psychiatric disorders 91 

(including alcohol or drug abuse), presence of a chronic disease or acute unstable 92 

illness (including cardiovascular and metabolic affections), and current or recent 93 

treatments that may interfere with cognitive functioning. All participants included 94 

underwent structural MRI, 18F-florbetapir-PET and 18F-fluorodeoxyglucose (FDG)-95 

PET scans, along with a physical activity questionnaire, blood sampling and a clinical 96 

exam including information on cardiovascular risk factors, within a 3-months period. 97 

Baseline data were collected from November 2016 until April 2018. 98 

 99 

Standard Protocol Approvals, Registrations, and Patient Consents  100 

The Age-Well randomized clinical trial was approved by local ethics committee 101 

(Comité de Protection des Personnes Nord-Ouest III, Caen, France; trial registration 102 

number: EudraCT: 2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov 103 

Identifier: NCT02977819) and all participants gave their written informed consent 104 

prior to the examinations. 105 
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 106 

Image Acquisition  107 

All participants were scanned on the same magnetic resonance imaging (MRI; Philips 108 

Achievia 3.0T scanner) and positron emission tomography (PET; Discovery RX VCT 109 

64 PET-CT scanner, General Electric Healthcare) cameras at the Cyceron Center 110 

(Caen, France).  111 

A high-resolution T1-weighted structural image using a 3D fast-field echo sequence 112 

(sagittal; repetition time (TR): 7.1 ms, echo time (TE): 3.3ms, field of view (FOV): 113 

256×256 mm2, 180 slices, voxel size: 1×1×1 mm3) and a 3D fluid-attenuated 114 

inversion recovery (FLAIR; sagittal; TR: 4800 ms, TE: 272 ms, inversion time: 1650 115 

ms; FOV: 250×250 mm2, 180 slices, voxel size: 0.98×0.98×1 mm3) were acquired for 116 

133 participants. An echo-planar imaging/spin echo diffusion weighted sequence 117 

(DKI) was then performed at multiple shells for 133 participants: 3b-values (0, 1000, 118 

2000 s/mm2) (axial; 30 directions, TR: 6100 ms, TE: 101 ms, flip angle, 90˚, FOV: 119 

216×216 mm2, 48 slices, voxel size: 2.7×2.7×2.7 mm3) and additional blips images 120 

with b=0 s/mm2 (number of signal averages, 9) were acquired in reverse phase 121 

encoding direction for susceptibility distortion.  122 

Florbetapir- and FDG-PET scans were acquired in two separate sessions, with a 123 

resolution of 3.76×3.76×4.9 mm3 (FOV: 157 mm). Forty-seven planes with a voxel 124 

size of 1.95×1.95×3.27 mm3 were obtained. Before the PET acquisition, a 125 

transmission scan was performed for attenuation correction. For Florbetapir-PET, 126 

each participant (n=133) underwent a 10-min PET scan beginning 50 minutes after 127 

the intravenous injection of ~4MBq/Kg of Florbetapir. For the FDG-PET scan, 128 

participants (n=92) were fasted for at least 6 hours before scanning. After a 30-min 129 

resting period in a quiet and dark environment, ~180 MBq of FDG were intravenously 130 
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injected as a bolus and a 10-min PET acquisition scan was acquired 50 minutes after 131 

injection. 132 

 133 

Image processing  134 

T1-weighted MRIs were segmented using FLAIR images and normalized to the 135 

Montreal Neurological Institute (MNI) space. GM normalized segments were 136 

modulated to correct for nonlinear warping effects using the Statistical Parametric 137 

Mapping (SPM12) software’s multiple channels segmentation procedure 138 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12).  139 

Raw FLAIR images were coregistered onto their corresponding native space T1-140 

weighted MRI, and WMH were segmented by the lesion prediction algorithm LPA19 141 

implemented in the Lesion Segmentation Toolbox version 2.0.15 (www.statistical-142 

modelling.de/lst.html) for SPM12. A minimum extend threshold of 0.01 cm³ was set. 143 

Lesion probability maps were binarized by applying a threshold of 0.5 and lesions 144 

masks were thus generated. Lesion masks were then visually inspected and 145 

corrected for false positives in corticospinal tracts if necessary, using a specific 146 

corticospinal tract mask for each participant.20   147 

DKI images were corrected for susceptibility artifacts, eddy current distortions and 148 

subject motion using Functional Magnetic Resonance Imaging of the Brain diffusion 149 

toolbox (FSL 5.0.9, http://www.fmrib.ox.ac.uk/fsl). DKI data were then processed 150 

using Matlab R2012b (MathWorks, Natick, MA) and the Diffusional Kurtosis Estimator 151 

software (DKE: Version 2.6; http://nitrc.org/projects/dke) to estimate the diffusional 152 

kurtosis tensor.21 Images were smoothed with a 3.375×3.375×3.375 mm full-width at 153 

half-maximum (FWHM) Gaussian filter. Mean kurtosis (MK) and fractional anisotropy 154 

(FA) maps, reflecting WM microstructural integrity,22 were then extracted from the 155 

http://www.fmrib.ox.ac.uk/fsl
http://nitrc.org/projects/dke
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diffusional kurtosis estimator. These maps were coregistered to the T1-weighted MRI 156 

and normalized to the MNI template by applying the deformation parameters from the 157 

corresponding T1-weighted MRI.  158 

PET data were coregistered onto their corresponding MRI, corrected for partial 159 

volume effects (PVE) using the Muller-Gartner method, and normalized using the 160 

deformation parameters defined from the T1-weighted procedure. Resulting images 161 

were quantitatively normalized using the cerebellar GM as the reference region.  162 

Averaged global neuroimaging values were obtained by applying a binary mask of 163 

GM for preprocessed T1-weighted and PET images, and a binary mask of WM, for 164 

preprocessed DKI images. The cerebellum was excluded from both masks, and only 165 

voxels with a probability >60% of being GM and WM were included, to exclude non-166 

GM or WM voxel and reduce the probability of overlap with other tissue classes.    167 

For FLAIR data, the total volume of WMH was extracted, as fully described 168 

elsewhere.20  169 

To investigate how the results could apply to AD, neuroimaging values were also 170 

extracted in AD-sensitive regions. More specifically, we extracted GM volume in the 171 

hippocampus (ROI), glucose metabolism SUVR in the precuneus (from the AAL 172 

atlas) and in a posterior cingulate and temporoparietal regions previously 173 

determined,23 as well as FA in the cingulum (from the JHU WM atlas). 174 

 175 

Physical activity  176 

Physical activity over the last 12 months was assessed using a French version of the 177 

Modifiable Activity Questionnaire (MAQ),24 adapted to be self-administered.25 This 178 

version of the questionnaire allows assessing the amount of physical activity, 179 

including both leisure activities and work activities. Since participants were retired, 180 
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only the leisure-related physical activity was considered in the present study. 181 

Participants had to report, for each activity they did at least 10 times over the last 12 182 

months (e.g., walking, hiking, biking, gardening, jogging), how much time they spent 183 

doing that activity (i.e., how many months per year, time per month and minutes each 184 

time). The total physical activity score corresponds to the average hours per week of 185 

leisure-time physical activity over the last 12 months. The averaged hours per week 186 

was calculated for each activity as follows [(number of months per year) x (number of 187 

times per month) x (minutes per time) / 60 (min)] / 52 (week per year), and which 188 

were summed to obtain a total score of physical activity. 189 

 190 

Cardiovascular risk factors  191 

Cardiovascular risk factors measures included insulin, cholesterol (total and HDL), 192 

systolic blood pressure, BMI and smoking habits. 193 

Fasting blood sample were obtained for all participants. The plasma concentration of 194 

Insulin (pmol/L) was performed by chemiluminescence assay on automated analyzer 195 

COBAS 6000 (Roche diagnostics, Meylan, France), using ready-made commercial 196 

reagent kits (Insulin ROCHE). The quantitative determination of total cholesterol 197 

(mmol/L) and high-density lipoprotein (HDL; mmol/L) cholesterol concentrations in 198 

serum were carried out by an enzymatic staining test in Beckman Coulter Clinical 199 

Chemistry AU analyzers (Beckman Coulter, Villepinte, France). Systolic blood 200 

pressure (SBP; mm Hg) was averaged over three consecutive assessments at two 201 

different times in a seated position at rest. The BMI was objectively obtained during 202 

the medical interview and was calculated as weight in kilograms divided by height in 203 

meters squared (Kg/m2). Participants were questioned on their smoking habits and 204 

were classified as currently smokers (yes) or not (no).  205 
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 206 

Statistical analysis  207 

We carried out multiple linear regressions, in order to assess whether there was a 208 

specific association between (1) physical activity and each neuroimaging value 209 

separately, (2) physical activity and each cardiovascular risk factor separately and 3) 210 

cardiovascular risk factors and neuroimaging values that were significantly 211 

associated with physical activity. Next, to better understand the specific implication of 212 

each cardiovascular risk factor to these effects, we replicated the same multiple 213 

regression by including cardiovascular risk factors of interest (i.e. found to be 214 

associated in the previous analyses) in the same model.  All analyses were controlled 215 

for age, sex, and education. Analyses with insulin, total and HDL-cholesterol, and 216 

SBP were further controlled for hypo-glycaemic, hypo-cholesterol and high-blood 217 

pressure treatments, respectively.  218 

Models with polynomial terms of different orders for physical activity were considered, 219 

to assess which function best described the association between physical activity and 220 

neuroimaging global values (Supplemental materials). 221 

Analyses were conducted using the R software (R Core Team, 2019) and considered 222 

significant at a p<.05. 223 

Finally, we used causal mediation analyses to examine whether the cardiovascular 224 

risk factors mediated these associations.  225 

We tested the mediation effect using “mediation analysis”, and we reported the 226 

average direct effects and average causal mediation effect estimated using 227 

nonparametric bootstrapping based on 5000 bootstrap samples, p<.05. 228 

 229 

Data availability 230 
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Data is available on request following a formal data sharing agreement and approval 231 

by the consortium and executive committee. The data sharing request form can be 232 

downloaded at https://silversantestudy.eu/2020/09/25/data-sharing/. 233 

 234 

Results 235 

Data of 134 cognitively unimpaired older adults (≥65 years) were analyzed. 236 

Participants’ characteristics are detailed in Table 1. Because physical activity, insulin 237 

and BMI were not normally distributed, values were log-transformed. One participant 238 

had a physical activity score of zero, which cannot be log-transformed. As a result, to 239 

be able to include this subject in the analyses, a constant of 1 was added to all 240 

physical activity scores before transformation. 241 

 242 

Association between physical activity and global neuroimaging measures 243 

Higher physical activity was correlated to higher global GM volume (Figure 2A) and 244 

cerebral glucose metabolism (Figure 2B), but not with amyloid burden, WMH volume 245 

or WM microstructural integrity (MK; Table 2).  246 

The association between physical activity and GM volume was best described by a 247 

linear function. The association between glucose metabolism and physical activity 248 

seemed also better described by a linear association, even though some indices 249 

suggest that the quadratic model cannot be completely rejected (Supplemental 250 

materials, eTable 1). 251 

 252 

Association between physical activity and cardiovascular risk factors 253 

Higher physical activity was associated with lower insulin (Figure 2C) and BMI 254 

(Figure 2D), but not with total and HDL-cholesterol, SBP or current smoker status 255 

https://silversantestudy.eu/2020/09/25/data-sharing/
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(Table 2). Results remained similar when further controlling for treatments 256 

(Supplemental materials, eTable 2). 257 

When insulin and BMI were entered in the same model, they were no longer 258 

associated with physical activity, suggesting that the link of physical activity with 259 

insulin and BMI is not independent one from another. Consistently, insulin and BMI 260 

were highly correlated. 261 

 262 

Association between cardiovascular risk factors and global neuroimaging measures 263 

We then examined whether the cardiovascular risk factors (insulin, BMI) and the 264 

global neuroimaging values (GM volume and cerebral glucose metabolism) found to 265 

be associated with physical activity were correlated to each other. Lower insulin 266 

(Figure 2E) and BMI (Figure 2F) were both correlated with higher GM volume, but 267 

neither of them was associated with cerebral glucose metabolism (Table 3). When 268 

BMI and insulin were included in the same model, the correlation of GM volume with 269 

insulin was lost, while the association with BMI remained unchanged, suggesting that 270 

the association between insulin and GM volume was driven by BMI. Results 271 

remained similar when further controlling for treatments (Supplemental materials, 272 

eTable 1). 273 

 274 

Influence of cardiovascular risk factors on the association between physical activity 275 

and neuroimaging 276 

When the association between physical activity and GM volume was controlled for 277 

insulin and BMI separately, or simultaneously, the association was lost. On the other 278 

hand, the association with cerebral glucose metabolism remained significant when 279 

controlling for insulin, BMI or both. 280 
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 281 

Mediation analyses 282 

To directly assess whether the association between physical activity and global GM 283 

volume was mediated by insulin and BMI, we performed mediation analyses. The 284 

relationship between physical activity and GM volume was fully mediated by insulin 285 

(Figure 3, Model 1) and BMI (Figure 3, Model 2). The indirect effects of insulin and 286 

BMI separately were significant (Table 4).   287 

 288 

AD-sensitive region of interest 289 

To further investigate whether the effect of physical activity, cardiovascular risk 290 

factors and the mediations were present in regions specifically involved in AD, 291 

analyses were replicated on GM volume, glucose metabolism and WM 292 

microstructural integrity in AD-sensitive ROIs. 293 

As depicted in Table 1, higher physical activity was correlated to higher hippocampal 294 

volume and glucose metabolism in the precuneus (Supplemental materials, eFigure 295 

1A,B), but not to global glucose metabolism, suggesting that the link found in the 296 

main analyses involves only in part AD-sensitive regions.  297 

 298 

We then examined whether the cardiovascular risk factors (insulin, BMI) and the 299 

neuroimaging values (hippocampal volume and glucose metabolism of the 300 

precuneus) found to be associated with physical activity were correlated to each 301 

other. Lower insulin and BMI were correlated with higher hippocampal volume (Table 302 

2; Supplemental materials, eFigure 1C,D). Of note, when adding insulin and BMI into 303 

the model, BMI was the best predictor of hippocampal volume. On the other hand, 304 

neither insulin, nor BMI were associated with glucose metabolism of the precuneus. 305 
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 306 

When insulin and BMI were added separately or simultaneously (Table 2) in the 307 

regression model between physical activity and hippocampal volume, the association 308 

was not significant anymore (although close to the threshold of 0.05). 309 

 310 

Mediation analyses confirmed that insulin (Figure 2, Model1) and BMI (Figure2, 311 

Model 2) fully mediated the association between physical activity and hippocampal 312 

volume. The indirect effects of insulin and BMI separately were significant (Table 3).  313 

 314 

Complementary analyses: 315 

Analyses were replicated on FDG-PET data not corrected for PVE, and show similar 316 

results (Supplemental materials, eTable 3, eTable 4, eFigure 2). 317 

In addition, to further investigate whether other lifestyle factors drive the association 318 

between physical activity and brain integrity, analyses were replicated adjusting for 319 

Mediterranean diet adherence and lifetime cognitive activity. Results remained similar 320 

(Supplemental materials, eTable 5, eTable 6), suggesting that the associations 321 

previously highlighted are not driven by other lifestyle factors. 322 

 323 

Discussion 324 

Our multimodal neuroimaging study provides an integrated view of the differential 325 

association between physical activity and complementary measures of brain integrity. 326 

In cognitively unimpaired older adults, we found that physical activity was directly 327 

associated with cerebral glucose metabolism, while the association with global GM 328 

volume was mediated by cardiovascular risk factors, and more specifically insulin and 329 

BMI. Similar results were found when focusing on AD-sensitive brain regions. 330 
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 331 

The finding that physical activity is associated with higher GM volume is in line with 332 

previous literature in cognitively unimpaired older adults using self-reported physical 333 

activity and related measures such as exercise and fitness.26,27,28,6 Importantly, this 334 

association was mediated by the effect of insulin and BMI. These results tie well with 335 

prior studies showing that increased physical activity in older adults was 336 

accompanied with lower insulin9 and BMI29 and other evidence showing that lower 337 

insulin and BMI30 were linked to greater GM volume in older adults. One conceivable 338 

explanation is that physical activity leads to better cardiovascular health, which could 339 

in turn lead to a greater preservation of brain structure.31 340 

Obesity and insulin dysfunction may develop with aging,32 and are risk factors for 341 

brain atrophy, cognitive impairment and dementia, including AD.33,30 Obesity is the 342 

most common cause of insulin resistance34,32 and they are both source of 343 

inflammation and oxidative stress,35 that negatively impact brain health and increase 344 

AD risk.36 Insulin action in the brain includes neuroprotective, neurotrophic and 345 

neuromodulatory functions, and its perturbation may accelerate brain atrophy in AD.33 346 

Insulin resistance is the main characteristic of Type 2 Diabetes, a disease associated 347 

not only with aging, obesity and physical inactivity,37 but also with brain atrophy and 348 

increased dementia risk.38 Recently, active lifestyle has been found to protect against 349 

the deleterious effects of diabetes on dementia over 12 years, likely through its 350 

positive impact on reduced brain volume loss.39 Interestingly, insulin and BMI were 351 

strongly associated in our study, and when insulin and BMI were included in the 352 

same model to predict GM volume, BMI remained the only predictor. Therefore, we 353 

argue that maintenance of a lower BMI through physical activity could help 354 
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preventing disturbed insulin metabolism observed in aging, thus promoting brain 355 

health. 356 

To date, only one study specifically looked at and found insulin sensitivity to mediate 357 

the relation between physical activity and anterior cingulate cortex volume.40 Thus, 358 

our study extends these results to a global measure of GM volume. Only a small 359 

number of studies accounted for the effect of BMI on the association between 360 

physical activity and GM volume, 6,27,16 but they failed to find a dependent effect of 361 

BMI on this association. This contradictory finding might be due, in part, to smaller 362 

physical activity assessment periods (e.g., last 7 days) considered in other 363 

research,16 which may have hampered an effect on BMI and, by extension, any 364 

possible mediation on the link between physical activity and GM volume. Others 365 

included a smaller27 or younger sample than the one included here.6 Our findings go 366 

beyond previous reports, providing evidence of indirect, cardiovascular risk factors-367 

dependent, association between physical activity and GM volume.  368 

 369 

As a second key finding, physical activity was associated with greater cerebral 370 

glucose metabolism in a subsample of 92 participants, in agreement with FDG-PET 371 

neuroimaging modality;5,6,7 but see.10 Most importantly, the relation between physical 372 

activity and cerebral glucose metabolism did not depend on insulin or BMI. The 373 

benefits of physical activity on cerebral glucose metabolism may rather act through 374 

more direct neuronal effects, such as increased neurogenesis, cell survival, 375 

expression of neurotrophic factors, and synaptic plasticity.3 The increased nutrient 376 

and energy demands of these neural processes are met with increased expression of 377 

enzymes implicated in glucose use and metabolism.13 Alternatively, benefits of 378 

physical activity on cerebral glucose metabolism could be mediated by other factors 379 
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not measured here. With regards to insulin, the literature is controversial. Some 380 

animal studies highlighted the role of insulin in the regulation of brain glucose uptake 381 

and metabolism.41 However, evidence in Humans is contradictory, with studies 382 

reporting an association of brain glucose uptake with insulin42 and insulin 383 

resistance,43 while others found no correlation with neither of them.44 Our results 384 

align with prior observations showing that neuron glucose uptake, transport and use 385 

can be influenced by, but would not depend on, insulin.33 Similarly, evidence on the 386 

link between BMI and cerebral glucose metabolism in aging individuals is weak and 387 

heterogeneous. Higher BMI has been found to be associated with both increased45 388 

and reduced5 cerebral glucose metabolism, preventing from drawing clear 389 

conclusions. Only a few studies previously examined the association between 390 

physical activity and cerebral glucose metabolism in older participants.5,6,7 Among 391 

them, none controlled for insulin, making it difficult to assess whether it might have 392 

influenced that relationship. On the other hand, in the ones controlling for BMI, the 393 

association between physical activity and cerebral glucose metabolism remained 394 

significant.16 Overall, it remains unclear how much insulin and BMI are involved in the 395 

regulation of cerebral glucose metabolism. In the present study however, we did not 396 

find these cardiovascular risk factors to be related to cerebral glucose metabolism 397 

and neither to mediate the link between physical activity and cerebral glucose 398 

metabolism.  399 

   400 

Taken together, these two first findings are important to help our understanding of the 401 

mechanisms by which physical activity benefits brain health. As a plausible 402 

interpretation, some authors proposed that direct and indirect mechanisms are likely 403 

interconnected via the modulation of growth factor signaling.13 Accordingly, physical 404 
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activity directly induces the release of neurotrophic factors, which are supposed to 405 

activate a cascade of brain responses (i.e. neurogenesis, synaptic plasticity) that 406 

independently protect the brain. Physical activity also helps reducing pro-407 

inflammatory conditions (induced by risk factors such as obesity and related insulin 408 

disturbances), which in turn indirectly improves growth factor signaling13 and 409 

mitigates their deleterious effects on brain health.36 Nevertheless, while results 410 

discussed were all statistically significant, it should be mentioned that they were of 411 

relatively modest magnitude (small effect sizes). 412 

 413 

Of note, our multimodal study suggests that self-reported physical activity is 414 

associated with GM volume and cerebral glucose metabolism, but does not correlate 415 

with amyloid or markers of WM integrity (WMH and WM microstructure). Even if the 416 

effect size (β coefficient) of the link between physical activity and WMH was close to 417 

that of the link with GM volume, they did not reach the statistical threshold selected in 418 

this study. Previous literature has produced mixed results.10,8 Methodological 419 

differences with our study,7,9,6,8 including instruments (fitness test, accelerometry, 420 

exercise interventions), time intervals (physical activity on the last 7 days), and mean 421 

age of participants (younger than our sample) could possibly explain the divergent 422 

findings. Moreover, while higher physical activity was associated with reduced insulin 423 

and BMI, we found no associations with SBP, total and HDL-cholesterol or smoking 424 

status. Despite prior studies suggesting benefits of physical activity on SBP, total and 425 

HDL-cholesterol,14 and smoking habits,46 evidence in older individuals is scarce47 and 426 

conflicting data have been also reported.14 Furthermore, only a minority of studies 427 

examined these cardiovascular risk factors as primary outcomes. Further research is 428 
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warranted to disentangle the influence of physical activity on amyloid burden, WM 429 

integrity and cardiovascular risk factors.  430 

Results were also present when focusing on AD-sensitive brain regions. More 431 

specifically, physical activity was associated with higher hippocampal volume. This is 432 

in agreement with previous literature in cognitively unimpaired older adults, using 433 

both self-reported and objective measures of physical activity.7,16  Physical activity 434 

was also associated with cerebral glucose metabolism in the precuneus, which is in 435 

line with previous studies.48 Our study further indicates that the association between 436 

physical activity and hippocampal volume is mediated by a reduction in insulin and 437 

BMI, while it was not the case for glucose metabolism in the precuneus. This 438 

suggests that results previously discussed for global neuroimaging measures could 439 

be extended to AD-sensitive regions. However, physical activity was neither 440 

associated with temporo-parietal cerebral glucose metabolism, nor with WM integrity 441 

of the cingulum (FA), suggesting that the results could not be generalized to all AD-442 

related regions.  443 

Our study has some limitations. First, we used a subjective (self-reported 444 

questionnaire) instead of an objective measure of physical activity. However, self-445 

reported physical activity has been extensively used in the literature and 446 

questionnaires have an acknowledged clinical validity. The one that we used in this 447 

study evaluates physical activity over the past year, whereas objective measures 448 

often assess physical activity over a short time interval, which could be not enough to 449 

detect any changes in the variables examined. Even though imprecision in the 450 

measure is likely to occur, validity and reliability of the questionnaire have been 451 

previously established.24 In addition, as participants are cognitively unimpaired, it 452 

seems unlikely that major recollection issue affected the questionnaire. Second, we 453 
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used BMI as indicator of obesity in line with most of the studies. However, 454 

controversy exists in the literature as BMI might not be a sensitive index at older ages 455 

as it would be instead protective.49 BMI is nonetheless considered a valuable 456 

measure that is widely used, allowing for a better comparison with previous studies. 457 

Third, the cross-sectional nature of the design prevents us from inferring causal 458 

relationship regarding the association of physical activity with GM volume and 459 

cerebral glucose metabolism. Thus, we cannot exclude that older adults with a better 460 

brain health stay more physically active. Of note, while mediation analyses provide 461 

statistical support to theoretically driven hypothesis, they do not explain the biological 462 

mechanism underlying these associations. Further studies, including longitudinal and 463 

interventional designs should allow answering these questions, and further 464 

understanding the factors explaining the effects of physical activity on brain health.  465 

Accumulating evidences highlight the impact of midlife cardiovascular risk factors on 466 

brain health. However, we did not address this issue since only current 467 

cardiovascular risk factors were available here.50 The population of our study is 468 

relatively healthy, with no severe cardiovascular risk factors. This could prevent 469 

generalizability of the results, and explain discrepancy with previous studies including 470 

individuals with more severe cardiovascular diseases. Finally, no correction was 471 

made for multiple comparisons. 472 

 473 

Overall, our results suggest that the associations between physical activity and global 474 

GM, including hippocampal volume, are mediated by changes in insulin and BMI. 475 

Thus, older adults practicing physical activity have cardiovascular benefits, through 476 

the maintenance of lower insulin and BMI, which could in turn promote greater 477 

structural brain integrity. In contrast, the association with global and precuneus 478 
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cerebral glucose metabolism seems to be independent from cardiovascular risk 479 

factors. This study has strong implications as understanding how physical activity 480 

affects brain health may help developing strategies to prevent, or delay, age-related 481 

brain decline.  482 
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Figure Caption 712 

 713 

Figure 1 Flow Diagram of the Inclusion Process. Abbreviations: DKI = diffusion 714 
kurtosis imaging; FLAIR = Fluid Attenuated Inversion Recovery; FDG = 18F-715 
fluorodeoxyglucose; PET = positron emission tomography; WMH = white matter 716 
hyperintensities.  717 
 718 
Figure 2 Associations between physical activity, neuroimaging values, and 719 
cardiovascular risk factors. Physical activity is associated with global neuroimaging 720 
values of gray matter volume (A) and glucose metabolism (B), as well as insulin (C) 721 
and body mass index (D). Global neuroimaging values of gray matter volume are 722 
associated with insulin (G) and body mass index (H).  723 
Raw data (i.e., unadjusted) is plotted. Solid lines represent estimated regression lines 724 
and shaded areas represent 95% confidence intervals. Statistical values were 725 
obtained using multiple linear regressions controlling for age, sex, and education. 726 
Physical activity, insulin and body mass index values are log-transformed. 727 
Abbreviations: GM = gray matter. 728 
 729 
Figure 3 Causal mediation analyses of the association between physical 730 
activity and global and hippocampal gray matter volume. Direct effects in filled 731 
arrows (simple regressions between variables) are expressed as standardized 732 
regression coefficients, and indirect effects in dotted arrows (multiple regressions in 733 
which the predictor and the mediator are both added in the model) as partial 734 
correlation coefficients. All regressions are adjusted for age, sex and education. 735 
Physical activity, insulin and body mass index values are log-transformed. *P > 0.05, 736 
**P > 0.01, ***P < 0.001. Abbreviations: GM = gray matter; BMI = body mass index. 737 
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Tables 751 

 752 

Table 1 Demographics 753 

Age, y, mean ± SD (range) 68.90 ± 3.77 (64-83) 

Female/Male (%) 82/52 (61/39) 

Education, y , mean ± SD (range) 13.14 ± 3.09 (7-22) 

Physical activity, mean ± SD (range) 6.31 ± 4.91 (0-23.08) 

Insulin, pmol/L, mean ± SD (range) 65.08 ± 32.35 (14-201) 

BMI, kg/m2, mean ± SD (range) 26.20 ± 4.31 (18.10-44.18) 

Total Cholesterol, mmol/L, mean ± SD (range) 6.22 ± 1.14 (3.55-9.8) 

HDL Cholesterol, mmol/L, mean ± SD (range) 1.66 ± 0.38 (0.94-3.08) 

SBP, mm Hg, mean ± SD (range) 135 ± 20.08 (88-198) 

Current smoker, Yes/No (%) 6/128 (4/96) 

 754 
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 767 

Abbreviations: BMI = body mass index; HDL Cholesterol = high density lipoprotein cholesterol; SBP = 
systolic blood pressure; SD = standard deviation 
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 769 

 Physical activity 

b  Std. Error  ß t Value   p Value 
Neuroimaging values Covariates      
   GM volume Age, sex, education 6900.768 3149.087 0.174 2.191 0.030* 

Age, sex, education, 
insulin 

3992.5 3121.2 0.101 1.279 0.203 

Age, sex, education, 
BMI 

2448.9 2882.4 0.062 0.850 0.397 

Age, sex, education, 
insulin, BMI 

1944.8 2915.3 0.049 0.667 0.506 

   Glucose metabolism 
   

Age, sex, education 0.028 0.012 0.247 2.383 0.019 * 
Age, sex, education, 
insulin 

0.029 0.012 0.253 2.387 0.019* 

Age, sex, education, 
BMI 

0.030 0.012 0.262 2.479 0.015* 

Age, sex, education, 
insulin, BMI 

0.030 0.012 0.261 2.439 0.017* 

   Amyloid deposition Age, sex, education -0.033 0.023 -0.122 -0.410 0.161 
   WMH Age, sex, education -2.087 1.094 -0.162 -1.907 0.059 
   MK Age, sex, education -0.002 0.006 -0.033 -0.380 0.705 
AD-sensitive regions       
   Hippocampal volume Age, sex, education 127.828 47.025 0.219 2.718 0.007** 

Age, sex, education, 
insulin 

86.231 46.802 0.148 1.842 0.068 

Age, sex, education, 
BMI 

82.424 46.216 0.141 1.783 0.077 

Age, sex, education, 
insulin, BMI 

69.057 46.348 0.118 1.490 0.139 

  Temporo-parietal     
  glucose metabolism 

Age, sex, education 0.023 0.018 0.142 1.327 0.188 

  Precuneus glucose    
  metabolism 

Age, sex, education 0.033 0.016 0.217 2.045 0.044* 
Age, sex, education, 
insulin 

0.035 0.016 0.233 2.155 0.034* 

Age, sex, education, 
BMI 

0.035 0.016 0.231 2.143 0.035* 

  Cingulum FA Age, sex, education -0.007 0.006 -0.103 -1.200 0.232 
       
Cardiovascular risk 
factors 

      

   Insulin Age, sex, education -0.202 0.066 -0.254 -3.059 0.003** 
Age, sex, education, 
BMI 

-0.108 0.060 -0.135 -1.783 0.077 

   BMI Age, sex, education -0.061 0.020 -0.250 -2.995 0.003** 
Age, sex, education, 
insulin 

-0.031 0.019 -0.128 -1.677 0.096 

   Total Cholesterol Age, sex, education 0.061 0.141 0.034 0.431 0.668 
   HDL Cholesterol Age, sex, education 0.040 0.045 0.068 0.888 0.376 
   SBP Age, sex, education -4.211 2.600 -0.135 -1.620 0.108 
   Smoking habits Age, sex, education -0.002 0.028 -0.006 -0.071 0.943 

 770 

 771 

 772 

Table 2 Multiple linear regressions between physical activity and neuroimaging values or cardiovascular  
risk factors  

*P > 0.05, **P > 0.01, ***P < 0.001. Abbreviations:  GM = gray matter; WMH = white matter hyperintensities; MK = 
mean kurtosis; FA = fractional anisotropy; AD = Alzheimer’s disease; BMI = body mass index; HDL Cholesterol = high 
density lipoprotein cholesterol; SBP = systolic blood pressure.  
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 791 

 Insulin BMI 

b 
 

Std. 
Error 

ß  t 
Value 

p Value b Std. 
Error 

ß  t 
Value 

p Value 

Neuroimaging 
values 

Covariates           

  GM volume 
 

Age, sex, 
education 

-15705.6 3882.6 -0.315 -4.045 <0.001*** -75345.5 11600.2 -0.465 -6.495 <0.001*** 

Age, sex, 
education, 
insulin/BMI 

-5128.0 4160.6 -0.103 -1.233 0.220 -66810.8 13489.9 -0.412 -4.953 <0.001*** 

  Cerebral    
  glucose   
  metabolism 

Age, sex, 
education 

-0.002 0.015 -0.012 -0.113 0.910 0.018 0.053 0.038 0.349 0.728 

AD-sensitive 
regions 

           

  Hippocampal    
  volume 

Age, sex, 
education 

-234.369 58.612 -0.320 -3.999 <0.001*** -829.482 187.768 -0.349 -4.418 <0.001*** 

Age, sex, 
education, 
insulin/BMI 

-139.909 66.606 -0.191 -2.101 0.038* -596.625 215.956 -0.251 -2.763 0.007** 

  Precuneus  
  glucose  
  metabolism 

Age, sex, 
education 

0.009 0.020 0.049 0.450 0.654 0.027 0.070 0.043 0.390 0.697 

Table 3 Multiple linear regressions between cardiovascular risk factors and neuroimaging values 

*P > 0.05, **P > 0.01, ***P < 0.001. Abbreviations:  GM = gray matter; AD = Alzheimer’s disease; BMI = body mass 
index.   



33 
 

 792 

 ADE ACME 

Model Estimate CI 95% P value Estimate CI 95% P value 

Model 1 3950 [-3100; 10188.12] 0.265 3050 [729; 6402.87] 0.005** 

Model 2 2546.694 [-3252.001; 8271.47] 0.378 4454.972 [1444.678; 7962.51] 0.003** 

Model 3 94.1836 [-11.4680; 182.31] 0.080 46.1605 [11.8789; 82.41] 0.004** 

Model 4 81.751 [-16.646; 178.89] 0.098 48.594 [14.272; 86.05] 0.004** 

 793 

 794 

Table 4 Detailed statistics of causal mediation analyses 

In models 1 and 2, GM volume was entered as the dependent variable and physical activity as the independent 
variable. In models 3 and 4, hippocampal volume was the dependent variable. Insulin and body mass index were 
the mediators of model 1, 3 and model 2, 4, respectively. *P > 0.05, **P > 0.01, ***P < 0.001. Abbreviations: ADE 
= average direct effect; ACME = average causal mediation effect; CI = confidence interval. 


