The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue Chemical Science Année : 2023

The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide

Résumé

Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.
Fichier principal
Vignette du fichier
Negrerie 2023 Chem. Sci.pdf (4.03 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Licence : CC BY - Paternité

Dates et versions

inserm-04241634 , version 1 (13-10-2023)

Identifiants

Citer

Byung-Kuk Yoo, Sergei Kruglik, Jean-Christophe Lambry, Isabelle Lamarre, C.S. Raman, et al.. The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide. Chemical Science, 2023, 14 (31), pp.8408-8420. ⟨10.1039/d3sc01685d⟩. ⟨inserm-04241634⟩
16 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More