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Abstract: Objectives: Ventilator-associated pneumonia (VAP) is a severe care-related disease. The
Centers for Disease Control defined the diagnosis criteria; however, the pediatric criteria are mainly
subjective and retrospective. Clinical decision support systems have recently been developed in
healthcare to help the physician to be more accurate for the early detection of severe pathology. We
aimed at developing a predictive model to provide early diagnosis of VAP at the bedside in a pediatric
intensive care unit (PICU). Methods: We performed a retrospective single-center study at a tertiary-
care pediatric teaching hospital. All patients treated by invasive mechanical ventilation between
September 2013 and October 2019 were included. Data were collected in the PICU electronic medical
record and high-resolution research database. Development of the clinical decision support was
then performed using open-access R software (Version 3.6.1®). Measurements and main results: In
total, 2077 children were mechanically ventilated. We identified 827 episodes with almost 48 h of
mechanical invasive ventilation and 77 patients who suffered from at least one VAP event. We split our
database at the patient level in a training set of 461 patients free of VAP and 45 patients with VAP and
in a testing set of 199 patients free of VAP and 20 patients with VAP. The Imbalanced Random Forest
model was considered as the best fit with an area under the ROC curve from fitting the Imbalanced
Random Forest model on the testing set being 0.82 (95% CI: (0.71, 0.93)). An optimal threshold of
0.41 gave a sensitivity of 79.7% and a specificity of 72.7%, with a positive predictive value (PPV)
of 9% and a negative predictive value of 99%, and with an accuracy of 79.5% (95% CI: (0.77, 0.82)).
Conclusions: Using machine learning, we developed a clinical predictive algorithm based on clinical
data stored prospectively in a database. The next step will be to implement the algorithm in PICUs to
provide early, automatic detection of ventilator-associated pneumonia.

Keywords: pneumonia; ventilator associated; clinical decision system; PICU

1. Introduction

Ventilator-associated pneumonia (VAP) is a common and severe complication in inten-
sive care units. VAP, as a care-related complication leads to a worsening prognosis for the
affected patients and its early diagnosis remain an ongoing challenge in intensive care. In an
attempt to enhance VAP detection, the Centers for Disease Control (CDC) issued diagnosis
criteria allowing the identification of VAP after 48h of clinical alteration (defined by worsen-
ing gas exchange, fever >38 ◦C or hypothermia, leukocytosis >15,000/mm3 or leukopenia
<4000/mm3, new onset of purulent sputum, apnea or tachypnea, wheezing/rales/rhonchi,
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cough and bradycardia <100/min or tachycardia >170/min) [1]. However, delays in
VAP diagnosis and, to some extent, in initiating anti-infectious therapy are observed and
associated with worse outcomes [2–4]. Furthermore, subjective criteria included in the
CDC pediatric definition for VAP results in a variability of VAP diagnosis and incidence
(changes in the appearance and amount of sputum, worsening of an existing cough) [5–7].
To help physicians to prospectively diagnose VAP, the CDC developed the concept of
Ventilator-Associated Events (VAE) in adults, but children have long been excluded from
this definition [1]. It is usual that for adult recommendations, children are excluded mainly
because of physiological differences between populations (normal respiratory parameters
for an adult are very different from those of a child). Cirulis et al. [8] proposed a pediatric
modified VAE definition. Chomton et al. [9] evaluated the pediatric modified VAE def-
inition to detect VAP, but the sensitivity (66%) to identify this ICU-related complication
remained disappointing.

In recent years, the number of publications dealing with the development of comput-
erized clinical decision support systems (CDSS) to improve disease diagnosis increased
and was shown to be useful for several disease in ICUs [10–14]. The emergence of high-
resolution databases supports these developments [15] which allow for a precise and
continuous analysis of clinical and biological parameters. Leisman et al. [16] recently
reported several recommendations for the development and reporting of predictive models.
They identified two categories of predictive models: (1) clinical prediction models for
bedside use, and (2) other prediction models intended for deployment across populations
for research, benchmarking, and administrative purposes. The usefulness of CDSS had
already been highlighted by Mack et al. [17] but no reports on VAP are available currently.
To that effect, our project has been developed with the main objective of developing a
predictive model to provide early diagnosis of VAP at the bedside in a pediatric intensive
care unit (PICU).

2. Materials and Methods

This single-center retrospective study was performed using the data collected in the
PICU electronic medical record (Intelligence Critical Care and Anesthesia (ICCA®); Philips
Medical, version F0.1) of a tertiary-care pediatric teaching hospital (Sainte-Justine Hospital,
Montréal, QC, Canada). To improve data quality, ICCA® was configured with drop-down
menus and critical values alerts. Furthermore, all data entered in ICCA® benefited from a
medically-endorsed validation.

The hospital database was queried using SQL Server Management Studio 18® (Microsoft,
Redmond, WA, USA) to select patients who were aged from 1 day to 18 years at PICU
admission and were mechanically ventilated for more than 48 h, between September 2013
and October 2019. We analyzed the first 30 days of invasive mechanical ventilation.

During the first step of the study, all medical files were reviewed by two senior pedi-
atric intensive care experts (JR and PJ) to classify patients into two groups: VAP patients
and free-of-VAP patients. VAP was defined according to the 2021 CDC criteria [1]: The
1st context criteria: invasive mechanical ventilation for more than 48 h, 2nd radiological
criteria: new or progressive and persistent infiltrate/consolidation/cavitation, 3rd clinical
criteria: worsening gas exchange, fever >38 ◦C or hypothermia, leukocytosis >15,000/mm3

or leukopenia <4000/mm3, new onset of purulent sputum, apnea or tachypnea, wheez-
ing/rales/rhonchi, cough and bradycardia <100/min or tachycardia >170/min.

The second step of the study consisted in the extraction of data coming from the
electronic medical record (ICCA®, Philips, Toronto, ON, Canada) and high-resolution
database (database collecting and storing data from medical devices in real time) [15].
The queried data were date, time, weight (kg), white blood cell count (/mm3), neutrophil
count (/mm3), partial pressure of carbon dioxide (PaCO2 in mmHg), partial pressure of
oxygen (PaO2 in mmHg), inspired fraction of oxygen (FiO2 in %), positive end-expiratory
pressure (PEEP in cmH2O), peak inspiratory pressure (PIP in cmH2O), mean airway pres-
sure (MAwP in cmH2O), respiratory rate (/rpm), tidal volume (mL), subjective amount
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of respiratory tract secretion (0, +, ++, +++), oxygenation (OI) and oxygen saturation
index (OSI) [18], calculated pulmonary dynamic compliance (in barometric ventilation
mode: tidal volume/(PIP–PEEP); and in volumetric ventilation mode: tidal volume/(peak
pressure–PEEP)). We also gathered PIM 2 [19] and PELOD-2 scores [20,21].

Data formatting. The data was formatted using R (version 3.6.1) as a preparation step
to train the prediction models based on different algorithms.

All times were expressed as a relative duration since ICU admission.
Data cleaning and Missing data. Incoherent data were identified and corrected according

to the scheme described in Supplementary Data S1 “Data Cleaning”. Variables consisting
of data streams of continuous values were imputed following the last observation carried
forward method. For missing data at the beginning of the stream, the first valid observation
was carried backward.

Segmenting Variables in Time Blocks. The variables data streams were first segmented
into time blocks of 6 h and then for each variable the median (mode for the discrete variable)
was calculated over each 6 h time block to avoid aberrant or missing data. Then, the 6 h
blocks were aggregated into 48 h time blocks. We chose to aggregate into 48 h time blocks to
be as close as possible to the actual VAP timing definition. For each variable, two columns
were generated. One consisted of the first non-missing value among the 6 h time blocks
and the other one the last non-missing value among the 6 h time blocks, if there was any, in
each 48 h time block (if there was no observation, the data was considered missing). For
the development of the algorithms, for each variable, the first non-missing values and the
actual difference or relative change of the values of the two columns were considered (more
details are available in Supplementary Data S2 “Segmenting variables in time blocks”).

Stratified train-test split at a patient level. VAP patients and non-VAP patients were split
into the training set (70% of each class) and the testing set (remaining 30% of each class).
Since some patients had more than one stay in the PICU, all stays of a patient in the training
set were kept in the training set (and the same for patients in the testing set). All details for
the train-test split are available in Supplementary Data S3 “train-test split”.

Imputation. Preliminary inspection of the dataset showed that around 50% of data
was missing for the variables “pulmonary dynamic compliance” and “minute ventila-
tion”. Missing values imputation in the training dataset was performed by ‘randomForest’
(v4.6-14) with the function ‘rfImpute’ [22]. The imputed values were the weighted average
of the non-missing observations, where the weights were the proximities from randomFor-
est. For data in the testing set, the missing values in each variable were replaced by the
mean of the imputed values for the variables with missing values in the training set (more
details are available in Supplementary Data S4 “Imputation”).

Predictive models. We applied six different learning algorithms to generate predictive
models. The algorithms were: Random Forest with the function ‘rfsrc’ and error rate as the
measure of performance, Imbalanced Random Forest with the function ‘imbalanced’ and
G-means as the measure of performance, Stepwise Regression and Random Forest using
5-fold cross validation (5-CV) with the ‘train’ function; ‘glmStepAIC’ and ‘rf’ methods and
accuracy were used to select the optimal model using the largest value [23]. Finally, we
implemented Elastic Net Regression (5-CV) and Weighted Elastic Net Regression (5-CV)
with the ‘glmnet’ method and ROC was used to select the optimal model using the largest
value. The hyperparameters for the Random Forest, Imbalanced Random Forest and
stepwise regression (5-CV) algorithms were ‘ntree’ (number of trees used at the tuning
step) and ‘mtry’ (number of variables randomly selected as candidates for the division
of a node) [24]. The parameters in Elastic Net regression were alpha, which controls the
relative balance between the lasso and ridge regularization, and lambda, which controls
the amount of the penalty. All these models used readily available implementations in
R [25,26]. Here, cross-validation was performed inside the training set only (more details
are available in Supplementary Data S5 “Predictive models”).

Performance measure and model choice. Models resulting from the different algorithms
were evaluated, at the level of 48 h time blocks, on the train and the test set by calculating
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their AUC score and by determining classification thresholds reaching predetermined levels
of sensitivity (80%, 85%, 90%, 95%). The final model was chosen based on the capacity
to [1] maximize specificity under these sensitivity levels, and [2] generalize the sensitivity
and specificity from the test set. The area under the ROC curve (AUC) was considered as
the primary measure of performance to choose the best model.

Per patient validation. The final model was evaluated on its capacity to correctly assess
the infection status of patients over time. The predictions’ results obtained after setting
different classification thresholds were taken. The number of patients with accurate predic-
tions (i.e., predicted class = observed VAP status) and inaccurate predictions (i.e., predicted
class 6= observed VAP status) were computed over time. The number of patients for whom
the predictions contained at least one error were identified. We looked at the accuracy of
predictions by stratifying patients into two groups. We identified the patients for whom
the predictions contained at least one error for each subgroup. The global error rates were
calculated for each subgroup.

Statistics

Development of the clinical decision support was performed using open-access R soft-
ware, Version 3.6.1® (R Foundation for Statistical Computing, Vienna, Austria). Statistical
analysis of patients’ characteristics was performed using Prism X® software (version 7.05)
(GraphPad Inc. San Diego, CA, USA). Kolmogorov analysis was performed to test the
normal distribution of continuous variables. Population description used categorical vari-
ables expressed as frequency with corresponding proportion and quantitative variables
presented as mean and standard deviation. Performance evaluation was conducted using
ROC curves, AUC and their confidence intervals, and derived measures of sensitivity and
specificity. The ethical committee of Sainte-Justine University hospital approved the study
and waived the need for informed consent given the retrospective design.

The Saint-Justine ethical committee approved the study as a retrospective study and
waived the need for written consent (n◦2020–2454).

3. Results
3.1. General Description of the Population

A total of 5153 children had been hospitalized in Saint-Justine PICU during the study
period of which 40% (2077) were mechanically ventilated and 1235 episodes with more
than 48 h of mechanical invasive ventilation were identified (Figure 1). Seventy-seven
patients had at least one VAP event. Seventy-eight VAP events (6%) were diagnosed by
two experts. The patients’ general characteristics are described in Table 1.

Table 1. Population characteristics.

Population Characteristics Global Population (N: 827) VAP Patients (N: 77) No VAP Patients (N: 750) p:

Weight (kg) 15.8 ± 1.6 20.99 ± 2.7 15.25 ± 0.7 0.01

Age (days) 1308 ± 1904 1806 ± 250 1256 ± 69 0.02

Gender male (%) 475 (57%) 41 (53%) 434 (58%) 0.4

Pelod 2 score 10.1 ± 4.8 10.4 ± 0.6 9.9 ± 0.2 0.47

Pelod 2 mortality risk (%) 0.3 ± 0.3 0.3 ± 0.1 0.2 ± 0.01 0.15

Bronchoscopie (%) 70 (8%) 14 (18%) 56 (8%) 0.04

Neuromuscular blocker (%) 279 (34%) 43 (55%) 236 (31%) <0.0001

Mechanical Ventilation
duration (days) 12.5 ± 30.9 29.3 ± 5.1 10.9 ± 1.5 <0.0001

PICU length of stay (days) 26.1 ± 52.5 48.3 ± 7.1 23.4 ± 1.8 <0.0001

Survival rate (%) 740 (90%) 65 (84%) 675 (90%) 0.16

PICU: Pediatric intensive care unit; VAP: Ventilator-associated pneumonia.
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Figure 1. Flow chart. VAP: Ventilator-associated event.

Patients with less than 4 days of mechanical ventilation were removed (see
Supplementary Data S2 “Segmenting variables”) to achieve 811 episodes of invasive me-
chanical ventilation. The training set (70% of each class) and testing set (remaining 30%
of each class), resulted in a training set of 461 patients free of VAP and 45 patients with
VAP and in a testing set of 199 patients free of VAP and 20 patients with VAP. Since some
patients had more than one stay in the ICU, there could be different events for the same
patient. The training set thus had 513 stays with no VAP event and 45 stays with a VAP
event, and the testing set had 231 stays with no VAP event and 22 stays with a VAP event.
The segmenting of variables in 48 h non-overlapping time blocks generated, from these
datasets, 1852 time blocks free of VAP and 45 time blocks with VAP in the training set, and
788 time blocks free of VAP and 22 time blocks with VAP in the testing set.

We observed similar characteristics in the train and test groups (Table 2).

Table 2. Train and test groups’ characteristics.

Train and Test
Groups Characteristics Test Group (n: 261) Train Group (n: 572) p:

Weight (kg) 16.9 ± 1.3 15.6 ± 0.8 0.40

Age (days) 1387 ± 129 1268 ± 84 0.43

Gender male, (n, %) 146 (60) 284 (58) 0.69

Pelod 2 score 10.4 ± 0.2 9.7 ± 0.5 0.16
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Table 2. Cont.

Train and Test
Groups Characteristics Test Group (n: 261) Train Group (n: 572) p:

Pelod 2 mortality risk (%) 0.3 ± 0.1 0.2 ± 0.1 0.13

Proportion of VAP patients (n, %) 25 (10) 50 (10) 0.99

Length of mechanical ventilation
before VAP (days) 9.9 ± 2.7 9.6 ± 1.9 0.66

Length of mechanical ventilation
duration (days) 12.1 ± 1.6 11.2 ± 1.1 0.64

PICU length of stay (days) 21.3 ± 2.4 22.3 ± 2.0 0.81

Pelod: Pediatric logistic organ dysfunction, PICU: Pediatric intensive care unit; VAP: Ventilator-associated pneumonia.

3.2. Missing Data

We observed two missing values for “sf ratio” and “oxygen saturation index (OSI)” in
the test set (0.1% of total observations). For the variable “pulmonary dynamic compliance”
the proportion of missing values in the train and test sets were 0.49 and 0.54, respectively.
For the variable “minute ventilation”, the proportion of missing values in the train and test
sets were 0.49 and 0.54, respectively.

3.3. Results of Training Algorithm

The Imbalanced Random Forest model was considered as the best fit with an area
under the ROC curve of 0.86 from the train set.

Thresholds and specificities corresponding to the predetermined levels of sensitivity
are presented in Table 3. Variable importance obtained from the Imbalanced Random Forest
model are presented in Figure 2.

Table 3. Imbalanced Random Forest model. Threshold and specificity from predetermined sensitivity
for the train set.

Threshold Specificity Sensitivity

0.41 0.79 0.80

0.29 0.64 0.87

0.25 0.58 0.91

0.22 0.52 0.96
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3.4. Performance on Test Dataset

The area under the ROC curve from fitting the Imbalanced Random Forest model on
the test set was 0.82 (95% CI: (0.71, 0.93)) (Figure 3).
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The specificity and sensitivity obtained after setting different classification thresholds
are presented in Table 4. An optimal threshold of 0.41 gave a sensitivity of 79.7% and a
specificity of 72.7%, with a positive predictive value (PPV) of 9% and a negative predictive
value of 99%, with an accuracy of 79.5% (95% CI: (0.77, 0.82)).

Table 4. Imbalanced Random Forest model. Sensitivity and specificity for the test set corresponding
to different thresholds.

Threshold Specificity Sensitivity

0.41 0.797 0.73

0.28 0.66 0.77

0.25 0.59 0.77

0.22 0.53 0.82

3.5. Per Patient Validation

Performance of the final model was evaluated over different time periods. Time
periods were defined starting from the first time block and going up to a given time block in
the future. The confusion matrices for all the time periods were constructed. False positive
rates (FPR), true positive rates (TPR), and area under the curve (AUC) were calculated. The
results are presented in Figure 4. The procedure is explained in detail in Supplementary
Data S6 “Per patient validation”.

The global error rate is presented in Table 5. We observed a lower error rate for patients
with at most three time blocks of observations, compared to the ones with at least four time
blocks of observations.
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Figure 4. False positive rate and true positive rate over different time periods for different thresholds.
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Table 5. Error rates (%) for predicted classes.

G1 G2

ER.Pred ER.Pred.th80 ER.Pred.th85 ER.Pred ER.Pred.th80 ER.Pred.th85

All 11.56 19.60 31.66 79.59 83.67 95.92

VAP 23.08 23.08 23.08 66.67 66.67 88.89

NoVAP 10.75 19.35 32.26 82.50 87.50 97.50

G1: Patients with at most 3 time blocks of observations; G2: Patients with at least 4 time-blocks of observations.
E.Pred: Error rate for prediction; E.Pred.the80%: Error rate for prediction with threshold correspond to the 80%
sensitivity; E.Pred.th85%: Error rate for prediction with threshold correspond to the 85% sensitivity.

4. Discussion

Using an electronic medical record, an algorithm supporting clinicians in the early di-
agnosis of ventilator-associated pneumonia in PICU had a sensitivity of 80% and specificity
of 73%, with the threshold of 0.41. To date, it is the most accurate sensitivity achieved by a
CDSS system to provide early detection of VAP.

Ventilator-associated pneumonias is a severe health care disease [2,27,28]. To improve
the delay and accuracy of this challenging diagnosis, Cirulis et al. [8] evaluated the accuracy
of adults’ ventilator-associated events (VAE) to early diagnose pediatric VAP and developed
modified pediatric criteria for VAE (increase in FiO2 by 20% or PEEP by 2 cm H2O sustained
for more than one day). VAE and modified pediatric VAE both had a disappointing
sensitivity of 23% and 56% for Cirulis et al. [8] and 56% and 66% for Chomton et al. [9],
respectively. Our algorithm was based on machine learning methods and improved the
sensitivity in this study and could be implemented to screen in real-time patient’s data
to provide early detection of VAP in children. The prediction of the test set using the
Imbalanced Random Forest model is stored in a file and is available on Github [29].

Implementation of a clinical decision system to help physicians is a promising tech-
nology aimed at helping the physician to take medical decision [10,30], to analyze chest
X-rays [31], or to increases diagnosis sensitivity [32]. The development methodology starts
with a retrospective classification of analyzed patients to define whether they develop
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the studied conditions (e.g.,VAP). This step is crucial to develop an accurate algorithm
and rely on the quality of the classification method. In a large review of published CDSS,
Ostropolets et al. [33] highlight that only one manuscript addressed confounding and bias
due to misclassification. Our classification methodology included all the relevant data
from the electronic medical record clinically collected and is the best accuracy that can be
obtained currently.

In addition to the classification methodology, the main strength of this study includes
the use of continuous vital signs and the ventilatory parameters monitoring database,
limiting the number of missing data and allowing the use of the algorithm in real time in
the future [15]. The variables extracted from this monitoring included the OSI ratio, the
variation of pulmonary compliance, minute ventilation, and ventilatory median pressures.
However, the algorithm identified the variation of PEEP during the last 48 h preceding
the VAP as the most important criteria as suggested by the CDC definition. Nevertheless,
the variation of the ventilatory mean airway pressure was the second most important
variable. This result seems crucial because the ventilatory mean airway pressure that not
only includes PEEP but also the PIP, I/E ratio and instantaneous gas flow is not included in
the CDC diagnosis criteria for VAP.

Nonetheless, we noticed that our algorithm has a better efficacy to diagnose early VAP
(before day 6 of the PICU stay) versus late VAP (after day 6 of the PICU stay), with the
error rate in prediction of 23.08% vs. 66.67%, respectively. We can hypothesize that the
more time the patient stays in the PICU, the more discrete are the variations to be detected
due to the potential alteration of the patient’s condition.

This study has several strengths. First, this is the first study with a CDSS system
reaching over 80% sensitivity. Second, despite this being a single-center study, we report
one of the largest number of patients included in a study in children. Finally, we report the
highest sensitivity and specificity to diagnose VAP.

Despite these promising results, this work suffers from several limitations. First, the
invasive procedures were not considered in our algorithm (bronchoscopy, transportations)
due to the lack of data concerning the timing between these procedures and the VAP.
Second, data on the reason for invasive mechanical ventilation were not reported in all
medical files, although it is well known that brain injury and neurological disorder with
impaired swallowing predispose more to pneumonia. Third, the treatment of missing data
was conducted using data-focused approaches (last observation carried forward for missing
data mid-stream, first observation carried backward for data missing at the beginning of a
stream) which did not model the missing data process; the classifications between the VAP
and non-VAP patients were retrospectively performed which may have resulted in some
misinterpretation of the clinical data. Fourth, for generalizability, a prospective validation
of the algorithm in several PICU needs to be conducted.

5. Conclusions

We developed the first clinical predictive system dedicated to VAP diagnosis in PICUs
using a high-fidelity database. The implementation of such an algorithm in PICUs could al-
low physicians to be alerted early in cases of respiratory function impairment and to decide
whether to perform respiratory tract analysis and start anti-infective treatment. Although
this algorithm achieves a promising sensitivity and specificity level, it is still lacking power
and cannot be implanted in PICUs. Additionally, it still needs to be prospectively validated
in other PICUs to confirm its reproductivity and external power.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13182983/s1, Supplementary Data S1 “Data Cleaning”;
Supplementary Data S2 “Segmenting variables in time blocks”; Supplementary Data S3 “train-
test split”; Supplementary Data S4 “Imputation”; Supplementary Data S5 “Predictive models”;
Supplementary Data S6 “Per patient validation”.
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Abbreviations

AUC area under the curve
CDC centers for disease control
CDSS clinical decision support systems
FiO2 inspired fraction of oxygen
FPR false positive rates
ICCA Intelligence Critical Care and Anesthesia®

MAwP mean airway pressure
OI oxygenation index
OSI oxygenation and saturation index
PaCO2 partial pressure of carbon dioxide
PaO2 partial pressure of oxygen
PELOD-2 pediatric logistic organ dysfunction score
PEEP positive end-expiratory pressure
PICU pediatric intensive care unit
PIM 2 pediatric index of mortality
PIP peak inspiratory pressure
ROC receiving operator curve
TPR true positive rates
VAE ventilator-associated event
VAP ventilator-associated pneumonia
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