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Hepatitis-associated aplastic anemia (HAA) is a variant of immune AA in which bone marrow failure
(BMF) occurs within 6 months of an episode of acute hepatitis.1-5 Spectratyping studies revealed a
skewed T-cell repertoire within liver-infiltrating T cells, which was mirrored in the blood at time of BMF,
and reversed upon successful immunosuppression.5 These data suggest that relevant immune per-
turbations in HAA can be captured in the blood and monitored during disease progression from
hepatitis to BMF.

High-dimensional flow cytometric analysis was applied to characterize blood immune cell profiles of 3
patients with HAA and in 1 pediatric and 1 adult healthy control (HC) (supplemental Tables 1-3).
Immune remodeling during HAA progression was monitored in case 1 (HAA-1) through 4 iterative
analyses spanning days 9 to 78 after initial symptom onset (supplemental Figure 1A). HAA-2 and HAA-
4 matched the kinetics of the latest sample of HAA-1 (>day 70 after initial symptom onset). Opt-SNE
projections of concatenated data for CD45+ leucocytes from all samples, followed by FlowSOM
clustering, revealed 9 immune metaclusters (supplemental Figure 1B-C; supplemental Table 4).
Granulocytes and monocytes were severely reduced in HAA and kinetic analyses in HAA-1 verified their
progressive decrease (supplemental Figure 1D-E; supplemental Table 2). Absolute lymphocyte counts
were reduced (supplemental Table 3) but, despite alterations at earlier time points, proportions of the
main populations ultimately converged to reference values (supplemental Figure 1F-H).6 An over-
representation of B cells was further investigated using manual gating strategies to reveal increased
immature CD38++ CD24++ transitional B cells at day 9 and day 16. At late time points, B-cell subsets
aligned with reference values (supplemental Figure 2A-F).7 Written informed consent for all individuals
in this study was provided in compliance with an institutional review board protocol and the declaration
of Helsinki and good clinical practice principles.

Altered T-cell proportions included an inverted CD4:CD8 ratio, a feature known in HAA,4 and a pre-
viously unappreciated expansion of γδ T cells, which represented up to 26% of T cells at day 16
(Figure 1A). Expansions of transitional B cells and γδ T cells existed before steroid introduction at day
11, thus, ruling out medication as the main driver of lymphocyte qualitative remodeling. To characterize
further the significance of T-cell alterations in HAA, an exploratory analysis was conducted by gener-
ating new opt-SNE projections specifically on T cells, with the aim of obtaining a more granular defi-
nition of the various T-cell phenotypes encountered in the data set. Key regions of the opt-SNE map
were found in HAA and corresponded to CD8 T cells and γδ T cells, part of which expressed the
activation marker HLA-DR (supplemental Figure 3A-B). FlowSOM clustering revealed 21 T-cell
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Figure 1. A Vδ1+ γδ T-cell acute response with long-term alterations in HAA. (A) Pie charts representing the percentage of indicated T-cell subsets within total blood

T cells at 4 time points after disease onset for HAA case 1. (B) Opt-SNE projections of concatenated cytometry data for T cells from patient HAA-1 samples at early time points day

9, day 16, and day 40 (left), and HAA-1 day 78, HAA-2 and HAA-4 (right). Cells are grouped and annotated into color-coded metaclusters after FlowSOM clustering (top) or
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Figure 1 (continued) by sample origin (bottom). (C) Flow cytometry plots quantifying manually gated HLA-DR+ CD38+ activated cells within total CD8 T cells, γδ T cells, and

CD4 T cells from HAA-1 and pediatric (ped.) HC. Numbers correspond to the percentage of activated cells within the corresponding T-cell subset. (D) Dot plots comparing the

ratio of γδ1:γδ2 T cells between patients with HAA (n = 3 patients, >70 days after initial symptom onset) and pediatric HCs from Australia and Mali.8 Error bars indicate mean ±

standard deviation; data analyzed by Kruskal-Wallis analysis of variance with Dunn posttest comparisons. **P = .0039 and ****P < .0001. (E) Heatmap showing the relative

expression of relevant membrane markers used to annotate FlowSOM metaclusters (color scale: row-adjusted z-score expression for each individual marker). (F) Pie charts

representing the percentage of γδ T-cell metaclusters within total γδ T cells at 3 time points after disease onset for HAA-1. (G) Opt-SNE projections of concatenated cytometry

data for γδ T cells from HAA-1 samples at early time points day 9, day 16, and day 40 (left), and HAA-2 and HAA-4 (right). Cells are grouped and annotated into color-coded

metaclusters after FlowSOM clustering (top) or by sample origin (bottom). (H) Left: representative flow cytometry plots of manually gated CD45RA+ CD38+ γδ T cells within total

CD57− γδ T cells for HAA-2 and control pediatric AA. Numbers represent the percentage of indicated CD45RA+ CD38+ γδ T cells. Right: representative flow cytometry plots of

manually gated γδ1+, γδ2+, and γδ1−γδ2− cells within CD45RA+ CD38+ γδ T cells in HAA-2. Numbers represent the percentage of indicated subset in total CD45RA+ CD38+ γδ
T cells. (I) Dot plot comparing the percentage of CD57− CCR7− CD45RA+ CD38+ γδ T cells between patients with HAA at late disease stage (n = 3) and controls (nonhepatitis

pediatric AA: black dot; pediatric HC: black square; adult HC: white dot).
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metaclusters (supplemental Figure 3C; supplemental Table 4).
Although samples from the late HAA-1 time point and to the 2
other patients with HAA displayed similar cell distributions, this was
not the case for cells from samples collected from patient HAA-1 at
early time points (Figure 1B). Populations of HLA-DR+ CD38+

activated CD8 and γδ T cells were indeed largely enriched in
patient HAA-1 between day 9 and day 40 (supplemental
Figure 3D-E). However, the inability to include samples from early
time points of patients HAA-2 and HAA-4 could introduce a limi-
tation by raising the possibility that skewed T-cell phenotypes could
be obtained by the analysis of multiple samples from patient HAA-1
only. A manual gating strategy to analyze HLA-DR and CD38
validated the increased proportions of activated CD8 and γδ T cells
in patient HAA-1 samples from early time points (Figure 1C).
Activated CD8 T cells in patient HAA-1 were identified with
effector memory (CD45RA− CCR7−) and effector memory
CD45RA re-expressing (CD45RA+ CCR7−) phenotypes
(supplemental Figure 3D). Activated effector memory CD8 T cells
accounted for 20% of T cells at day 9 and progressively decreased
to control levels at day 78. Activated effector memory CD45RA re-
expressing CD8 T cells, in turn, increased their frequencies up to
10% of T cells at day 40, hence, suggesting that the latter could
represent a terminally differentiated state of the former
(supplemental Figure 3F). Activated γδ T cells followed similar
kinetics as CD8 T cells (Figure 1C; supplemental Figure 3F).
Activated CD8 and γδ T cells were detectable at day 40, when liver
function was restored but not AA, and the ratio of activated CD8/
activated γδ T cells remained constant at all 3 time points
(Figure 1C; supplemental Figure 3G). Interestingly, although pro-
portions of conventional T-cell metaclusters were similar between
controls and late-stage HAA (>day-70 after initial symptom onset),
CD45RA+ γδ T cells remained consistently increased in HAA
(supplemental Figure 3H-I).

The Vδ2+/Vγ9+ subset dominates the γδ T-cell compartment in
human peripheral blood, whereas the liver is enriched for Vδ1+ γδ T
cells.9-11 To explore whether activated γδ T cells could be of liver
origin, a new flow cytometric analysis was applied to frozen whole-
blood aliquots.12 Remarkably, patients with HAA displayed signifi-
cantly higher Vδ1+/Vδ2+ ratios in comparison to pediatric HCs
(Figure 1D).8 No difference, in turn, existed between patients with
HAA and a pediatric cohort who had experienced oligoclonal selec-
tion, differentiation, and expansion of Vδ1+ T cells in response to
repeated Plasmodium falciparum infections. To more precisely define
γδ T-cell phenotypes present in the data set, opt-SNE projections
followed by FlowSom clustering were generated, which identified 8 γδ
T-cell metaclusters, including Vδ2+, Vδ1+, and Vδ2−/Vδ1− pop-
ulations (supplemental Figure 3J). The phenotypic analysis revealed
that activation markers HLA-DR and CD38 were restricted to Vδ1+

and Vδ2−/Vδ1− subsets (Figure 1E). Kinetic analysis in patient HAA-1
suggested that CD45RAhigh CD38+ HLA-DRlow/− CCR7− Vδ1+ T
cells dominated the Vδ1+ T-cell compartment at day 40 (Figure 1F).
Of note, these populations were virtually absent in a patient with
immune AA not associated with hepatitis (supplemental Figure 3K).
As for the T-cell analysis discussed earlier, a risk existed that γδ T-cell
phenotypes were skewed by the inclusion of multiple samples from
patient HAA-1 at early time points (Figure 1G). To test the hypothesis
that a persistent remodeling of the γδ T-cell compartment charac-
terized by increased proportions of CD45RAhigh CD38+ CD57−

CCR7− Vδ1+ γδ T cells could be generalized to the 3 patients with
4042 RESEARCH LETTER
HAA included in the study at late time points after initial symptom
onset, we used a manual gating strategy to directly compare this
population between controls and patients with HAA (Figure 1H;
supplemental Figure 4B). This analysis validated the consistent
increased proportions of CD45RAhigh CD38+ CD57− CCR7− Vδ1+

γδ T cells in the blood of HAA patients as compared with controls
(Figure 1I; supplemental Figure 4B), though this must be interpreted
in a context of severe T-cell lymphopenia in HAA patients. Another
limitation of this analysis was the impossibility to directly compare
absolute counts of the γδ T-cell subsets between HAA and HCs.
Previous work from others indicated that, unlike liver-resident effector
CD45RA− Vδ1+ T cells, clonally expanded effector CD45RA+ Vδ1+ T
cells recirculate between blood and liver.11 Altogether, these data
thus suggest a liver origin for the CD45RAhigh CCR7− Vδ1+ T cells
enriched in blood of patients with HAA.

Plasma cytokines were analyzed in 4 patients with HAA and 7 HCs
(supplemental Table 5). Hypothesizing that pathways active in HAA
should involve coordinated secretions of multiple ligands, a correlation
matrix was realized to identify cytokine modules (Figure 2A). Module a
comprised interferon γ (IFN-γ), interleukin 18 (an IFN-γ inducer in
lymphocytes),13 and CXCL10 (an IFN-γ−inducible chemokine in
mononuclear phagocytes),14,15 hence reflecting a type 1 immune
response. Module a expression was low at late-stage HAA but high
during early stages in patient HAA-1 (Figure 2B-C), with kinetics
paralleling those of activated CD8 and Vδ1+ γδ T cells. Interleukin-
12p70 also correlated with IFN-γ levels (Figure 2A; supplemental
Figure 4H). Intracellular cytokine analysis revealed that >90% of
CD4− T cells were positive for IFN-γ at day 9 (Figure 2D), indicating
that CD8 T and γδ T cells both contributed to systemic IFN-γ levels.
Interestingly, activated CD8 T and γδ T cells expressed CXCR3, the
receptor for CXCL10 (supplemental Figure 4C). In contrast, no major
IFN-γ expression was detected in CD4+ T cells and innate lympho-
cytes (Figure 2D; supplemental Figure 4D-E). CD8 and γδ T cells
maintained a skewed type 1 immune response at late disease stages
(supplemental Figure 4D).

Module b comprised chemokines produced by inflammatory mac-
rophages (CCL3, CCL4, and CXCL8) (Figure 2A),16 which
remained high in late-stage disease (Figure 2E), suggesting sus-
tained macrophage activation in HAA. Accordingly, BM smears
from patient HAA-1 contained macrophages with hyperbasophilic
cytosols enriched with vacuoles (Figure 2F). Hemophagocytic
activity was also observed, indicating that macrophage-mediated
progenitor destruction could extend beyond the previously
described TNF-dependent mechanisms.17 Compared with controls
and reference values,18 a low classical-to-nonclassical monocyte
ratio existed in the blood as early as day 9 after initial symptom
onset, and was verified for all 3 patients (Figure 2G; supplemental
Figure 1E). This could be explained by several nonmutually exclu-
sive mechanisms, including faster maturation and/or death rates,
increased peripheral tissue infiltration, or increased retention of
classical monocytes in the BM. In support of the latter, recent
mouse data suggest that IFN-γ–dependent BM failure during
severe immune AA relied on the expression of CCR5 to maintain
macrophages in the BM.19 Remarkably, CCL5 levels, the ligand for
CCR5, were reduced in HAA (Figure 2H; supplemental Figure 4F).
Activated BM macrophages trigger CXCL12 expression in nestin+

CXCL12-abundant reticular cells for the retention of hematopoietic
stem cell progenitors.20 Supporting possible relationships between
myeloid and stromal activation in the BM of patients with HAA,
8 AUGUST 2023 • VOLUME 7, NUMBER 15



IL
.4

C
C

L2
C

X
C

L1
2

C
C

L4

b a

IL
.8

C
C

L3
C

C
L1

1
C

X
C

L1
0

IL
.1

0
IF

N
g

IL
.1

8
IL

.1
a

C
C

L5
IL

.1
2p

70
IL

.6
G

M
.C

S
F

IL
.1

b
IL

.7
IL

.2
7

IL
.1

R
A

IL
.5

IL
.1

3
IL

.1
7A

IL
.1

5
IF

N
a

IL
.2

TN
F

IL.4
CCL2

CXCL12
CCL4

b

a

IL.8
CCL3

CCL11
CXCL10

IL.10
IFNg
IL.18
IL.1a

CCL5
IL.12p70

IL.6
GM.CSF

IL.1b
IL.7

IL.27
IL.1RA

IL.5
IL.13

IL.17A
IL.15
IFNa
IL.2
TNF

1

0.8

0.6

0.4

0.2

S
pe

ar
m

an

0

–0.2

–0.4

–0.6

–0.8

–1

A

800

IL
18

 (p
g/

m
l) 600

400

200

0

d9 d16 d40

Days post disease onset
d78

250

IF
N�

 (p
g/

m
l)

200

150

100

50

0

Days post disease onset
d9 d16 d40 d78

400

CX
CL

10
 (p

g/
m

l) 300

200

100

0

d9 d16 d40

Days post disease onset
d78

25

IL
10

 (p
g/

m
l)

20

15

10

5

0

Days post disease onset
d9 d16 d40 d78

B

100

IL
18

 (p
g/

m
l) 80

60

40

20

0

HAA HC

60

IF
N�

 (p
g/

m
l)

40

20

0

HAA HC

CX
CL

10
 (p

g/
m

l)

HAA HC

150

100

50

0

HAA HC

20

IL
10

 (p
g/

m
l)L 15

10

5

0

C

107
89,12%

HAA case 1 d9

IF
N�

GM-CSF

27,23%
5,76%

2,09%

1,26%

0,06%

106

105

104

0

107

106

105

104

0

0 105 106 107

0 105 106 107

IF
N�

IL-4

29,14%
3,49%

1,22%

89,06% 0,36%

0,18%

107

106

105

104

0
0 10000 105 106 107

107

106

105

104

0
0 10000 105 106 107

IL-
17

A

IL-22

0,36%

3,49% 0,87%

1,05%

0,00%

0,00%

107

CD4–

T cells

CD4+

T cells

106

105

104

1000

–1000
0

0 20000 105 106 107

107

106

105

104

1000

–1000
0

0 20000105 106 107

D

Bone Marrow

HAA case 1 d9

F

800

600

400

200

0

CX
CL

12
 (p

g/
m

l)

**

HAA HC

100

CC
L4

 (p
g/

m
l) 80

60

40

20

0

*

HAA HC

80 *

CC
L3

 (p
g/

m
l) 60

40

20

0

HAA HC

400
350
300
250

50

0

200
100

CX
CL

8 
(p

g/
m

l)

**

HAA HC

E
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CXCL12 significantly correlated with the myeloid chemokines
(Figure 2A). Accordingly, higher CXCL12 levels were detected in
patients with HAA, which progressively increased with disease
evolution in patient HAA-1 (Figure 2E,I).

In conclusion, this study provides new pathophysiological insights
that more specifically define HAA within the whole spectrum of
immune AA, and offers a rational basis for new research directions
aimed at exploring disease mechanisms, as well as new biomarker
and therapeutic opportunities (supplemental Discussion). The main
limitations of this work are related to the small cohort size, espe-
cially for the early HAA time points showing the acute Vδ1 γδ T-cell
activation, which could only be analyzed in a single patient.
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