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ABSTRACT 
Diagnosis is a key step of patient management. During decades, refined decision algorithms and numerical scores 

based on conventional statistical methods were elaborated to ensure optimal reliability. Recently, a number of machine 
learning tools were developed and applied to process more and more extensive data sets, including up to millions of 
items and yielding sophisticated classification models. While this approach met with impressive efficiency in some 
cases, practical limitations stem from the high number of parameters that may be required by a model, resulting in 
increased cost and delay of decision making. Also, information relative to the specificity of local recruitment may be 
lost, hampering any simplification of universal models. Here, we explored the capacity of currently available artificial 
intelligence tools to classify patients found in a single health center on the basis of a limited number of parameters. As a 
model, the discrimination between systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) 
on the basis of thirteen biological parameters was studied with eight widely used classifiers (including logistic 
regression, support vector machine, nearest neighbor classifier, random forests and neural networks). A retrospective 
study including 44 patients (34 SLE, 10 MCTD) was conducted in Marseilles hospital organization. The best area under 
ROC curve yielded on test sets with classifiers using all 13 parameters was 0.83 ± 0.03 standard error and 0.86 ± 0.02 
SE with 5 selected parameters. It is concluded that classification efficiency may be significantly improved by a 
knowledge-based selection of discriminating parameters. 
Keywords: diagnostic algorithms; feature selection; machine learning; learning from data; systemic lupus 
erythematosus; mixed connective tissue disease; medical decision support; scikit-learn 

1. Introduction 
Diagnosis is a key step of patient management since it is 

required to establish prognosis and therapeutic strategy. It was soon 
recognized that some kind of mathematical grading could improve 
the reliability of conclusions and simple scoring systems were built 
with standard statistical methods. Well-known examples are the 
5-item Apgar score that was used for decades to assess the viability 
of newborn babies[1] or Well’s criteria for pulmonary embolism[2] 
(p. 19). Following the progress of medical knowledge, more and 
more sophisticated algorithms were developed to serve as decision-
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making tools. As a representative example, a set of 702 patient cases was used by a panel of experts to build 
a diagnostic algorithm for systemic lupus[3]. This made use of fairly refined statistical methodologies such as 
logistic regression and decision tree analysis. During the following years, the growing availability of 
computer-based tools for performing multivariate statistical analysis led to the development of elaborate 
classification methods making use of more and more numerous parameters and extensive data sets[4]. Thus, 
an artificial intelligence approach was followed to build an algorithm for the detection of atrial fibrillation on 
the basis of 454,789 electrocardiograms from 126,526 patients that were used to train a convolutional neural 
network[5]. Other authors assessed the potential of proteomic and metabolomic analysis of patients’ sera to 
achieve an early detection of several forms of COVID-19: after testing 894 proteins and 941 metabolites, 
they built a random forest machine learning model based on 29 molecules[6]. It was reported that a model 
built on the analysis of 2.3 million electrocardiograms could predict mortality during the next year[7]. The 
delimitation between standard statistical methods such as logistic regression and more recent techniques 
related to “artificial intelligence” or “machine learning”, such as support vector machines or neural 
networks[4] may be difficult to define[8,9]. However, there is no doubt that new prediction tools share a 
number of properties including availability of fairly autonomous software allowing efficient processing of 
enormous data sets in order to yield powerful decision-making models. This evolution entails specific 
problems: (i) While it is obviously attractive to be able to combine a high number of parameters to optimize 
diagnosis, following this strategy may be both costly and conducive to damageable delay, if a substantial 
amount of time is required to determine all necessary parameters. (ii) While it would be attractive to establish 
universal diagnostic rules, accounting for differences between lifestyles, local pathogens or genetic 
background might make site-specific models less data hungry and as efficient as universal guidelines. Indeed, 
as was rightly emphasized[2] (p. 16), all guidelines recognize that “one size fits all” recommendations may 
not apply to individual patients. Algorithms derived from the study of a particular population may not apply 
to other groups[10]. (iii) The efficiency and facility of use of available software is usually due to the existence 
of control procedures such as “regularization” depending on hidden parameters. A drawback of the use of too 
complex models is that the significance of predictions is often difficult to assess. In other words, they may 
appear as “black boxes” the conclusions of which may be difficult to translate into some general wisdom[11]. 
Indeed, if a conclusion is drawn from a high number of correlated numbers, is may be difficult to identify 
independent basic parameters. (iv) In line with above remarks, machine learning was reported to need more 
data than conventional statistical tools to achieve a comparable accuracy[12]. (v) While algorithms based on 
machine learning were sometimes claimed to achieve an accuracy matching human expertise, some progress 
remains possible, and it was suggested that human expertise could improve the efficiency of artificial 
intelligence[13,14]. 

The objective of this report was to explore the potential and limitation of currently available machine 
learning algorithms to yield useful information by processing parameters easily accessible to a clinical 
immunology laboratory under realistic conditions. 

As a model, we chose the differential diagnosis between systemic lupus erythematosus (SLE) and 
mixed connective tissue disease (MCTD). SLE is a systemic auto-immune disease with a prevalence on the 
order of 1/1000 women in the USA[2]. Diagnosis is based on a set of clinical and biological criteria following 
regularly updated algorithms[3]. Important biological markers include anti-nuclear antibodies as revealed with 
immunofluorescence[15,16], anti-double stranded DNA and a number of more or less precisely defined auto-
antibodies directed against a number of nuclear antigens[17]. MCTD was described as a new connective tissue 
disease displaying overlapping features with SLE[18,19] that was finally recognized as a distinct clinical entity 
with specific features such as a relatively good prognosis and response to corticoid treatment[20]. The annual 
incidence was estimated as 1.9/100,000[21]. Several sets of diagnostic criteria were suggested with varying 
sensitivity and specificity[22,23]. An important biological criterion is the presence of high amounts of anti-
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ribonucleoprotein antibodies with a particular specificity for components of U1 small nuclear 
ribonucleoprotein[24]. Discrimination between SLE and MCTD is of prognostic and therapeutic interest since 
MTCD is usually associated with better prognosis and better response to corticosteroid therapy[20]. 

Our retrospective study was conducted on a set of 44 patients that were subjected to immunological 
tests in Marseilles hospitals during a 2-year period and categorized as SLE (34/44) or MTCD (10/44) on the 
basis of standard algorithms including clinical and biological criteria. We processed 13 quantitative or 
categorical biological criteria with currently used machine learning tools in order (i) to assess their capacity 
to discriminate between SLE and MCTD (supervised classification); (ii) to assess the possibility of reducing 
the number of parameters without decreasing classification efficiency; (iii) to determine the importance of 
refining hidden parameters or preprocessing data; (iv) to determine whether SLE and MCTD could appear as 
separate groups by performing unsupervised classification. 

2. Methods 

2.1. Patients and data set 
This retrospective study exclusively used data issuing from healthcare and all serum samples were part 

of Marseilles Biobank (registered as DC 2012_1704). It was approved and registered by the institution 
(under GDPR number 20-390) and fulfilled local requirements in terms of data collection and protection of 
data. Forty four patients were included. Thirty four of them were diagnosed as SLE on the basis of standard 
criteria[3]. Ten were diagnosed as MCTD on the basis of Alarcon-Segovia criteria[22]. 

Attempts at classification were performed with 13 parameters that were chosen on the basis of 
availability and possible relevance to studied diseases. In this first exploratory report, it was not found 
warranted to attempt at presenting a rationale for this choice and discussing possible confusion between 
some of the parameters shown below and initial patient classification. 

-Age at diagnosis (p1) and sex (p2). 

-Anti-nuclear antibody fluorescence titre (p3) and pattern (p4) (Kallestad™, Bio-Rad Laboratories, 
Hercules, CA, USA) as widely used markers of autoimmune rheumatic diseases[25,26]. 

-Presence of antibody directed at one or several extractable nuclear antigens among SSA (60 kDa), 
TRIM-21, SSB, SmD, Jo-1, Scl70 and Centromere B (p5), as first considered as potential parameters to 
discriminate between MCTD and SLE[16], and presence and amount of antibody directed at U1 
ribonucleoprotein or specific isoforms such as A, C or 40/43 kD, as detected with EliA™ or Western blotting 
(Phadia AB, Thermo Fisher Scientific, Uppsala, Sweden) (p7–p13). Indeed, anti-U1-RNP antibodies are 
currently used as MCTD markers[22]. A long-term incentive for this choice was a search for a more sensitive 
marker of MCTD than currently studied anti-U1RNP. As shown below, only anti-43/43 kD antibodies were 
found to contribute discrimination between SLE and MCTD. 

-Amount of anti-native DNA antibodies, a standard SLE marker (p6). 

-Diagnosis was routinely performed in medical departments (usually internal medicine) of Marseilles 
hospitals. 

2.2. Statistical analysis 
Standard statistical analysis was performed with Libre Office statistical tools 

(http://www.libreoffice.org). Comparison between proportions was performed with z test[27], (p. 125). 
Comparison between mean values (rough or encoded values) was performed with student’s t-test without 
using the assumption of equal variances. 
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Supervised classification and clustering were mostly performed with tools provided by scikit-learn, an 
open-source machine learning package (http://scikit-learn.org). This includes extensive online information. 
In addition, its use is facilitated by excellent printed tutorials[28–30] (and it was used in important studies made 
on e.g., lymphocyte activation or biomolecular simulations[31,32]). 

The capacity of individual parameters to discriminate between SLE and MCTD was performed with a 
custom-made python program allowing us to compare the composition of the patients’ groups with 
respectively lower and higher values than all possible threshold values ranging between the lowest and 
highest value. 

The performance of separation models was systematically assessed with the following methods; 

-The prediction accuracy pa, i.e., the proportion of exact determinations is widely used but may be 
deceptive. Thus, if all patients were classified as “SLE”, pa would be 38/43 = 0.88, which might seem quite 
reasonable! 

-The corrected prediction accuracy cpa (https:// en.wikipedia.org/ wiki/ Rand_index 
#Adjusted_Rand_index) may be viewed as an accuracy score corrected for the occurrence of random guesses 
according to the formula: 

adjusted rand score = (pa-random pa)/(maximum as-random as) 

The calculation of this index is implemented in scikit-learn as adjusted rand score. As expected, the 
calculated value would be zero if all patients were classified as SLE. 

-A general problem in the elaboration of a binary classifier expected to discriminate between so-called 
“positive” and “negative” elements is that there is usually a trade-off between the sensitivity, i.e., the fraction 
of positive elements that are classified as positive, and the specificity, i.e., the fraction of negative elements 
that are classified as negative. The plot of sensitivity versus false positive rate (1-specificity) is called the 
ROC curve, and the area under curve (auc) is often considered as a convenient reporter of the performance 
of a classifier. An area of 1 corresponds to a perfect classifier, and 0.5 represents a random classifier[2,33]. 

It is well known that the tentative classification of an insufficient number of items based on too 
numerous parameters may result in deceptive success of a model, a situation denominated as overfitting. The 
standard way of dealing with this problem consists of splitting a data set between a training subset, used to 
calculate classification parameters, and a test subset, used to assess the model performance. Since this 
procedure may not be sufficient to exclude deceptive conclusions, it may be useful to randomly repeat the 
splitting process in order to test the variability of performance parameters. This was easily performed in the 
present study with the train-test-split function of scikit-learn metrics module. 

3. Results 

3.1. Potential of single parameters to discriminate between SLE and MCTD 
Selection of most discriminative parameters. First, we asked which parameters were expected to allow 

efficient discrimination between SLE and MCTD populations. Five parameters out of 13 yielded different 
mean values (P < 0.05) for both patients’ populations (Table 1). For each parameter, we assessed the 
possibility of separating both populations by using a threshold to define two classes corresponding to lower 
and higher values. As shown on Table 1, the area under ROC curve (auc) obtained by varying the threshold 
ranged between 0.596 and 0.835. These values were higher than 0.5, suggesting actual discriminatory power. 
The maximum prediction accuracy (pa) of separation criteria ranged with 0.77 and 0.84. Since these fairly 
high values were difficult to interpret, a score corrected by tentatively subtracting chance classification 
success was also used to correct for the possibility of random success in classification. As shown in Table 1, 
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corrected prediction accuracy (cpa) ranged between 0.19 and 0.4 for four parameters, thus supporting the 
hypothesis that the use of a threshold value might provide a limited discriminatory power. 

Interestingly, when the coded fluorescence aspect was studied, cpa was often zero, and sometimes 
exhibited negative values (not shown). This was surprising since the area under ROC score (0.644) was 
markedly higher than 0.5. Also, the distribution of this parameter exhibited a highly significant difference 
between SLE and MCTD, although the average values of this parameter did not significantly differ according 
to student’s test (P = 0.17). A possible interpretation of this apparent discrepancy would be that the 
distribution of fluorescence aspects might be multimodal in SLE or MCTD. 

Table 1. Parameters with significant differences between both patients’ groups. 

 Age at 
diagnosis 

Coded AN 
type 

Coded total 
ENA 

Anti-native 
DNA titre 

Coded anti-U1-RNP–A 
Western blot 

Mean lupus 30.7 1.39 0.64 64.6 1.29 
Mean MTCD 42.8 1.07 0.07 4.5 2.07 
Significance 0.000071 0.025 0.00122 0.002 0.026 
Area under roc curve (auc) 0.596 0.644 0.788 0.835 0.789 
Max accuracy (pa) 0.84 0.77 0.77 0.84 0.82 
Maxcorrrected accuracy (cpa) 0.34 0 0.19 0.40 0.36 
Sensitivity (at max cpa) 0.4 1 0.9 0.6 0.7 
Specificity (at max cpa) 0.97 0 0.67 0.91 0.85 
Threshold MTCD > 47 All lupus <1 <1.6 >1 

1 The distribution was significantly different between both patients’ groups according to F-test, but the mean ages at diagnosis were 
not significantly different according to t-test (P = 0.168). 
2 A binary (categorical) classification was used. The significance of the difference between SLE and MCTD groups was calculated 
with z test. 

The possibility of discriminating between SLE and MCTD with a single parameter was studied. 
Thirteen parameters were considered in a set of 44 patients (34 SLE, 10 MCTD). The significance of the 
difference between both populations was calculated with t-test unless otherwise mentioned. For each 
parameter, the efficiency of discrimination by defining two populations separated by a threshold value was 
quantitatively assessed by calculating the standard auc parameter (area under ROC curve), and the maximum 
prediction accuracy (pa), maximum corrected prediction accuracy (cpa), and sensitivity and specificity 
obtained with the threshold yielding maximum cpa. 

As an example, the ROC curve and threshold dependence of scores is shown on Figure 1. 

 
Figure 1. Discrimination between SLE and MCTD on the basis of anti-U1 RNPA. The accuracy of classifying patients as SLE (lower 
anti-U1 RNPA) or MCTD (higher anti-U1 RNPA) was calculated for all thresholds ranging between the highest and lowest values in 
a data set including 44 patients; parameters pa, cpa and sensitivity were plotted versus false positive rate (the latter plot is ROC 
curve). 
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Ruling out artifacts by performing multiple splittings of data sets between test and training sets. A 
general problem was that the power of a parameter threshold to discriminate both populations might be an 
artifact related to different causes unrelated to the pathological state. A general way to assess this problem 
consists of splitting data sets between a training set used to determine the threshold and a test set allowing to 
assess the validity of this threshold. This possibility was studied for each parameter by performing 25 
random splittings to yield a train and a test data set. The average values and standard deviations of area under 
ROC curve (auc), prediction accuracy (pa) and corrected prediction accuracy (cpa) were calculated. Results 
are shown on Table 2. Interestingly, data supported our previous conclusion and the accuracy scores 
determined on test sets on the basis of the thresholds calculated on training sets were only moderately 
decreased as compared to the scores measured on train tests. 

Table 2. Reproducibility of single parameter discrimination between patients’ groups. 
Dataset Parameter Age at diagnosis Coded AN type Coded total ENA Anti-native DNA title Coded anti-U1-RNP-A 

Western blot 

Train auc 0.597 (0.082 SD) 0.642 (0.037 SD) 0.787 (0.037 SD) 0.840 (0.040 SD) 0.791 (0.047 SD) 

Train max cpa 0.360 (0.094 SD) 0.000 (0.002 SD) 0.189 (0.070 SD) 0.416 (0.125 SD) 0.358 (0.092 SD) 

Train pa 0.821 (0.135 SD) 0.773 (0.042 SD) 0.726 (0.038 SD) 0.845 (0.040 SD) 0.820 (0.034 SD) 

Train threshold ≥48.1 (8.8 SD) <0.017 (0.129 SD) <1 (0 SD) <1.656 (1.300 SD) ≥2 (0 SD) 

Test cpa 0.181 (0.284 SD) 0.025 (0.153 SD) 0.193 (0.227 SD) 0.272 (0.312 SD) 0.320 (0.291 SD) 

Test pa 0.780 (0.131 SD) 0.754 (0.132 SD) 0.732 (0.115 SD) 0.805 (0.117 SD) 0.813 (0.101 SD) 

Patients’ data were randomly split between a training data set and a test data set. The training data set was used to determine the 
optimal threshold value allowing to discriminate between SLE and MCTD. The corrected prediction accuracy (cpa) and prediction 
accuracy (pa) were calculated for both train and test data sets. The area under ROC curve (auc) was calculated for train data sets. 
Mean values of 1000 different splits are shown together with standard deviation. Note that standard error was about (1/1000)1/2 times 
the standard deviation. 

The general conclusion yielded by these calculations is that all five considered parameters contained 
significant pieces of information with a potential to discriminate between SLE and MCTD. 

Obviously, an attractive prospect would be to combine all pieces of information contained by these 
parameters in order to build a more efficient diagnostic model. This was an incentive to explore the potential 
of currently available machine learning methods to achieve this goal. First, we used available tools with 
default values of hidden parameters. 

3.2. Potential of standard machine learning tools to discriminate between SLE and MCTD 
Using machine learning tools to identify optimal combinations of selection parameters. First, eight 

widely used models were used to build classification models on the basis of all 13 parameters. As shown on 
Table 3, when models were used with default settings, the following conclusions were obtained: 

i) A number of models were highly efficient in fitting training data sets, yielding up-to 1.000 prediction 
accuracy or area under ROC curve. 

ii) Much lower scores were obtained when trained models were used to analyze test data sets. This 
decrease was much higher than found with aforementioned single parameter classifications. 

iii) A substantial variability was found in calculated efficiency indices. Interestingly, additional tests 
(not shown) revealed that this stemmed from both the variability in the random choice of a training and a test 
data sets, and in some cases the variability of models involving random procedures. As a consequence, 
calculations were repeated 25 times for each studied conditions, and mean values are always shown together 
with standard deviation. 
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Table 3. Efficiency of data analysis with standard methods and settings. 
Method Training data Test data 

pa cpa auc pa cpa auc 
Logistic regression1 0.936 (0.035 SD) 0.727 (0.130 SD) 0.975 (0.016 SD) 0.727 (0.103 SD) 0.030 (0.164 SD) 0.815 (0.140 SD) 
Support vector 
machine (linear)2 

0.961 (0.039 SD) 0.838 (0.151 SD) 0.988 (0.015 SD) 0.742 (0.120 SD) 0.116 (0.229 SD) 0.794 (0.123 SD) 

Support vector 
machine2 

0.777 (0.039 SD) 0.012 (0.057 SD) 0.830 (0.077 SD) 0.767 (0.115 SD) 0.000 (0.000 SD) 0.578 (0.249 SD) 

K neighbors3 0879 (0.035 SD) 0.468 (0.185 SD) 0.923 (0.032 SD) 0.767 (0.109 SD) 0.112 (0.233 SD) 0.828 (0.160 SD) 
Decision tree  1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.738 (0.129 SD) 0.147 (0.243 SD) 0.616 (0.187 SD) 
Random forest 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000SD) 0.727 (0.138 SD) 0.082 (0.203 SD) 0.780 (0.156 SD) 
Gradient boosting 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000SD) 0.727 (0.123 SD) 0.074 (0.180 SD) 0.664 (0.214 SD) 
Neural network4 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.763 (0.103 SD) 0.158 (0.263 SD) 0.752 (0.141 SD) 

1 The maximum number of iterations was raised from 200 (default value) to 1000 to achieve proper convergence. Regularization 
parameter C was set at 1. 
2 The maximum number of iterations was set at 5,000,000 to achieve proper convergence. 
3 Data were preprocessed by scaling all parameters with respect to median value and percentiles (using Robust Scaler tool). number 
of neighbors was set at 5. 
4 Data were preprocessed as was done for K nearest neighbors classifier and the number of hidden layers was set at 10 instead of 
100 (the default value). The maximum number of iterations was set at 1,000,000. 

Standard machine learning tools were used to perform a supervised classification of a data set including 
44 patients (34 SLE, 10 MCTD, 13 measured parameters). For all models, the data set was randomly split 
twenty five times into a training set (33 patients) and a test set (11 patients). Models were trained with the 
first set using default parameters provided by scikit-learn, unless otherwise mentioned. The prediction 
accuracy (pa), corrected prediction accuracy (cpa) and area under ROC curve (auc) were calculated for the 
training and test data sets, and mean values are shown together with standard deviation. Note that the 
expected standard deviation of the mean is (1/5) × SD. 

Attempt at reducing overfitting by decreasing the number of used parameters. It seemed a reasonable 
interpretation of these findings to conclude that machine learning models were sufficiently versatile to fit 
complex data sets, but that the application of these models to test data sets resulted in a drastic decrease of 
classification efficiency, indicative of overfitting that was clearly expected to vary in proportion with the 
versatility of tested models. We tested the hypothesis that this overfitting could be reduced by decreasing the 
number of classification parameters (also called features) and selecting the parameters most relevant to the 
studied biological problem. This hypothesis was tested by repeating aforementioned calculations under the 
following conditions: i) a data set restricted to the five most relevant features described in Table 1. Results 
are shown on Table 4; ii) a data set restricted to the eight supposed least relevant features. Results are shown 
on Table 5. The selection of 5 most relevant parameters resulted in a small increase of classification 
efficiency, since auc ranged between 0.578 and 0.828 when all 13 parameters were used, and between 0.618 
and 0.863 when only 5 parameters were used. When the 8 less discriminating parameters were used, auc 
remained lower than 0.557. 

Significance of parameters used to evaluate model performance. In view of the complexity of results 
displayed on Tables 3, 4 and 5, it was deemed warranted to examine the relationships between the three 
parameters used to assess the efficiency of different models. First, the correlation between the mean values of 
pa, cpa and auc determined under 48 different conditions (25 calculations each) was studied: 

i) parameter pa was not significantly correlated to cpa (r = 0.032, P > 0.1) nor to auc (r = 0.100, P > 0.1). 

ii) cpa and auc were strongly correlated (r = 0.826, P < 0.01), as shown on Figure 2. 
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Figure 2. Correlation between cpa and auc. Parameters cpa and auc were determined under 48 different conditions (varying machine 
learning models and data sets) with 25-fold determination. Mean values are shown together with the parabolic regression curve (auc 
= −0.60446 cpa2 + 0.98544 cpa + 0.61182). 

Since the fairly high values of pa may be deceptive when limited asymmetric data sets are studied 
(indeed, if 90% of patients are classified as 1, a model classifying all patients as 1 would yield a predictive 
accuracy of 90%), it was not deemed warranted to use this parameter as a reporter of classification efficiency. 

Parameter cpa may convey an intuitive feeling for the quality of a model, with a value of zero in 
absence of any predictive capacity and 1 in case of perfect match. Parameter auc is more widely used in the 
scientific literature. The interpretation is somewhat more subtle, and a high auc value may be indicative of 
the possibility to adapt the sensitivity/specificity of a given model to medical needs (e.g., by choosing high 
sensitivity to detect potentially severe and curable conditions). 

Thus, we chose to consider only cpa and auc in the reminder of this study. The numerical results 
displayed on Tables 3, 4 and 5 are illustrated on Figure 3. 

 
Figure 3. Effect of data set on model efficiency as assessed with cpa. Eight widely used machine-learning classifiers were used to 
discriminate between SLE and MCTD on the basis of a dataset including 44 patients and 13 parameters. Calculations were performed 
with i) all 13 parameters, ii) five parameters, with significant differences between both patients’ groups, iii) the remaining 8 
parameters. The mean cpa obtained after 25 calculations is shown for each model. Vertical bar length is twice the standard error of 
the mean. 

Table 4. Effect of the reduction of parameter number on classification efficiency. 
Method Training data Test data 

pa cpa auc pa cpa auc 
Logistic regression1 0.875 (0.038 SD) 0.505 (0.136 SD) 0.945 (0025 SD) 0.775 (0.093 SD) 0.137 (0.226 SD) 0.848 (0.140 SD) 
Support vector Machine 
(linear)2 

0.897 (0.033 SD) 0.589 (0.121 SD) 0.958 (0.025 SD) 0.800 (0.025 SD) 0.243 (0.245 SD) 0.847 (0.140 SD) 

Support vector machine2 0.775 (0.038 SD) 0.000 (0.000 SD) 0.817 (0.067 SD) 0.767 (0.115 SD) 0.000 (0.000 SD) 0.618 (0.196 SD) 
K neighbors3 0.885 (0.036 SD) 0.510 (0.159 SD) 0.926 (0.034 SD) 0.775 (0.118 SD) 0.212 (0.265 SD) 0.835 (0.158 SD) 
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Table 4. (Continued). 

Method Training data Test data     

pa cpa auc pa cpa auc 

Decision tree  1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.731 (0.153 SD) 0.133 (0.250 SD) 0.605 (0.191 SD) 
Random forest 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.767 (0.115 SD) 0.167 (0.230 SD) 0.863 (0.116 SD) 
Gradient boosting 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.724 (0.127 SD) 0.087 (0.205 SD) 0.670 (0.276 SD) 
Neural network4 0.992 (0.020 SD) 0.963 (0.087 SD) 0.999 (0.003 SD) 0.764 (0.109 SD) 0.177 (0.223 SD) 0.810 (0.154 SD) 

1 The maximum number of iterations was raised from 200 (default value) to 1000 to achieve proper convergence. Regularization 
parameter C was set at 1. 
2 The maximum number of iterations was to 5,000,000 to achieve proper convergence. 
3 Data were preprocessed by scaling all parameters with respect to median value and percentiles (using Robust Scaler tool). number 
of neighbors was set at 5. 
4 Data were preprocessed as was done for K neighbors classifier and the number of hidden layers was set at 10 instead of 100 (the 
default value). Maximum number of iterations was set at 1,000,000. 

Standard machine learning tools were used to perform a supervised classification of a data set including 
44 patients (34 SLE, 10 MCTD), using the five parameters selected as shown in Table 1. For all models, the 
data set was randomly split twenty five times into a training set (33 patients) and a test set (11 patients). 
Models were trained with the first set using default parameters provided by scikit-learn, unless otherwise 
mentioned. The prediction accuracy (pa), corrected prediction accuracy (cpa) and area under roc curve (auc) 
were calculated for the training and test data sets, and mean values are shown together with standard 
deviation. Note that the expected standard deviation of the mean is (1/5) × SD. 

Table 5. Effect of the use of less relevant parameters on classification efficiency. 
Method Training data Test data 

pa cpa auc pa cpa auc 
Logistic regression1 0.823 (0.043 SD) 0.226 (0.167 SD) 0.766 (0.057 SD) 0.720 (0.126 SD) −0.020 (0.09 SD) 0.465 (0.240 SD) 
Support vector machine 
(linear)2 

0.829 (0.049 SD) 0.267 (0.177 SD) 0.779 (0.063 SD) 0.698 (0.147 SD) 0.007 (0.136 SD) 0.452 (0.242 SD) 

Support vector machine2 0.775 (0.038 SD) 0.00 (0.000 SD) 0.773 (0.079 SD) 0.767 (0.115 SD) 0.000 (0.000 SD) 0.518 (0.224 SD) 
K neighbors3 0.784 (0.043 SD) 0.068 (0.095 SD) 0.811 (0.051 SD) 0.745 (0.115 SD) −0.021 (0.059 SD) 0.483 (0.224 SD) 
Decision tree 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.604 (0.162 SD) 0.035 (0.176 SD) 0.511 (0.194 SD) 
Random forest 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.647 (0.134 SD) 0.003 (0.164 SD) 0.528 (0.261 SD) 
Gradient boosting 1.000 (0.000 SD) 1.000 (0.000 SD) 1.000 (0.000 SD) 0.629 (0.150 SD) 0.051 (0.168 SD) 0.557 (0.236 SD) 
Neural network4 0.972 (0.033 SD) 0.881 (0.138 SD) 0.992 (0.012 SD) 0.585 (0.124 SD) -0.023 (0.091 SD) 0.439 (0.225 SD) 

1 The maximum number of iterations was raised from 200 (default value) to 1000 to achieve proper convergence. Regularization 
parameter C was set at 1. 
2 The maximum number of iterations was to 5,000,000 to achieve proper convergence. 
3 Data were preprocessed by scaling all parameters with respect to median value and percentiles (using Robust Scaler tool). number 
of neighbors was set at 5. 
4 Data were preprocessed as was done for K neighbors classifier and the number of hidden layers was set at 10 instead of 100 (the 
default value). Maximum number of iterations was set at 1,000,000. 

Standard machine learning tools were used to perform a supervised classification of a data set including 
44 patients (34 SLE, 10 MCTD). 8 parameters were selected, by excluding from 13 parameters (as used in 
Table 3) the five most discriminatory parameters (as shown in Tables 1, 2 and 4). For all models, the data 
set was randomly split twenty five times into a training set (33 patients) and a test set (11 patients). Models 
were trained with the first set using default parameters provided by scikit-learn, unless otherwise mentioned. 
The prediction accuracy (pa), corrected prediction accuracy (cpa) and area under roc curve (auc) were 
calculated for the training and test data sets, and mean values are shown together with standard deviation. 
Note that the expected standard deviation of the mean is (1/5) × SD. 
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Conclusions regarding the relative discriminatory power of different sets of parameters. The following 
conclusions were suggested: 

i) Not surprisingly, combining all 13 parameters allowed more efficient fit between models and training 
data than the use of a single parameter described on Table 2. 

ii) When calculations were based on the 5 supposed most relevant parameters, fitting efficiency was 
decreased on training data sets, but it was increased on test data sets. This is illustrative of the well-known 
overfitting situation. 

iii) When 8 supposed least relevant parameters were used, fitting efficiency was decreased in both 
training and test data sets. Note that the efficient fitting of training data found with some machine learning 
models with nearly zero predictive accuracy on test data is a clear illustration of overfitting. This emphasizes 
the prominent importance of the selection of data set parameters (or features). 

iv) The processing of five supposedly relevant parameters did not result in marked improvement of 
prediction accuracy as compared to single parameter analysis (as shown on Tables 2 and 4). 

The simplest interpretation of these results would be that the low efficiency of machine learning models 
might be at least partly due to a poor relevance of default settings to the properties of the data sets we used. It 
was thus warranted to study the efficiency increase that might be obtained by a proper setting of the hidden 
parameters of all classifiers. A number of parameters were thus subjected to systematic variation to address 
this question. Results are displayed in the following section. 

3.3. Improving classifier settings 
The eight models considered above were sequentially considered for parameter optimization. The five- 

parameter data set defined above was used for all studies. 

3.3.1. Logistic regression 
This method consists of looking for a linear combination of provided parameters allowing optimal 

discrimination between both patient’s classes. While this is close to standard statistical reasoning, this 
involves a regularization procedure allowing to achieve a balance between the complexity and efficiency of 
trained models. A regularization parameter allows to modulate the relative importance of regularization and 
classification efficiency. 

The dependence of cpa and auc on regularization is shown on Figure 4. As expected, the fitting 
efficiency of training data was increased when regularization was decreased. However, cpa and auc yielded 
by the analysis of test data sets were nearly optimal when the regularization parameter was set to 1. 
Interestingly, this is the default value of the algorithm provided by scikit-learn. 

 
Figure 4. Effect of regularization on logistic regression efficiency. (Note that the relative importance of regularization is inversely 
related to the regularization parameter). Mean values of 25 sequential determinations are shown for each condition. Vertical bar 
length is twice the standard error of the mean. 
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3.3.2. Linear support vector machine classifier 
As shown on Figure 5, the efficiency of linear SVM and effect of regularization were comparable to 

those of logistic regression. 

 
Figure 5. Effect of regularization on linear SVM. (Note that the relative importance of regularization is inversely related to the 
regularization parameter). Mean values of 25 sequential determinations are shown for each condition. Vertical bar length is twice the 
standard error of the mean. 

3.3.3. Support vector machine 
The SVM model may be viewed as an extension of linear SVM with increased versatility. When the 

value of two hidden parameters, the regularization parameter C, in analogy to the previous two models, and 
the kernel coefficient gamma were varied, the behavior of cpa and auc as determined for training and test 
data sets were fairly complex and highest values of each parameter were obtained for different combinations 
of C and gamma: with training data set, high values of cpa and auc (respectively 0.993 and 1) were obtained 
with C = 1 (the default value) and gamma = 100. However, applying the trained model to test data sets 
yielded disappointingly low values of cpa (0) and auc (0.649), suggesting strong overfitting. Further, a fairly 
different combination (C = 10 and gamma = 0.1) yielded low cpa (0.747) with training data set while the 
analysis of test data sets yielded better values in comparison with previous models (cpa = 0.264 ± 0.3 SD and 
auc = 0.85 ± 0.14 SD). In conclusion, results were more critically dependent on the precise values of hidden 
parameters, thus questioning the robustness of the model. 

This conclusion is illustrated on Figure 6 where the dependence of auc (test dataset) on two parameters 
is shown. 

 
Figure 6. Influence of kernel coefficient and regularization parameter on the classification efficiency of SVM model. 
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3.3.4. K neighbors classifier 
The basic principle of this classifier is fairly straightforward: The class of any point (in a space the 

dimension of which is equal to the number of parameters) is determined as the class of the majority of the K 
nearest points belonging to the training data set. Clearly, if K is set to 1, a perfect fit will be obtained for all 
points of the training data set. If K is set equal to the number of points in the data set, all points will be 
classified according to the most populated class in the data set. The dependence of classification efficiency 
on K is shown on Figure 7. 

As shown on Figure 7, decreasing the number of neighbors from 5 (the default value) to 3 improved 
cpa and auc. An important point is about the definition of the distance between data points: This is obviously 
strongly dependent on the scaling of parameters. Thus, if a parameter is expressed as concentration 
displaying 1000 folds variation and another parameter as an encoded value with a range of 1–5, the first 
parameter is expected to play a dominant influence on calculated distance. Therefore, an appropriate scaling 
must be performed to balance the relative importance of parameters. 

Note that specific scaling procedures inspired by some biological reasoning might be expected to 
improve classification efficiency. Addressing this point was not felt to fit to the scope of the present report. 

 
Figure 7. Importance of the choice of neighbor number on the efficiency of KNN classifier. Each point represents the mean ± 
standard error) of 25 calculations based on the same parameters, with random determination of training and test data sets. Distance 
was calculated on the basis of parameters scaled with Robust Scaler method provided by Sciki Learn. 

3.3.5. Importance of the maximum depth on decision tree classification 
The basic principle of this method is fairly simple: this consists of performing sequential binary 

splittings until an optimal fit is obtained. Clearly, if the maximum number of allowed splits is unlimited, a 
perfect fit is expected to be obtained with any data set. However, if parameters are irrelevant to classification, 
this should result in bad accuracy of test data set analysis. The dependence of classification efficiency on the 
maximum number of allowed splits (max-depth parameter) is shown on Figure 8. 

 
Figure 8. Importance of the choice of maximum depth parameter on the efficiency of decision tree classifier. Each point represents 
the mean (± standard error) of 25 calculations based on the same parameters, with random determination of training and test data sets. 
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Clearly, while the accuracy of test data set fitting was somewhat improved by a reduction of the 
maximum depth, the decision tree algorithm yielded poor accuracy parameters as compared to other methods, 
despite an efficient fitting with training data set (Table 4). 

3.3.6. Random forests classifier 
The random forest method may be viewed as an extension of the decision tree classifier consisting of 

combining the results yielded by several decision tree calculations differing with the random choice of 
sequential data set splittings during the training process. The maximum cpa value was 0.185 ± 0.275 SD, 
corresponding to a nearly maximum value of 0.868 ± 0.123 SD for auc. 

The dependence of auc (test data set) on varied parameters is displayed on Figure 9. 

 
Figure 9. Influence of maximum depth and number of features on random forest classifier efficiency. The random forest classifier 
algorithm was used with varying values of maximum depth and number of features (max-feature) parameters. The number of 
combined trees was set at 200. Each calculation was repeated 25 folds under each condition and mean values of parameters cpa and 
auc obtained on test data set with models trained on training data set were calculated. 

3.3.7. Gradient boosting classifier 
The gradient boosting classifier may be viewed as a more complex way of building on the decision tree 

algorithm with a number of adjustable parameters, including so-called learning-rate parameter allowing to 
weight the importance of combined estimators. The effect of combined variation of learning-rate and 
maximum depth is shown on Figure 10. 

The maximum value of cpa (applied to test data sets) was 0.189 ± 0.269 when maximum-depth was set 
at 2 and learning rate at 100, while auc was 0.668 ± 0.209 SD, a fairly low value. 

The maximum value of auc was 0.843 ± 0.131 SD when maximum depth was 1 and learning rate 0.1. 
Under these conditions, parameter cpa was 0.148 ± 0.271 SD. 

 
Figure 10. Influence of maximum depth and learning rate on gradient boosting classifier efficiency. The gradient boosting classifier 
algorithm was used with varying values of maximum-depth and learning rate parameters. The number of combined trees was set at 
50. Each calculation was repeated 25 folds under each condition and mean values of parameters cpa and auc obtained on test dataset 
with models trained on training dataset were calculated. 
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3.3.8. Neural networks 
Neural networks are highly complex algorithms that gained some popularity several decades after initial 

reports due to the increasing availability of large scale data sets[34,35]. The principle consists of subjecting 
input parameters to sequential mathematical transformations within so-called hidden layers, resulting in 
enormous complexity and versatility. Due to the high number of adjustable parameters, this model is 
probably poorly suited to the analysis of small data sets. However, it was felt warranted to present a limited 
view of its potential (Figure 11): Optimal fit yielded reasonably high values of 0.316 ± 0.322 SD for cpa and 
0.842 ± 0.126 SD for auc. 

 
Figure 11. Influence of regularization parameter on multilayer perceptron classification efficiency. The multilayer perceptron 
classifier algorithm was used with varying values of regularization parameter The number of hidden layers was set at 10. Data 
transformation was performed with hyperbolic tangent (tanh). maximum iteration was set at 50,000. 

3.3.9. Section summary 
The results presented in this section support the following conclusions. 

i) As suggested by Figure 3, the selection of parameters should be subjected to careful analysis and 
limitation before applying powerful machine learning tools. 

ii) When only a limited data set is available, the use of more complex algorithms is not advisable, as 
exemplified on Table 4. 

iii) A common problem in the analysis of small data sets is the high variability of calculated parameters, 
due to the occurrence of a number of random steps in currently available algorithms. 

iv) All models include a number of adjustable parameters the determination of which is somewhat 
hampered by random variability. 

These provisional conclusions suggested to refine parameter selection and apply less complex models, 
such as Logistic Regression, Nearest Neighbor analysis or Decision Trees with limited depth to the analysis 
of smaller sets of parameters. 

3.4. Tentatively reducing the number of parameters 
Three machine learning models were used to perform a supervised classification of a data set including 

44 patients (34 SLE, 10 MCTD, 13 measured parameters). All possible groups of 2, 3 or 4 parameters among 
those displayed on Table 1 were processed by performing 1,000 random splittings into a training set (33 
patients) and a test set (11 patients). The corrected prediction accuracy (cpa) was calculated and mean values 
are shown ± standard error of the mean (SE). For each set of 2, 3 or 4 parameters, the maximum value of cpa 
is shown for each model (as labeled with a *) together with the optimal parameter set (first column). 

In order to determine the optimal parameter combination for patient classification, we tested all subsets 
of 2 parameters (10 possible choices), 3 parameters (20 possibilities) or 4 parameters (5 possibilities) that 
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could be selected out of the five most significant parameters shown on Table 1. In each case, we studied the 
efficiency of three machine learning models to classify patients. One thousand combinations of training and 
test subsets were used and the mean value of corrected prediction accuracy (cpa) was determined. The 
parameter subsets yielding maximum cpa are shown on Table 6, leading to the following conclusion: 

i) for a given parameter subset, different models may exhibit up to threefold differences in classification 
efficiency (thus maximum cpa obtained with a three-parameter subset including age at diagnosis, coded anti-
nuclear antibody aspect and coded anti-U1-RNP-A assayed with western blot, varied between 0.130 (logistic 
regression) and 0.409 (K nearest neighbors classifier). 

ii) when all results obtained with different methods and parameters were considered (as shown on 
Tables 1 and 6), the maximum cpa obtained on test data was 0.320 (± 0.010 SE) with 1 parameter, 0.334 ± 
0.010 with 2 parameters, 0.409 ± 0.011 with 3 parameters and 0.358 ± 0.01 with 4 parameters. This 
supported the conclusion that better results were obtained with limited parameter subsets. Also, the gain 
provided by the combination of several parameters remained fairly modest. 

Table 6. Effect of parameter selection on classification efficiency. 
Parameters used§ Corrected prediction efficiency 

Logistic regression K nearest neighbors° Decision tree 
B D 0.369* ± 0.011 SE 0.269 ± 0.009 SE 0.300* ± 0.018 SE 
A D 0.189 ± 0.017 SE 0.334* ± 0.010 SE 0.271 ± 0.017 SE 
B C E 0.389* ± 0.011 SE 0.293 ± 0.010 SE 0.330* ± 0.010 SE 
A B E 0.130 ± 0.008 SE 0.409* ± 0.011 SE 0.183 ± 0.080 SE 
B C D E 0.262* ± 0.009 SE 0.292 ± 0.010 SE 0.023 ± 0.009 SE 
A B D E 0.199 ± 0.008 SE 0.358* ± 0.010 SE 0.142 ± 0.016 SE 
A B C E 0.242 ± 0.010 SE 0.339 ± 0.010 SE 0.295* ± 0.019 SE 

° The number of neighbors was set at 3 and parameters were scaled as mentioned on Table 3. 
* This is the maximum efficiency value obtained by all permutation of five parameters shown in Table 1. 
§ A: Age at diagnosis, B: Coded AN type, C: Coded total ENA, D: anti-native DNA titre, E: coded anti-U1-RNP A. 

3.5. Prediction probability 
Since classifiers usually involve an estimator of the probability of each prediction, it was interesting to 

examine the estimated probability of aforementioned predictions. Indeed, it might be hypothesized that false 
predictions might be due to less representative patients, leading to lower prediction probability. 

Results obtained with three parameter sets are displayed on Table 7. While the estimated probability of 
false predictions was significantly lower than that of true predictions, the probability parameter exhibited too 
high variations to be used as a warning signal. 

Table 7. Estimated probability of classifier prediction. 

 Estimated prediction probability 

 Logistic regression K neighbors Decision tree 

Parameters True predictions False predictions True predictions False predictions True predictions False predictions 

A, B, E 0.827 (0.143 SD) 0.722 (0.148 SD) 0.900 (0.153 SD) 0.818 (0.170 SD) 0.913 (0.153 SD) 0.834 (0.140 SD) 

B, C, E 0.805 (0.115 SD) 0.669 (0.099 SD) 0.882 (0.159 SD) 0.806 (0.164 SD) 0.819 (0.189 SD) 0.766 (0.174 SD) 

A, B, C, D, E 0.888 (0.155 SD) 0.747 (0.137 SD) 0.892 (0.156 SD) 0.740 (0.138 SD) 0.973 (0.085 SD) 0.943 (0.109 SD) 
Three classifier models were used as shown on Table 6 for classification of 44 items on the basis of 3 or 5 parameters to discriminate 
between SLE and MCTD (A: age at diagnosis, B: coded fluorescence pattern of anti-nuclear antibodies, C coded anti extractable 
nuclear antigens, D native anti-ds DNA title, E coded anti-U1-RNP-A antigen revealed with western blotting). The mean estimated 
probability of true and false predictions obtained for test data sets are shown ± standard deviation. 
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3.6. Tentative unsupervised clustering 
A potentially useful property of machine learning might be to determine whether the studied group of 

44 patients displayed some unexpected heterogeneity that might hamper the discrimination between SLE and 
MCTD. We addressed this point by performing unsupervised clustering to define two groups with KMeans, a 
commonly used clustering algorithm based on euclidean distance between properly scaled data points. As 
expected, due to the low value of cpa, the processing of 5- or 13-parameter data sets yielded a classification 
that was unrelated to the SLE/MCTD classification, with a corrected matching index close to zero (not 
shown). 

4. Discussion 
Our study was aimed at determining whether currently available machine learning tools might help us 

processing available data to manage patients with connective tissue diseases. Presented results might be 
useful in two domains: 

i) providing caveats and guidelines for the use of machine learning tools. Indeed, as recently 
emphasized, artificial intelligence is becoming easier and easier to use, with a substantial risk of reaching 
erroneous conclusions[36]. 

ii) improving the management of patients with autoimmune diseases. 

4.1. Potential and limitation of the use of standard machine learning tools to process limited 
data sets 

While the guidelines and caveats illustrated by our results are well known from data scientists, it was 
felt that the detailed numerical data provided in this study might be of interest for more medically inclined 
readers.  The following five points may be emphasized: 

4.1.1. Importance of random variations 
Results yielded by calculations are subject to random variations due to both random steps of machine 

learning algorithms and dependence of data on random properties of data sets, that are the more important as 
their size is smaller. This is well illustrated by standard deviations displayed on Table 3. This is the reason 
why repeated processing of training and test data sets is an absolute requirement to build models and validate 
them with independent data sets. 

4.1.2. Danger of using too many parameters (or features) 
While artificial intelligence met with spectacular success by processing highly complex data sets the 

relevance of which is sometimes difficult to assess, it must be understood that the price to be paid for these 
successes is that they may need more data than conventional methods, a property that was sometimes dubbed 
“data hungriness”. This point is well illustrated on Figure 3. It must be emphasized that i) this danger is 
somewhat alleviated by so-called regularization techniques included in machine learning algorithms, and ii) 
a useful warning is provided by the occurrence of an important difference between the classification 
efficiency of training and test data sets. Data shown on Table 6 is indicative of the interest of using a very 
limited number of parameters when small-size data sets are used. 

4.1.3. Importance of using simpler models when data sets are smaller 
As illustrated on Figures 4–11, a reason for the simplicity of use of many currently available machine 

learning tools is that they include cleverly chosen default values of a number of fairly hidden parameters. A 
simple example is the maximum depth of decision tree classifier (Figure 8), i.e., the maximum number of 
patients splittings into two categories. Clearly, the use of a number n of splittings results in the definition of 
2n classes. As an example, performing 10 splittings will generate about 1000 classes, which will allow 
perfect, although fairly meaningless, classification of a few tens of patients. This illustrates the importance of 
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decreasing model complexity by decreasing parameters such as maximum depth and increasing the 
importance of regularization. 

4.1.4. Importance of a quantitative assessment of classification efficiency 
The impressive number of options concerning the choice of models, model settings and classification 

features made it clear that there is a need for guidelines to choose appropriate strategies. Model evaluation is 
indeed a common challenge, and two main parameters were considered in the present report. The corrected 
prediction accuracy is fairly intuitive, with a value usually ranging between zero, for a totally inefficient 
algorithm and 1, corresponding to perfect classification, and possibly negative values for models performing 
still less efficiently that random choices. The meaning of the area under ROC curve is somewhat more subtle, 
and reminds us of the balance between the sensitivity and the specificity of a test. Also, it cannot be used to 
assess the efficiency of classification between more than two states. The close correlation between auc and 
cpa displayed on Figure 2 suggests that we may tentatively consider the parameter that suited us best. 

4.1.5. Prominent importance of parameter selection 
While impressive and unexpected correlations between different features were sometimes obtained by 

processing massive data sets, results displayed on Figure 3 clearly support the conclusion that parameter 
selection is essential when limited data sets are available, as exemplified in the present study. Indeed, 
different models described above displayed fairly comparable efficiency (Table 6). Thus, a knowledge-
driven parameter selection should help the performance of classifiers, in accordance with already 
emphasized human-AI complementarity[14] Reciprocally, artificial intelligence might assist feature selection. 
Thus, calculating parameters such as cpa and auc may help us assess the quality of model selection and 
setting. As will be emphasized below, machine learning may thus not only facilitate the use of complex 
diagnostic algorithms but also provide a useful help in defining pathological categories. 

4.2. Potential use of our study to discriminate between SLE and MCTD patients 
As emphasized above, the continual increase of the diversity, and cost, of diagnostic and therapeutic 

tools results in a parallel increase of more and more accurate diagnosis. Since pathognomonic signs are 
rarely available for this purpose, the complexity of diagnostic algorithms is steadily increasing. The 
discrimination between SLE and MCTD provides a clearcut illustration of this situation. 

SLE is a severe chronic disease requiring therapeutic choices for optimal efficiency and minimal 
adverse effects. MCTD was suggested more than 30 years ago to represent a separate entity that was notable 
for a lack of renal disease and excellent response to corticosteroid therapy[18]. Twenty years later, the 
existence of MCTD as a separate entity remained subject to discussion[20], and diagnostic algorithms 
including more than 10 biological and clinical criteria were suggested[22]. Clearly, while no definitive 
procedure is currently available to answer without any ambiguity all questions concerning individual patients, 
data obtained in the present study suggest that currently available machine learning tools might help us 
address the following points: 

i) Estimate the probability that a patient’s pathology might be classified as SLE or MCTD. As shown on 
Table 4, auc parameters as high as 0.84–0.86 might be obtained with a 5-parameter set. An auc of 0.827 
could be obtained with a 3-parameter set as discussed on Table 6 (not shown). These values may be 
considered as fairly good according to current standards[37]. Indeed, as a recent example of reports based on 
limited data sets, SVM was used to predict the cognitive decline of Parkinson patients subjected to brain 
fluorodeoxyclucose PET scans. An auc of 0.73 was obtained with a model trained on 43 patients[38]. In 
another reports based on 44 patients, a machine learning approach allowed to predict multiple sclerosis 
response to dimethyl fumarate treatment from the flow cytometric profile of blood leukocytes[39] with an 
estimated auc of 0.85. 
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It must be emphasized that more efficient classifications may be obtained on simpler models. Thus, an 
image analysis software was developed and used in our laboratory to identify anti-nuclear antibodies in 
patients sera on the basis of immunofluorescence images, and an auc of 0.991 was obtained with a single 
well-chosen index[40,41]. 

ii) Estimate the information that might be obtained by determining an unknown parameter in a given 
patient, e.g., by comparing results shown on Tables 2, 4 and 6. 

iii) More generally, chose a minimal set of biological parameters that should be measured in a patient 
with suspected SLE or MTCD. 

4.3. Generality of presented data 
While the numerical data presented in this report provide a quantitative view of the diagnostic accuracy 

that might be expected by applying machine learning to the discrimination between SLE and MCTD. The 
data set we used was insufficient to allow the elaboration of a fully parametrized classifier of practical 
interest. Three kinds of limitation may be considered: 

i) Since we performed a retrospective study, the quality of data sets was not subjected to specific checks. 
It must however be noticed that biological and clinical care were performed by highly specialized staff in 
public university hospitals. 

ii) As emphasized in the introduction, restricting our study to a local area might increase patient 
homogeneity. However, as emphasized in a recent study of MCTD epidemiology[42], it would certainly be 
useful to repeat studies in different regions to assess the potential consequences of local peculiarities. A 
specific point might be about possible variations of ENA characterization, since this may include many 
different molecular species[15]. Indeed, a specific interest of our laboratory consists in improving the 
characterization of ENA specific antibodies. 

iii) In addition, it has well been reported that the validity of classifiers may be restricted in time. As an 
example, a machine learning algorithm aimed at predicting sepsis outcome exhibited significant deterioration 
in performance over time[43]. 

5. Conclusion 
The main purpose of this report was to explore the feasibility of using currently available machine 

learning algorithms to address an actual and fairly complex diagnosis problem. The following two points 
may be emphasized: 

i) while a proper use of validated tools was found to allow significant, although limited, classification 
efficiency, it must be emphasized that a more extensive data set would be required to improve the classifiers 
and validate conclusions. 

ii) An important conclusion might be that the use of quantitative tools might provide new guidelines 
about medical diagnosis. Indeed, the fairly negative conclusions of unsupervised clustering, as described in 
section 3.6, may suggest that it may not be a good idea to look for efficient definition of a fuzzy entity such 
as MCDT, and it might be more rewarding to try and directly predict more restricted parameters such as 
absence of renal disease or corticosteroid sensitivity. In other words, it may not be a successful strategy to 
use more and more refined diagnostic tools to define an increasing and possibly excessive number of 
pathological categories. 

Thus, the following research lines may be suggested: 

i) Extend our study to different hospitals or time periods to define a classifier of sufficiently general use. 
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ii) Look for a more appropriate set or parameters (or features) in order to achieve a classification of 
patients’ status sufficiently clearcut to actually guide medical practice. 
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