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Abstract: (236 words) 

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death 

worldwide.  HCC can be cured by radical therapies if early diagnosis is done while the tumor 

has remained of small size. Unfortunately, diagnosis is commonly late while the tumor has 

grown and spread. Thus, palliative approaches are usually applied such as transarterial 

intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase 

inhibitor.  This latter is the only targeted therapy that has shown significant, although 

moderate, efficiency in some individuals with advanced HCC.  This highlights the need to 

develop other targeted therapies, and to this goal, to identify more and more pathways as 

potential targets.  The Wnt pathway is a key component of a physiological process involved in 

embryonic development and tissue homeostasis.  Activation of this pathway occurs when a 

Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane.  Two different Wnt 

signaling cascades have been identified, called non-canonical and canonical pathways, the 

latter involving the β-catenin protein.  Deregulation of the Wnt pathway is an early event in 

hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is 

implicated both in cell survival, proliferation, migration and invasion.  Thus, component 

proteins identified in this pathway are potential candidates for pharmacological intervention.  

This review focuses on the characteristics and functions of the molecular targets of the Wnt 

signaling cascade and how they may be manipulated to achieve anti-tumor effects.   
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Introduction 

HCC represents a major public health problem with a high impact on society.  HCC is 

the sixth most common tumor worldwide in terms of incidence (about one million per year).  

Projections are that this incidence will substantially increase during the next decades due to 

persistent infection with the hepatitis C virus as well as the emergence of non-alcoholic 

steato-hepatitis as a major health problem.  HCC portends a poor prognosis since ranking 

third in terms of “cause of death” by cancer, and often presents as a major complication of 

cirrhosis related to chronic hepatitis B and C infections, or nonvirus-related [1-3].  The dismal 

prognosis is generally related to a late diagnosis after HCC cells have infiltrated the liver 

parenchyma as well as spread through the portal venous system and/or form distant 

metastases.  However, if HCC is diagnosed early (< 20% of patients), these smaller tumors 

may be cured by surgical resection, liver transplantation or radiofrequency ablation.  In more 

advanced tumors (> 80% of patients at diagnosis), only palliative approaches can be applied.  

In this regard, transarterial intra-hepatic chemoembolization has been shown to be somewhat 

effective for increasing overall survival of individuals with tumors that have spread only into 

the liver parenchyma without extrahepatic metastasis (median overall survival is increased 

from 15 to 20 months compared to the best supportive care).  In HCC with extra-hepatic 

spread, only sorafenib, an anti-angiogenic and MAP kinase inhibitor, has been shown to 

increase overall survival of patients (from 8 to 11 months) [4].  All other systemic approaches 

such as cytotoxic chemotherapy have not been shown to be effective; thus, to date, no targeted 

therapy except sorafenib, has been proven to prolong life in patients with HCC.  However, 

there are ongoing or ended clinical trials with agents that target FGF, VEGF, PDGF, EGF, 

IGF, mTOR and TGFβ signaling pathways but none yet has been shown to have a significant 

impact on patient survival [5]. 
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Recently, cancer stem cells (CSC) have been hypothesized to play a key role in tumor 

maintenance as well as relapse after surgical resection.  There is accumulating information 

that supports a role for CSC in hepatocarcinogenesis to maintain the tumor size and to initiate 

tumor recurrence following therapy [6].  The pool of CSC is maintained by self-renewal 

capabilities that are largely driven by reactivation of embryonic signaling programs mediated 

by Wnt, Notch, Bmi and Hedgehog pathways, similar to what has been previously 

demonstrated during breast carcinogenesis [7].  Preclinical studies further underline the 

potential value of inhibiting activation of these signaling programs in some tumor types [8-

11].   

In this review, we describe the features of a therapeutic target, i.e. the Wnt pathway, for 

potential therapy of HCC.  We will discuss experimental and preclinical studies regarding the 

use of Wnt inhibitors as a therapeutic approach for HCC.   

 

The Wnt-mediated signaling  

The first member of the Wnt family of ligands was identified from the int-1 gene found 

in a mammary adenocarcinoma, located at the integration site of the Mouse Mammary Tumor 

Virus (MMTV); subsequently, it was demonstrated to have oncogenic properties [12].  More 

important, int-1 homolog genes have been found in human tumors as well [13].  In addition, a 

highly conserved int-1 homolog was also discovered in drosophila and designated Wingless 

“Wg” [14].  The combination of int-1 and Wingless led to the common Wnt1 terminology and 

recently has been used to designate the Wnt family of ligands [15].   

Wnt proteins are secreted extracellular auto-paracrine glycoproteins that interact with 

Frizzled receptors (FZD), a seven transmembrane domain protein, resembling the G-protein-

coupled receptor (GPCR) family. Vinson and colleagues revealed that FZD contains an 

extracellular cysteine-rich domain (CRD) which is the putative binding site for the Wnt 
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ligands.  These investigators demonstrated the functional role of the frizzled locus to 

coordinate development of the cytoskeleton in drosophila epidermal cells [16].  Subsequently, 

Wnt/FZD-mediated signaling has been extensively studied, and although it has been widely 

implicated in cellular homeostasis, these ligand/receptor interactions have now been 

appreciated as key factors during the oncogenesis process and therefore, could serve as new 

therapeutic targets.   

Thus, Wnt proteins represent members of a highly conserved family that is involved in 

several processes including embryonic development, cell fate determination, proliferation, 

polarity, migration and stem cell maintenance.  In addition, Wnt/beta-catenin signaling has 

been found to play key roles in metabolic zonation of adult liver, regeneration [17].  In adult 

organisms, deregulation of Wnt signaling may lead to tumor development [18, 19].  The Wnt-

mediated pathway is activated through the binding of one Wnt ligand to a FZD receptor.  Ten 

different FZD receptors and 19 Wnt ligands have been identified in humans.  The binding of 

Wnt to a FZD receptor can trigger activation of at least three different pathways.  The first is 

the Wnt/β-catenin cascade, also called the Wnt-canonical pathway; the remaining two are the 

Planar Cell Polarity (PCP) and the Wnt/Calcium pathways, respectively.  The two latter are β-

catenin independent and represent examples of the non-canonical cascades.  In this regard, a 

multitude of combinations between the 19 Wnt ligands and the 10 FZD receptors such as co-

receptors and other molecules are theoretically possible. Classically, 

Wnt1/2/3/3a/8a/8b/10a/10b and FZD1/5/7/9 are classified as the canonical elements, whereas 

Wnt4/5a/5b/6/7a/7b/11 and FZD2/3/4/6 are designated as non-canonical components. The 

remaining Wnt2b/9a/9b/16 and FZD8/10 proteins remain unclassified [19, 20].  However, it 

remains elusive how selectivity between Wnt/FZD as well as specificity of downstream 

signaling are achieved. Some Wnt/FZD elements can share dual canonical and non-canonical 

functions. For instance it has been shown that in absence of Ror2 co-receptors, Wnt5a can 
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activate β-catenin signaling with FZD4 and Lrp5 [21].  FZD3 has been described to act likely 

through canonical pathway in mice neurogenesis [21].  Zhang et al. demonstrated that in 

Xenopus foregut, FZD7 can activate low level of β-catenin and non-canonical JNK signaling 

in which both pathways contributed to foregut fate and proliferation while JNK pathway 

regulated cell morphology [22].  It is of interest that canonical and non-canonical pathways 

can not only be driven by specific Wnt/FZD combinations, but also by the cell type, 

differentiation status, localization and composition of the microenvironment [23].   

The canonical Wnt/FZD pathway 

The β-catenin protein, encoded by the CTNNB1 gene, is a key component in Wnt-

canonical pathway signaling.  β-catenin has a central region which presents armadillo domain 

repeats important for the binding of partners, such as Axin1 and Adenomatous Polyposis Coli 

protein (APC) as well as transcription factors [24].  The C- and N-terminal regions are 

important.  C-terminus of β-catenin serves as a binding factor for a multitude of complexes 

promoting β-catenin-mediated transcription, whereas phosphorylation of the N-terminus 

promotes degradation of β-catenin.  Indeed, β-catenin may be present in several cellular 

compartments, such as the inner plasma membrane having a role in cell-cell junctions, the 

cytoplasm and the nucleus where it forms an active complex containing TCF/LEF 

transcription factors (T-cell factor/lymphoid enhancer factor) [25].  In the absence of nuclear 

β-catenin, TCF/LEF interact with the transcriptional co-repressor Transducin Like Enhancer-1 

(TLE-1) (drosophila homolog Groucho), thus preventing β-catenin target gene expression 

[26].  Following translocation into the nucleus, β-catenin binds TCF/LEF and replaces the 

TLE-1 repressor to form a transcriptional complex that activates the expression of its target 

genes (Fig. 1).   

In absence of the canonical Wnt signaling, cytosolic β-catenin is targeted for 

degradation by a complex composed of a scaffold of proteins named Axin1, APC, and two 
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serine/threonine kinases: the Glycogen Synthase Kinase 3β (GSK3β) and the Casein Kinase 1 

(CK1) [27] (Fig. 1A).  Axin1 and APC act together as scaffolding proteins through binding of 

β-catenin, and enhance its N-terminal phosphorylation by GSK3β and CK1.  The first 

phosphorylation event is generated by CK1 at Ser45 which allows the GSK3β-mediated 

sequential phosphorylation of Thr41, Ser37 and Ser33 [28, 29].  Ser37 and Ser33 

phosphorylations provide a binding site for the E3 ubiquitin ligase β-TRCP (β-transducin 

repeat containing protein), leading to β-catenin ubiquitination in a β-TRCP/Skp1/cullin F-box 

complex (SCF) dependent manner followed by proteasomal degradation [30, 31].   

Activation of the canonical Wnt signaling cascade leads to disruption of the β-catenin 

degradation complex, resulting in β-catenin accumulation in the cytoplasm followed by 

translocation into the nucleus where it serves as a transcription factor to activate downstream 

target genes (Fig. 1B).  In brief, this process is as follows: Wnt ligand binds to the 

extracellular domain of a FZD receptor and Lrp5/6 co-receptors.  This ternary complex 

(Wnt/FZD/Lrp) recruits the scaffolding phosphoprotein dishevelled (Dvl/Dsh) at the plasma 

membrane which in turn traps the Axin-bound-GSK3β complex, thus preventing proteasomal 

degradation of cytosolic β-catenin.  When stabilized, β-catenin is able to translocate into the 

nucleus, where it binds to TCF/LEF transcription factors and then forms a transcriptionally 

active complex with pygopus (Pygo), CBP (CREB-Binding Protein) and Bcl9 proteins [32].  

In mammals, four TCF genes have been described, which adds further complexity to the 

mechanism(s) of activation of the Wnt canonical cascade [33].  Of notice is the β-catenin pool 

localized at plasma membrane that plays a key role role in cell-cell junctions. To this aim, a 

complex including either p120 catenin/γ-catenin(plakoglobin)/α-catenin or p120 catenin/β-

catenin/α-catenin [25] binds the cytoplasmic carboxyl terminus domain of E-cadherin 

adhesion molecule, in order to join cadherins to the actin cytoskeleton. More precisely, p120 

catenin bind the juxtamembrane and then β-catenin or γ-catenin binds to the cytoplasmic 
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domain of E-cadherin. The remaining α-catenin served as a link between actin and β/γ-catenin 

which lead to the stabilization of cell adhesion [34].  The possible consequences of inhibiting 

β-catenin at adherent junctions has to be discuss in regard of their role in epithelio-

mesenchymal transition (EMT).  Disruption of E-cadherin-mediated adherent junctions is a 

major event in EMT [35] and because of the interplay between cadherin-mediated cell 

adhesion and canonical/β-catenin signaling [36], targeting β-catenin could also promote the 

disruption of these junctions leading to enhance EMT. However Wickline et al. have shown 

that in hepatocyte-specific β-catenin-conditional null mice, γ-catenin is upregulated and 

associated with E-cadherin and actin to maintain adherent junctions. In addition, no nuclear γ-

catenin was detected in liver of KO mice, leading to the conclusion that despite armadillo 

domains on γ-catenin, there is no compensation at nuclear level.  Nevertheless, authors warn 

us about preventing concurrent γ-catenin suppression that may increase tumor cell invasion 

[37]. More recent study confirmed these results in in vitro experiments with HCC cell lines 

and identified the mechanism of γ-catenin stabilization as serine/threonine phosphorylation 

induced by protein kinase A [38]. In regard to this recent data, targeting β-catenin in HCC 

therapies may not disturb cell junctions since the design of Wnt inhibitors for therapeutic 

intervention specifically design soluble active β-catenin as preferential target. 

 

The non-canonical Wnt/FZD pathways 

In contrast to the canonical Wnt pathway, non-canonical signaling does not depend on 

β-catenin and requires Ror2/Ryk co-receptors instead of Lrp5/6 (Fig. 2).  In the Wnt/PCP 

pathway, Wnt/FZD interaction promotes the recruitment of Dvl/Dsh, which in turn binds to 

the small GTPase protein called Rac, leading to both the induction of ROCK (Rho-associated 

protein kinase) pathway and the activation of the MAP kinase cascade and subsequently to the 

activation of AP1-mediated target gene expression [39, 40].  In the Wnt/Calcium pathway, the 
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complex formation between FZD, Dvl/Dsh and G proteins results in PLC (Phospho Lipase C) 

activation which cleaves PIP2 (Phosphatidyl Inositol 4,5 biphosphate) into DAG 

(DiAcylGlycerol) and IP3 (Inositol 1,4,5-triphosphate).  This process results in the activation 

of PKC (Protein Kinase C) through DAG while IP3 promotes calcium release from the 

endoplasmic reticulum.  Increased intracellular concentration of calcium enhances 

phosphorylation and activation of PKCs. This also triggers the activation of Ca2+-calmodulin-

dependent Calcineurin and CAMKII (Ca2+-calmodulin dependent kinase II), leading to NFAT 

(Nuclear Factor of Activated T-cell) and NLK (Nemo Like Kinase) translocation, 

respectively.  NLK acts as a β-catenin pathway inhibitor through phosphorylation and 

degradation of TCF/LEF transcription factors [41].   

Antagonists and agonists of Wnt/FZD-mediated signaling 

Several secreted proteins are known to negatively or positively regulate the Wnt/FZD 

complex.  Four classes of antagonistic molecules have been described.  Wnt inhibitory 

protein-1 (Wif1) and secreted FZD-related proteins (sFRP1, 2, 3, 4, 5) bind and sequester the 

soluble Wnt ligands, thus inhibiting their interaction and binding to FZD receptors [42-45].  

The Dickkopf family is composed of four members (Dkk1, 2, 3, 4) that can interact with both 

Lrp5/6 and Krm1,2 (Kremen1,2) co-receptors [46].  The ternary complex Lrp-Dkk-Krm 

prevents β-catenin stabilization by promoting Lrp5/6 endocytosis [47].  Wise and Sost 

proteins form the other class of secreted antagonists.  They bind Lrp5/6 and thus disrupt the 

Wnt-induced FZD-Lrp5/6 interaction [48, 49].   

Three agonistic molecules have recently been identified; the R-spondins (Rspo1, 2, 3, 

4), Norrin and Glypican-3 (Gpc3).  The Gpc3 is a heparan sulfate proteoglycan bound to the 

cell membrane through a glycosyl-phosphatidylinositol anchor.  Gpc3 increases 

autocrine/paracrine canonical Wnt signaling by binding to Wnt ligands, thus facilitating the 

interaction between Wnt ligands and FZD receptors [50].  Mechanisms by which Rspo and 
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Norrin activate the canonical Wnt pathway have not been clarified.  Rspo1 is able to bind to 

both Lrps and FZDs but it has also been proposed that Rspo prevents Lrp6 internalization 

through binding to Krm instead of Dkk [51-53].   

 

Wnt signaling deregulation in human hepatocarcinogenesis 

Similar to other tumor tissue types, the canonical Wnt/FZD signaling is a critical 

contributor to HCC pathogenesis. Indeed, 40-70% of HCCs harbor nuclear accumulation of 

the β-catenin protein, one of the hallmarks of the Wnt/β-catenin pathway activation [54-56].  

Activating mutations of the β-catenin gene (CTNNB1) occur in 8-30% of tumors, while loss-

of-function/mutations in APC and Axin genes occur in 1-3% and 8-15%, respectively and are 

mutually exclusive to CTNNB1 mutations [54, 57-62].  Some observations suggest that the 

CTNNB1 mutation could be a late event during hepatocarcinogenesis.  However, 

accumulation of β-catenin was detected in the early stage of HCC development, suggesting 

that other mechanisms could contribute to β-catenin stabilization (Table 1) [60, 63].  

Strikingly, extrinsic activation of Wnt/β-catenin pathway and CTNNB1 mutation do not lead 

to the same molecular expression pattern, supporting different roles for wild-type and mutated 

β-catenin.  The Wnt/β-catenin activated HCC sub-class with a CTNNB1 mutation is 

characterized by upregulation of liver-specific Wnt-targets, low grade and well-differentiated 

tumors, with chromosome stability and a favorable prognosis.  The Wnt/β-catenin activated 

HCC sub-class without CTNNB1 mutation is characterized by dysregulation of classical Wnt 

targets, high chromosomal instability, aggressive phenotype and is preferentially associated 

with chronic HBV infection [54, 63, 64].   

Modulation of Wnt ligands or FZD receptor expression could account for Wnt/β-catenin 

pathway activation without any other mutations in CTNNB1, APC, or Axin genes.  Indeed, 

upregulation of activators, such as ligands (Wnt1/3/4/5a/10b) or receptors/co-receptors 
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(FZD3/6/7, Lrp6), and downregulation of inhibitors (sFRP1/4/5, Wif1, Dkk3, Dkk4) have 

been reported both in HCC tumors and surrounding precancerous liver tissues, which 

emphasizes that their over and/or under-expression may be early molecular events during 

hepatocarcinogenesis [65-73].   

Although β-catenin activation is crucial for liver development and regeneration, it is not 

sufficient per se for initiation of hepatocarcinogenesis.  Indeed, animal models overexpressing 

an active β-catenin protein do not spontaneously form HCC [74-76].  However, β-catenin 

activation may cooperate with other oncogenic pathways such as Insulin/IGF-1/IRS-1/MAPK, 

H-RAS, MET, AKT and chemicals to induce HCC formation in mice [75, 77-79].  It's 

described that beta-catenin mutation is a late event in hepatocarcinoegenesis since present in 

some HCC tumors whereas absent in preneoplastic lesions, thus prompting us to speculate 

that only nonmutated beta-catenin could play a role in very early steps of 

hepatocarcinogenesis such as initiation and promotion.  However, mutated forms of beta-

catenin are used in experimental models to assess the role of activated beta-catenin in 

hepatocarcinigenesis.  In these experimental mouse models, it's well shown that mutated beta-

catenin is insufficient alone and per se for initiation of HCC but only enhance tumor 

promotion either in a context of chromosomal instability and increase of susceptibility to 

DEN-induced HCC formation [78, 80], or in a context of Lkb1+/– mice that spontaneously 

develop multiple hepatic nodular foci (NdFc) followed by HCC [81], or in a context of H-Ras 

transgenic mice where mutated beta-catenin appears as a strong carcinogenic co-factor 

collaborating with the mutated Ras oncogene [82].  In contrast and apparently paradoxically, 

invalidation of beta-catenin in hepatic beta-catenin conditional knockout mice has been found 

as enhancing DEN-induced tumorigenesis [83].  Of interest is an another model of HCC 

developing in mice under exposure to phenobarbital (PB, potent tumor promoter in mouse 

liver) and DEN as tumor initiator. A tumor initiation–promotion study was conducted in mice 
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with conditional hepatocyte-specific knockout (KO) of Ctnnb1 and in Ctnnb1 wild-type 

controls.  As expected, DEN+PB strongly enhanced liver tumor formation in Ctnnb1 wild-

type mice.  Amazingly, the prevalence of tumors in Ctnnb1 KO mice was 7-fold higher than 

in wild-type mice, suggesting an enhancing effect of the gene KO on liver tumor development 

[84].  Thus there is a paradox where absence of wild-type beta-catenin or presence of the 

mutated form, both lead to enhanced DEN-induced hepatocarcinogenesis.  The issue is that 

the discussion is speculative since the mechanism of increased HCC in conditional beta-

catenin KO is unknown.  In the design of Wnt inhibitors for thepeutic intervention, these 

agents do target the Wnt pathway through the soluble beta-catenin cascade, but do not 

impact on invalidation of the beta-catenin pool involved in the membrane catenin/cadherin 

complexes involved in cell homeostasis.  The beta-catenin therapeutic targeting may need 

to be personalized, based on the unexpected findings of enhanced tumorigenesis after 

chemical exposure in hepatocyte-specific beta-catenin conditional knockout mice.   

Although the role of Wnt/β-catenin pathway is debated with respect to the initiation of 

hepatocarcinogenesis, it is definitively implicated in determining HCC aggressiveness, due to 

its promotion of increased cell proliferation, migration and invasion.  This finding has been 

further substantiated by ectopic expression of Wnt3 and FZD7, Lrp6 or down-regulation of 

sFRP1, Dkk1 and Dkk4 in HCC cell lines [66, 69, 73, 85, 86].  Moreover, recent studies have 

revealed that the Wnt/β-catenin pathway is also involved in the self-renewal and expansion of 

HCC initiating cells (i.e. the so-called liver CSC) which also influences tumor aggressiveness 

and resistance to chemo- radio-therapeutic agents [87, 88].  Furthermore, Wnt/FZD-mediated 

signaling could influence tumor microenvironment that supports tumor survival, growth, and 

size.  Recent investigations emphasize the role of sFRP1 in the induction of senescence of 

tumor-associated fibroblasts after chemotherapeutic treatment [89]-[90, 91]. 
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It is noteworthy that the canonical and non-canonical Wnt/FZD pathways may have 

complementary roles in the pathogenesis of HCC.  Indeed, β-catenin activation appears to be 

involved in the tumor initiation phase of hepatic oncogenesis, whereas subsequent activation 

of non-canonical pathways associated with inactivation of β-catenin may enhance tumor 

promotion and progression [88].  However, non-canonical pathways can also exhibit opposite 

effects on tumor behavior, since specific Wnt/FZD combinations are able to function as tumor 

suppressors [92].  Although little is known about the role of Wnt/PKC pathway in HCC, it has 

been demonstrated that inhibition of PKCβ activity reduces motility and invasion properties 

of HCC cells [93].  Finally, activation of the Wnt/JNK pathway during HCC progression 

would presumably support tumor growth, since enhanced JNK activity appears to be involved 

in HCC cell proliferation both in vitro and in vivo [94].   

 

Identification of molecular targets for therapeutic interventions 

There is some evidence to link the Wnt pathway activation to tumor cell properties 

characteristic of the malignant phenotype, such as enhanced cell proliferation, migration and 

invasion, which raises the possibility to target members of this signaling cascade as an 

attractive therapeutic approach for treatment of HCC [95, 96] (Fig. 3).   

Targeting extracellular molecules of the Wnt pathway 

Antibody-based therapies directed against the overexpressed Wnt ligands and FZD 

proteins could provide a therapeutic approach. For instance, preclinical experiments have 

shown that an anti-Wnt1 monoclonal antibody inhibits the Wnt signaling pathway resulting in 

enhanced apoptosis and inhibiting cell proliferation, both in vitro and in vivo in a xenograft 

model of HCC [67].  These findings have been experimentally validated for several other 

types of tumors, such as sarcomas, colon, breast, non-small-cell lung cancer and head-neck 

squamous cell carcinomas [97-100].  Interestingly, as demonstrated with a colon cancer cell 
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line, this anti-Wnt antibody was able to induce apoptosis even in the presence of downstream 

mutations in APC or CTNNB1 genes and appeared to be synergistic with docetaxel 

chemotherapy with respect to therapeutic response [97].  Although not tested in HCC tumors 

thus far, anti-Wnt2 antibodies may be useful to inhibit the Wnt/β-catenin cascade.  Such 

antibodies induce apoptosis and inhibit tumor growth in vivo in several tumor types, including 

melanoma, mesothelioma and non-small-cell lung cancer [101-103].  Since non-canonical 

pathways seem to be implied in tumor progression, the inhibition of Wnt-related ligand could 

be considered for therapy. For instance, WNT5A, which seems to be involved in non 

canonical pathway in HCC [88], could be antagonized by the use of  anti-WNT5a antibodies. 

Indeed, in gastric cancer cells where WNT5A activates non canonical pathway, its inhibition 

reduces migration and invasion activities in vitro and in vivo [104]. Nevertheless, since the 

noncanonical pathway could antagonize the canonical one, it might be deleterious to 

inhibit the former.  Anti-FZD7 antibodies that induce apoptosis and decrease cell 

proliferation both in vitro and in vivo of FZD7 positive Wilms’ tumor cells are also available 

[105].  More recently, a multispecific antibody that targets both FZD 1, 2, 5, 7 and 8 and 

mainly affects the canonical signaling pathway, has been developed. It triggers a therapeutic 

reduction of breast, colon, lung and pancreas tumor growth and synergizes with other 

chemotherapeutic agents as well [106].  Strikingly, this antibody remains effective even in 

tumor cells with APC or CTNNB1 gene mutations.  In addition, FZD co-receptors could also 

be attractive targets for monoclonal antibody therapy since, in a retinal pigment epithelial cell 

line, anti-Lrp6 antibody has been shown to inhibit Wnt signaling [107].   

Another therapeutic strategy would be to trap the endogenous Wnt ligands with the 

exogenous soluble form of FZD receptors. This approach was reported for FZD7 by Tanaka 

and colleagues in esophagus carcinoma cells and confirmed later in HCC cells [86, 108].  

More recently, Wei and coworkers have developed the same approach using a FZD7 
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extracellular domain peptide (sFZD7) that can bind and sequester the soluble Wnt3 ligand.  

This peptide decreased the viability of HCC cell lines with high specificity, since normal 

hepatocytes were not sensitive to sFZD7.  Moreover, sFZD7 cooperates with doxorubicin to 

reduce HCC cell proliferation in vitro and in a xenograft murine model as well.  Interestingly, 

it has been shown to be highly efficient and independent of the β-catenin mutational status 

[109].  Inhibition of Wnt secretion by the small molecules, IWP2 and Wnt-C59 may also 

prevent autocrine Wnt signaling activation, as observed in colon cancer cell lines.  These 

small molecules are also able to inhibit the progression of mammary tumors in Wnt1 

transgenic mice [110, 111].  Addition of Wnt antagonist, such as sFRP1 or Wif1, has shown 

encouraging therapeutic results in HCC cell lines by blocking the Wnt/β-catenin signaling.  

These soluble molecules induce apoptosis, reduce angiogenesis and cell proliferation both in 

vitro and in vivo and are not influenced by the CTNNB1 mutation status [112].  Other Wnt 

antagonists such as sFRP2 and sFRP5 should also be considered, since they show similar 

treatment effects in colon cancer as sFRP1 exhibits in HCC [113].  Interestingly, Dkk1 and 

sFRP1 addition cooperates with anti-FZD7 antibodies to increase apoptosis in Wilm’s tumor 

demonstrating the importance of combinatorial therapies [105].  Therapeutic small molecules 

such as niclosamide and silibinin, display anti-tumor activity in vitro and in vivo by 

suppressing Lrp6 expression, leading to inhibition of Wnt/β-catenin signaling in human 

prostate and breast tumor cells, as well as by promoting induction of apoptosis [114, 115].   

Targeting the Wnt-mediated pathway in the cytosol 

The straight-in approach to inhibit Wnt/β-catenin pathway is to directly target β-catenin 

by small interfering-RNA or antisense based therapy, which can reduce cell proliferation and 

survival of HCC cell line, providing a proof of principle for this approach [116-118].  

However, its potential use as a therapeutic tool remains unlikely since β-catenin protein is 
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essential for cell junction.  Thus, targeting the soluble active pool of β-catenin seems more 

appropriate.  

The interaction between the cytosolic tail of FZD and its adaptor Dvl protein is of 

importance in mediating Wnt signaling.  A proof-of-principle has clearly been established in 

HCC cells, by using small interfering peptides capable of entering the tumor cells and 

disrupting the interaction between a specific motif on the FZD7 cytosolic tail and the PDZ 

domain of Dvl [11].  Similar results have been obtained in melanoma and non-small-cell lung 

cancer cells with small molecules using this same strategy [119].   

Targeting the β-catenin destruction complex (APC, Axin, CK1 and GSK3β) as a 

therapeutic target has not been assessed in HCC so far.  However, using other tumor model 

systems, such a strategy has demonstrated some potential. Since Axin1 overexpression 

induces apoptosis in HCC harboring APC, Axin1 or CTNNB1 mutations, stabilization of 

Axin1 would be an attractive approach to trigger β-catenin degradation [120].  This may be 

achieved by using inhibitors of the Axin1 or/and 2 degradation, such as the smalls peptides 

IWR2, JW55 or XAV939 that inhibit the Wnt/β-catenin pathway, leading to a decreased 

proliferation of colon and breast cancer cell lines.  Nevertheless, recent findings support the 

idea that this decrease may be restricted to low nutriment conditions, and emphasizes that 

stabilization of Axin needs to be combined with other therapeutic approaches [110, 121-123].  

Preventing β-catenin stabilization through GSK3β activation would also be possible due to the 

discovery of differentiation-inducing factors (DIFs), which are natural metabolites expressed 

by Dictyostelium discoideum.  Although the mechanisms of action of DIFs activity remain 

poorly understood, it is well known that DIFs induce β-catenin degradation and subsequently 

reduce cyclin D1 expression and function [124].  CK1α, another component of the destruction 

complex, may be stabilized by pyrvinium that inhibits both Wnt signaling and cell 

proliferation, even in the presence of APC or CTNNB1 mutations, as observed in colon cancer 
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cell lines [125].  Another therapeutic approach would be to enhance β-catenin proteasomal 

degradation.  In HCC, colon and prostate cancer cell lines, the small molecule antagonist 

CGK062 has been shown to exert such an effect, via the induction of β-catenin 

phosphorylation in the N-terminal domain which promotes its degradation [126].  Two 

chemicals agents, hexachlorophene and isoreserpine, upregulate Siah-1, an ubiquitin ligase 

that induces β-catenin degradation, independent of its phosphorylation status, thereby 

inhibiting Wnt signaling and subsequently has been shown to reduce colon cancer cell 

proliferation [127].   

Targeting the Wnt pathway in nucleus 

Finally, an alternative way to block Wnt-mediated signaling is to target the nuclear β-catenin 

per se and/or the co-factors responsible for transcription of downstream Wnt-responsive 

genes.  To accomplish this aim, several small molecules have been identified.  The FH535 

agent prevents both Wnt- and PPAR- (Peroxisome Proliferator-Activated Receptors) mediated 

signaling by suppressing the recruitment of β-catenin coactivators to target gene promoters 

and has been shown to have activity in HCC, colon and lung tumor cell lines [128].  The 

PKF115-584, PKF118-310 and CGP049090 are inhibitors of TCF/β-catenin binding to DNA 

target sequences.  They induce apoptosis in vitro and in vivo, as well as cell cycle arrest at the 

G1/S phase and suppress tumor growth in vivo independently of the mutated status of 

CTNNB1 [129].  Furthermore, inhibition of β-catenin/CBP interaction by ICG-001 both 

selectively induces apoptosis in transformed, but not in normal colonic cells and reduces 

growth of colon carcinoma cells in vitro as well as in vivo [130].  A second generation ICG-

001 (PRI-724) is also available and in phase-I clinical trial 

(http://clinicaltrials.gov/show/NCT01302405).  Other β-catenin binding proteins such as TBP, 

Bcl9, Pygo also represent attractive approaches for inactivating Wnt signaling.  Finally, 
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interferon can inhibit β-catenin signaling through upregulation of RanBP3 that is a nuclear 

export factor, serving as extruding β-catenin outside the nucleus [131]. 

 

Conclusions and perspectives 

Developmental regulated signaling pathways such as Notch, Hedgehog and Wnt, have 

become important targets for new cancer drug development.  While Notch and Hedgehog 

inhibitors are already in clinical trials, the Wnt inhibitors are still under preclinical assessment 

and only a few compounds have started to reach the phase-I clinical trials, since only recently 

has this pathway been recognized as playing a key role in tumor development.  However, 

many studies have established proof-of-principle that specific targeting of molecules in this 

pathway can partially or fully switch off canonical as well as non-canonical Wnt signaling 

and lead to substantial anti-tumor activity.  Thus, biotechnology and pharmaceutical 

organizations are currently developing Wnt signaling inhibitors.  These inhibitors can target 

upstream or downstream proteins in this pathway.  Targeting the Wnt cascade upstream of 

APC is controversial because downstream activating mutations in APC would, in theory, still 

drive tumor development.  To cover the broadest number of activating mutations that occur in 

tumors, it seems that the ideal antagonist would be one that exerts its anti-tumor effect in the 

nucleus.  Nevertheless, several experiments show that upstream targeting can also be very 

effective.  Of importance is the potential toxicity of Wnt inhibitors on normal cells.  Indeed, 

the Wnt pathway is critical for tissue and liver regeneration and for the ability of stem cells to 

self-renewal.  Wnt pathway inhibitors could therefore have substantial and long-term side 

effects including anemia, immune suppression, as well as damage to the gastrointestinal tract.  

It is unknown as to what may occur in an adult mammal when this pathway is shut down or 

reduced in normal activity.  Despite these known and unknown pitfalls, drug development is 
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moving steadily forward to generate and characterize Wnt pathway inhibitors both in vitro 

and in vivo.  Indeed, agents that inhibit Wnt/β-catenin signaling as a means to produce anti-

tumor effects are currently being assessed in clinical trials.   
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Figure legends 

Figure 1:  Canonical Wnt/FZD signaling pathway.  A.  In the absence of Wnt signaling, 

soluble β-catenin is phosphorylated by a degradation complex consisting of the kinases 

GSK3β and CK1α and the scaffolding proteins APC and Axin1.  Phosphorylated β-catenin is 

targeted for proteasomal degradation after ubiquitination by the SCF protein complex.  In the 

nucleus and in absence of β-catenin, TCF/LEF transcription factor activity is repressed by 

TLE-1;  B.  Activation of the canonical Wnt/FZD signaling leads to phosphorylation of 

Dvl/Dsh, which in turn recruits Axin1 and GSK3β adjacent to the plasma membrane, thus 

preventing the formation of the degradation complex.  As a result, β-catenin accumulates in 

the cytoplasm and translocates into the nucleus, where it promotes the expression of target 

genes via interaction with TCF/LEF transcription factors and other proteins such as CBP, 

Bcl9 and Pygo.   

 

Figure 2:  Non-canonical Wnt/FZD signaling pathways.  Interaction of Wnt, FZD and 

ROR2/RYK co-receptors leads to either (1) JNK activation, (2) PKCs activation, (3) NFAT 

transactivation, or (4) inhibition of β-catenin activity through binding of NLK to TCF/LEF.   

 

Figure 3:  Potential Wnt-component targets for therapeutic intervention on tumor 

development and growth.  Inactivation of Wnt signaling pathway could be achieved by:  (1) 

targeting extracellular signaling molecules with monoclonal antibodies, soluble factors or 

small molecules; (2) preventing the FZD/Dvl interaction; (3) stabilizing the destruction 

complex or (4) increasing β-catenin proteasomal degradation and (5) preventing the 

interaction between β-catenin and its co-factors for transactivity in the nucleus.  The 

relationship between therapeutic molecules and their protein targets are indicated by a color 



  

30 
 

code. Molecules in bold have been tested in HCC model, those in italics in other models of 

tumor growth.   

 

Key points 

• The increasing incidence of HCC and the frequent ineligibility of patients for curative 

options due to a widespread dissemination of cancerous cells at diagnosis, highlights 

the urgent need of effective systemic therapies.  Cytotoxic chemotherapy has never 

shown significant efficiency so far, and targeted therapies are under evaluation.   

• Thus far, only sorafenib (anti-angiogenic agent and MAPK inhibitor) has brought 

significant benefit on survival but the outcome of patients still remains poor. 

• Innovative targeted therapies onto oncogenic addiction loops involved in HCC tumor 

aggressiveness and maintenance, is an attractive strategy.  Among them, the Wnt 

pathway might play a central role via transactivity of β-catenin.   

• Pharmacological inhibitors of the Wnt pathway are under investigation, and 

identification of the key targets in the complex network of the Wnt components 

remains a challenge.  Among them, Wnt ligands, Frizzled receptors and β-catenin 

appear as the most evident targets.   

• The development of Wnt inhibitors has not reached clinical trials thus far, but 

preclinical studies have given promising data.   



  

Table 1.  Most prevalent potential mechanisms involved in activation of beta-catenin found 

so far in HCCs.  

Mechanism Prevalence in HCC tissues 

CTNNB1 mutation 8-30% 

AXIN mutation 8-15% 

APC mutation 1-3% 

FZD7 overexpression 23-59% 

WNT3 overexpression 35-42% 

sFRP1 repression 44-60% 

sFRP5 repression 21-35% 
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1. Block extracellular signaling: 
- Monoclonal antibodies : Wnt1, Wnt2, FZD7, FZD1/2/5/7/8, LRP6 
- Soluble inhibitors: sFZD7, WIF1, sFRP1, sFRP2, SFRP5 
- Small molecules : IWP2, Wnt-C59, Niclosamide, Silibinin 

3.Stabilize the destruction complex:        
    IWR2, JW55, XAV939, DIFs, Pyrvinium   

4.Induce β-catenin proteasomal degradation: 
CGK062, Hexachlorophine, Isoreserpine 

2. Inhibit FZDs/DVL interaction: 
         Small interfering peptide 

5. Inhibit β-catenin/co-factors interactions: 
FH535, PKF115-584, PKF118-310, CGP049090, ICG-001, PRI-724 

Figure 3




