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Abstract.
Objective. Following previous works on virtual sources model with GAN, we

extend the proof of concept for generating back-to-back pairs of gammas with timing
information, typically for Monte Carlo simulation of PET imaging.

Approach. A conditional GAN is trained once from a low statistic simulation
in a given attenuation phantom and enables the generation of various activity source
distributions. GAN training input is a set of gammas exiting a phantom, tracked
from a source of positron emitters, described by position, direction and energy. A
new parameterization that improves the training is also proposed. An ideal PET
reconstruction algorithm is used to evaluate the quality of the GAN.

Main results. The proposed method is evaluated on NEMA IEC phantoms and
with CT patient image showing good agreement with reference simulations. The
proportions of 2-gammas, 1-gammas and absorbed-gammas are respected to within one
percent, image profiles matched and recovery coefficients were close with less than 5%
difference. GAN tends to blur gamma energy peak, e.g. 511 keV.

Significance. Once trained, the GAN generator can be used as input source for
Monte Carlo simulations of PET imaging systems, decreasing the computational time
with speedups up to ×400 according to the configurations.

1. Introduction

In previous works [1–3], it has been shown that Generative Adversarial Network (GAN)
can model phase-spaces such that the trained generator neural network approximates a
distribution of particles, thereby being able to be used as a fast virtual source model
(VSM,e ) of particles. This approach was applied for modeling photon beams from
Linac head in radiation therapy treatment [1] and for gammas exiting phantoms or
patient CT during simulation of SPECT systems [2; 3]. Compared to conventional
phase-space files, GAN generators are compact, few MB instead of few GB, and can
generate particles at high speed (around 106 particles per second). Hence, splitting
Monte Carlo simulation of imaging systems in two parts – (i) tracking emitted particles
within the phantom/patient CT, (ii) tracking particles in detector, and modeling the first
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part with the GAN generator – was shown to lead to computational time gain. GAN
was proposed in medical physics Monte Carlo simulation for dosimetry, such as in [4],
but also as source of particles in HEP community for particle showers in calorimeters
(CaloGAN) [5] or jet simulation (DijetGAN) [6]. More generally, readers interested in
machine learning methods for particle physics simulation, can refer to the following
review papers [7–12] and this living review website.
However, previously proposed GAN-generated sources of particles cannot readily be
used for the simulations of PET imaging system because they require particle time
information and the knowledge of the initial emitting event to distinguish between true
and scatter/random coincidences. In this work, we extend the method to consider pairs of
particles and timing information. We also propose a new parameterization that improves
the training and the use of conditional GAN in order for the generator to model a family
of activity source distributions.

2. Material and methods

The goal is to train a GAN that can generate the correct distribution of gammas exiting
a given phantom filled with any β+ activity source distribution. The considered phantom
may be a standard phantom to assess performance characteristics (e.g. NEMA) or a 3D
CT image of a patient. Once trained, the GAN will be able to generate a distribution of
(pairs of) gammas as they exit the phantom, sparing the needed computation time for
the β+ emission and the tracking of the gamma pairs. The GAN is trained specifically
for a given phantom, but is conditional to the β+ activity source distribution that can
be arbitrarily chosen. It can be used as a fast source for another Monte Carlo simulation,
like testing different PET devices, or for any other data analysis task.

Training dataset from low statistic Monte Carlo simulation. First, a training dataset is
created by a low statistic Monte Carlo simulation which tracks particles from the β+

emission to gammas exiting the phantom. It is composed of gammas reaching a given
surface surrounding the phantom, typically a sphere surrounding the entire phantom.
We called the output gammas the “exiting gammas”. Each gamma is described by its
exiting position, direction, energy and time. Those properties are the ones needed for
a complete PET simulation. Moreover, we also store other information: the ID of the
initial β+ event (required to pair the gammas) and its position (later required by the
conditional GAN). The dataset is thus composed of exiting energy + exiting time +
exiting position + exiting direction + event position + event ID making a total of 12
dimensions. Note that the time is the time from the initial event emission, so the sum
of travel times of the β+ and the exiting gamma. The initial activity source for this
training dataset may be simulated in several ways. We considered here the emission of β+

particles with energy spectrum corresponding to a given β+ emitter obtained from [13],
hence including the range of positrons. The activity source is chosen to be uniform (no
spatial a priori) over the whole phantom, each β+ originating with the same probability

https://iml-wg.github.io/HEPML-LivingReview
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from any position in the phantom.

Pairing. From the obtained output phase-space, the exiting gammas are paired
according to the ID of the initial β+ emission. We consider here exiting pairs of
back-to-back gammas, exiting single gammas and exiting events with 3 or more gammas
originating from the same β+. The pairs of events represent more than 91% of the events,
while single events represent about 8%. Triplet and higher order multiple events about
1%. These ratios depend on the phantom and can vary. The single events correspond to
back-to-back gammas where one gamma is absorbed in the phantom by photoelectric
interaction. Triplet (and more) events correspond to additional (rare) gammas created
either during disintegration (positronium) or by bremsstrahlung of β+. Triplets are
considered as a pair plus a single gamma, quadruplets as two pairs, etc. All incomplete
pairs, such as totally absorbed pairs of gammas or single events, are still included in the
dataset: every time a gamma is absorbed, a fake gamma is created with energy set to
zero.
At the end of this step, we obtained a dataset with 16 dimensions (the position, the
direction, the energy and the time for the two gammas) representative of the reference
probability distribution of exiting gammas. It contains information about the ratio
between exiting and absorbed gammas for the given attenuation phantom.

Parameterization. From this paired phase-space, the exiting gammas (resp. A and B)
positions on the sphere are denoted PA and PB, exiting directions dA and dB, energies
EA and EB, and time tA and tB. We parameterized this information with time-weighted
LOR (Line of Response), similar to conventional parameterization of LOR in PET
imaging. Indeed, we computed the time-weighted position PC on the A to B LOR with
dC =

#           »

PAPB direction, such that PC = PA + tA
tA+tB

dC, and stored the sum of times
tC = tA + tB to be able to retrieve both timestamps. Note that, if a gamma undergoes
Compton scattering, this position PC does not correspond to the true location of the
annihilation. For the fake gammas (unpaired with energy set to zero), a fake B event is
artificially created with the position PB, time tB and direction dB computed from the
(known) emission point as if the gamma traveled in straight line, without interaction.
Moreover, the energy EB is set to zero to be identified as a single event. The figure 1
illustrates this parameterization in a situation where one of the two back-to-back gammas
changes its direction due to a Compton interaction. The initial 16 dimensions were
thus replaced by 15 dimensions, we will show in the experiments that it allows a better
training.

Conditional GAN training. Following previous works on source GAN [1–3], a GAN
was developed to learn generating exiting gammas following the initial distributions.
The two neural networks of the GAN, the Critic (C) and the Generator (G) are trained
simultaneously and act as follows. G takes as input a vector of noise of size N and
generates N pairs of gammas. We considered conditional GAN [14; 15] with the positions
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Figure 1. Illustration of the proposed 15-dimension parameterization of the pairs of
exiting gammas with time-weighted LOR.

of β+ emission P0 as the vector of conditions (the directions are considered isotropic).
User of the GAN will then be able to consider any set of P0 to give as input to the GAN
to obtain the corresponding exiting gammas. In order to train G for generating gamma
distributions resembling the ones in the training dataset, C is trained to distinguish
between gamma distribution coming from the real training dataset and distributions
generated by G. The architectures of the C and G were both 4 layers of H = 600 fully
connected neurons with leaky Relu non linearity. The dimension of the noise vector z
was set 20. It leads to approximately 1.4× 106 weights for each C and G network. The
loss function was Wasserstein [16] with gradient penalty [17; 18] weighted by λ. We
chose a Squared Hinge regularization [19] with λ = 10. The optimisation was performed
by RMSProp gradient descend [20] with adaptive learning rates starting at 4× 10−4 and
decreasing by a factor of 0.8 every 5,000 iterations. Batch size was 104 particles and 60
epochs were performed (approximately 105 iterations). Note that, because the input
dimensions were of multiple natures (position, energy, direction and time), an initial
normalization (zero mean and unit variance) was required for all dimensions.
At the end of the training process, we obtain a conditional neural network G that takes
as input a condition vector of source positions and a random sample z from the standard
distribution. From this input, G will produce a vector of back-to-back exiting gammas,
taking into account positron range, attenuation and scatter of the phantom. G can thus
be considered as a “forward generative model”. The (slow) β+ and gamma tracking in
the phantom can thus be replaced by (fast) GAN generated gammas that can then be
tracked towards a given PET system with conventional Monte Carlo tracking.

Evaluation with ideal reconstruction. It is not straightforward to evaluate the ability
of the GAN to produce gammas distribution. The main idea here is to compare GAN
generated gammas to gammas obtained from an analog reference Monte Carlo simulation.
While it is possible to compare the marginal distributions of those two distributions, it is
only a partial assessment because there are correlations between the different dimensions
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of the distribution. Another alternative is to compare detected gammas from a simulated
PET acquisition, obtained from an analog Monte Carlo reference simulation and from
GAN generated gammas tracked in the PET imaging system. However in that case, the
imperfect detection of the PET system will impair the comparison and could lead to
artificially good results, only due to the limited spatial and time resolution. Instead, we
decided to consider a virtual ideal detection system with perfect capabilities: infinite
time and spatial resolution. From all exiting pairs of gammas, a 3D image can be
reconstructed taking into account the gammas time-of-flight to locate the interaction
points in the phantom, considering the speed of light. The virtual detector is (arbitrarily)
located at a given distance (for example 20 cm from the phantom), allowing to take
into account potential uncertainty in the exiting directions of the generated gammas.
This reconstruction method can be related to the reconstruction-free approach described
in [21]. Such an “ideal reconstruction” can be considered as a worst case test as real-life
PET detection systems will obviously depict lower resolution and hence be more tolerant
to differences between the distributions. Finally, note that, as explained before, the
single and absorbed gammas are also considered in the process.

3. Experiments

All Monte Carlo experiments were performed with an upcoming GATE version 10 [22; 23]
using Geant4 version 11. The beta version of Gate 10 has been released in April 2023‡.
All additional features and tools developed in this work are open-source and included in
this version.
Several experiments were conducted using a numerical model of the “NEMA IEC Body
Phantom” which is 180 mm high and composed of a lung insert and 6 spheres with
various diameters: 10, 13, 17, 22, 28 and 37 mm (see figure 2). The GATE model of the
phantom was developed with the exact dimensions and materials (plastic, lung ICRP
material, etc). All elements were described with analytical shapes such as boxes, spheres,
cylinders, etc. The six spheres can be filled with some given activity concentrations,
for example with 18F or 68Ga. The background activity was simulated with an activity
source in the large water compartment. In order to illustrate the ability of the GAN
to learn the forward model including all physical processes (absorption, scattering),
we artificially introduced a large tungsten insert (3 × 8 × 10 cm, see figure 2) in the
IEC phantom. This insert generates additional scatter and absorption enhancing the
capability of the GAN to reproduce the consequence of those interactions on the exiting
gammas.
Sources were described as β+ particles with energy spectrum obtained from [13], hence
including range of positrons. All particles exiting the phantom were scored as soon as
they reach a spherical surface embedding the entire phantom. The phase-space included
position, direction, energy and time of all the gammas reaching the surface. The time
was defined according to the initial β+ creation at t = 0 and thus included the travel

‡ https://github.com/OpenGATE/opengate

https://github.com/OpenGATE/opengate
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time (time of flight) of both the positron and the annihilation gammas. The phase-space
also stored the initial position of the emission point (to be used as the condition of the
conditional GAN). Simulations were run such that the output phase-spaces contained
approximately 3.2× 107 gammas (3.1 GB), from 1.7× 107 primaries.
All computation time analyses were performed on the same computer: Intel® Core™ i9-
10900K CPU @ 3.70GHz with NVIDIA Quadro RTX (4000/PCIe/SSE2, 8 GB memory).
For the sake of comparison, we considered single core computation but multi-cores could
of course be used to further decrease computation time. We are using the recommended
physics list named “EM Option4”, with production cuts of 0.1 mm and are considering
only the time spent in the tracking of the particles in the phantom.

Test case #1. The first test case was performed with a constant activity concentration
of 2 kBq·mL−1 in all 6 spheres and no background activity.

Test case #2. The second test case was performed with several (relative) concentration
activities in spheres and background: 100 for 10 mm, 17 mm and 28 mm diameter spheres,
50 for 37 mm diameter sphere and the central insert, 20 for 13 and 22 mm diameter
spheres and 0.1 for the background making a total of about 1.8 MBq. The tests were
performed with both analog Monte Carlo simulation (reference) and with GAN-generated
back-to-back gammas. Images were reconstructed with the ideal reconstruction method
and compared in terms of Recovery Coefficient computed for all 6 spheres: RC =

As−Abg

Ar
s−Ar

bg

with As and Abg the obtained activity (with GAN) in a sphere s and in the background,
and Ar

s and Ar
bg the reference activities (from Monte Carlo simulation). The noise

levels [24] in different ROI (the hot spheres) were also compared: NL = ASD

Amean
with ASD

the standard deviation of the activity values of all voxels in the ROI, and Amean the
mean activity.

Test case #3. A third test case was also performed with a CT image as phantom and
68Ga, having a larger positron range than 18F. The training dataset was generated
with a uniform 68Ga activity source inside the patient contour. Then, to illustrate the
versatility of the trained GAN, two generated conditional activity distribution of 68Ga

were chosen, the first with 3 spheres of activity inside the patient (see image in figure 6),
and the second as a voxelized source of a 68Ga PET image (see image in figure 2-right).
In addition, in order to illustrate the reliability of the method, two other artificial test
cases were generated: one with several point-sources and one with a star-shape source in
order to highlight the differences from the reference simulation. In all cases, CT and
activity images were resampled to (4 mm)3 voxel size.

4. Results

The figure 3 illustrates the interest of the proposed parameterization for the test #1 (IEC
phantom with activity in all six spheres, no background). The two profiles extracted from
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Figure 2. Schematic of the IEC 6 spheres phantom with additional tungsten insert
(Left). CT image with patient contour (in red) and PET activity superimposed (Right).

the ideally reconstructed images show differences when using or not the parameterization.
Recovery coefficient were between 90 and 102% for all spheres with the proposed
parameterization and from 70% to 98% without. Noise levels were lower than 4% for the
five larger spheres and around 9.5% for the smallest one, while they were between 7 and
11% when the proposed parameterization is not used. The increase attenuation for the
smallest sphere near the tungsten insert is visible.
Similarly, the figure 4 depicts the results for test #2, with spheres, central insert and
background having various activity concentrations (profile lines are depicted in both
images). Recovery coefficients with respect to the reference Monte Carlo simulation were
in average on all spheres of 5.5%, with noise level difference of 5.2%. Note that it is
possible to perform ideal reconstruction with an energy threshold (for example discard
all gammas with energy lower than 500 keV). In that case, comparison of reference and
GAN generated gamma leads to very close images (less than 5% difference).
Several physical characteristics of the gammas distribution were compared between
reference and GAN-generated. We computed the numbers of paired/unpaired/absorbed
gammas in table 1. As explained before, absorbed gammas are detected with an energy
strictly equal to zero in the reference dataset. Since GAN tends to blur the values, a
threshold of 20 keV was applied to the generated distribution: generated gammas with
energy below this threshold were considered absorbed. The figure 5 displays the energy
spectra of the exiting gammas. We can notice the energy exactly equal to zero for the
absorbed gammas in the reference dataset, while GAN-generated gammas lead to a
slightly spread distribution centered around zero (even with negative values). Also, the
511 keV peak is spread for GAN-generated gammas.
The CT slices with reconstructed 68Ga events superimposed for the two first test-#3
cases (with hot spheres and with realistic activity distribution) are presented in Figures
6 and 7. The upper rows show the results of the reference Monte Carlo simulation, while
the bottom rows show the corresponding images generated by the GAN. It is worth
noting that the noise levels in the two image versions were slightly different (within 5%)
which can be observed around the liver region in Figure 7.
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The versatility of the proposed method is illustrated in Figures 8 and 9 for the two other
tests, namely the point-sources and star-shape sources. The reconstructed intensity
profiles for both methods (reference and GAN) were in good agreement: the pixel-
wise mean of absolute differences between the reference and GAN-generated images
was computed relative to the maximum value and observed to be lower than 3% for
both tests. It is worth noting that in the point-sources example, all sources had the
same intensity but showed different reconstructed values due to attenuation, and were
well-reproduced.
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Figure 3. First row shows slices of the reconstructed images for test #1, for 1)
reference simulation, 2) GAN-based simulation without parameterization, 3) GAN-
based simulation with parameterization. Second row depicts horizontal and vertical
profiles of the three slices.

Test #1 Test #3
ref cGAN ratio ref cGAN ratio

Exiting 2-gammas 90.5% 90.3% 100.2% 91.2% 90.8% 100.3%
Exiting 1-gammas 9.1% 9.2% 98.4% 8.5% 8.8% 96.5%
Absorbed gammas 0.4% 0.5% 89.1% 0.4% 0.4% 102.4%

Table 1. Analysis of exiting gammas in reference and GAN-generated distributions
for tests #1 and #3: proportions of 2-gammas, 1-gammas and absorbed gammas. The
third columns show the differences.

Computation time analysis. The speed for a reference Monte Carlo simulation greatly
varies according to the setup. It is mostly related to the number of intermediate steps
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Figure 4. Slices images for test #2: reference at left and GAN generated at right. The
plots on the second row show profiles extracted on both images for both methods along
the given diagonal lines.
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Figure 5. Analysis of exiting gammas energy spectrum in reference and GAN-generated
distributions for tests #1. Gamma with energy equal to zero (reference) or close to zero
(GAN-generated) are considered as absorbed gammas. Left is the energy of the first
gamma and right the energy of the second gamma in all pairs.

that the Geant4 engine will have to process. With Geant4 several parameters impact
the computation time: the physics list (e.g. option1 around twice faster than option4),
the tracking cuts or the type of volume (voxelized or analytical). For example, tracking
68Ga β+ is slower than tracking 18F β+, approximately 20%, because the higher energy of
the former leads to more steps to track. With 68Ga β+, when the phantom is described
by analytical shapes (spheres, cylinders, etc.), PPS (Particle Per Second) speed was
about 6× 103. With voxelized volume, the speed drops to 2× 103 PPS, considering
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Figure 6. CT slices with ideally reconstructed events superimposed for experiment #3
with three spherical sources. Top: from reference Monte Carlo simulation (around 15k
particles per second); Bottom: from GAN generated events (around 830k particles per
second).

voxel’s side size of 2 mm. If the phantom is larger than the IEC phantom, like the
complete CT image of the patient in previous tests, speed can drop to 1.5× 103 PPS.
The GAN-based method is split into three stages. The first stage is dedicated to the
generation of the training dataset. Around 2× 107 exiting particles were needed, which
leads to about 50 minutes for analytical volume, or 10 hours for voxelized volumes. The
second stage is the training, which lasts less than 2 hours. Those two first stages are
only needed once.
The raw generation of particles with GAN is close to 8.3× 105 PPS and is independent
of the volume type (voxelized or not). Hence the speedups for particles tracking in a
volume are around ×130 (analytical) or ×400 (voxelized) times faster than the analog
version. This speed should be mitigated if the generated particles are re-inserted into a
subsequent Monte Carlo simulation. In that case, the Geant4 kernel engine must create
new particles from the properties generated by the GAN. We implemented such a GAN
source in GATE/Geant4 and the computation time was around 1.8× 105 PPS, about 90
times faster than the reference (voxelized phantom). Note that the comparison is not
fully fair as part of the GAN generation uses GPU while everything else is CPU. We
computed the speedups on another architecture without GPU (Apple M1 Pro, 2021)
and found speedup factors around 40. The drop in performance between the raw GAN
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Figure 7. CT slices with ideally reconstructed events superimposed for experiment #3
with realistic 68Ga distribution. Top: from reference Monte Carlo simulation (around
15k particles per second); Bottom: from GAN generated events (around 830k particles
per second).

Reference

Reference

GAN

GAN

Figure 8. Experiment #3 with artificial sources (star-shape and point-sources). Left
are computed with the reference method and right with the proposed GAN-method.
Red lines correspond to the profiles extracted in figure 9.

generation and the Geant4 particles creation is not fully understood and may be improved
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Figure 9. Extracted image profiles from figure 8, corresponding to star-shape and
points-sources tests.

with a better implementation.
In addition, particles are usually tracked not only in phantom but also in a PET detector.
In that case, the time needed to track the particle in the PET head is not modified.
With a standard simulation of PET system in GATE, we computed that without GAN,
40% of the time is spent in tracking the particle in the phantom and 60% in the PET
head. With GAN, only 7% of the time is spent in the phantom.

5. Discussion and conclusion

We proposed a neural network forward model that generates exiting pairs of back-to-back
gammas from a given attenuation phantom. The model is compact (around 10 MB)
and can quickly generate millions of gammas closely following the initial probability
distributions, including scattering and absorption. The model is specific for a given
attenuation phantom, so the dataset and the training must be redone (only once) if it is
changed. However, thanks to the conditional part, the model is valid for an arbitrary
source distribution, chosen by the user. For example, we show that one single model
for a given patient CT image can be used to generate PET images for several activity
distributions.
While we obtained results close to the reference Monte Carlo simulations (to within a
few percent), it is difficult to test the complete reliability of the method (see star-shape
and point-sources test cases). To date, it is not known if the GAN-based simulations are
biased or not.
The model can be used either independently of a Monte Carlo simulation for data
analysis or within (as a source of particles). For the later, this GAN-based approach is
more suited for complex and large simulations when detailed tracking in the phantom is
important, i.e. for studying the impact of 68Ga positron range on PET images. With
small CT voxel (2 mm), the speedup reach ×90 and the time spent in tracking particles
in the phantom become negligible compared to other parts of the simulation. Outside
GATE/Geant4, the generation speed of particles is at about 8.3× 105 PPS.
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The G and D networks in our study were originally designed as fully connected neural
networks or Densely connected Neural Network (DNN), which is a simple architecture
when compared to other modern deep learning approaches. We also explored using
convolutional networks (CNN) to replace the deep fully connected layers with 1D
convolution. Our best results were achieved using a hybrid architecture consisting of 200
neurons for the two initial fully connected layers, followed by a UNet shape of 8-16-16-8
layers with 3D feature maps and two final fully connected layers. While this approach
led to results that were close in terms of recovery coefficients, the training time increased
(with a factor of 1.5× or 2×), and the generation time was significantly slower with
CNN than with DNN (2×-3× times slower with our computer and GPU). Moreover,
sharp situations (such as the point source test case) depicted smoothed intensity and
were less accurate. Although other architectures, such as VAE or generative diffusion
processes [25], could potentially improve the results, we decided to stick with the DNN
approach due to its simplicity and efficiency.
The limitations are the following. First, the information about triple (or higher order
multiple gammas) gammas, even if the total number of gammas is correct, is lost and
cannot be retrieved. The GAN tends to blur the distributions, hence peak energy values
such as zero energy to detect absorbed gammas or 511 keV of annihilation photons are
slightly spread.
The code, including both the additional functionalities inserted in GATE and the training
of the model, is open-source and is included in GATE version 10.
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