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 55 

ABSTRACT (150/150 words) 56 

Bi-allelic pathogenic variants in the surfactant protein (SP)-B gene (SFTPB) have been associated with 57 

fatal forms of interstitial lung diseases (ILD) in newborns and exceptional survival in young children. 58 

We herein report the cases of two related adults with pulmonary fibrosis due to a new homozygous 59 

SFTPB pathogenic variant, c.582G>A p.(Gln194=). In vitro transcript studies showed that this SFTPB 60 

synonymous pathogenic variant induces an aberrant splicing leading to three abnormal transcripts with 61 

the preservation of the expression of a small proportion of normal SFTPB transcripts. 62 

Immunostainings on lung biopsies of the proband showed an almost complete loss of SP-B expression. 63 

This hypomorphic splice variant has thus probably allowed the patients’ survival to adulthood while 64 

inducing an epithelial cell dysfunction leading to ILD. Altogether, this report shows that SFTPB 65 

pathogenic variants have to be searched for in unexplained forms of ILD and pulmonary fibrosis in 66 

adults, especially in familial and/or early-onset forms of these diseases. 67 

 68 

INTRODUCTION 69 

Surfactant protein (SP)-B deficiency has been associated with fatal forms of respiratory distress in 70 

newborns [1–3]. Patients usually present at term, after an unremarkable pregnancy, with immediate 71 

respiratory failure, diffuse alveolar or interstitial opacities and a fatal evolution towards refractory 72 

hypoxemia in a few days or weeks despite maximal levels of ventilation. In these newborns, most of 73 

the reported pathogenic variants are loss-of-function variations leading to premature stop codons, the 74 

most frequently reported one being the c.361delinsGAA, p.(Pro121Glufs*95) [4–7]. We herein report 75 

a homozygous SFTPB hypomorphic splice pathogenic variant in two related adults with pulmonary 76 

fibrosis (PF). 77 
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CASES PRESENTATION 78 

The proband, a non-smoker man born to a consanguineous union, presented with a fibrosing interstitial 79 

lung disease (ILD) with non-predominant features of alveolar hemorrhage evolving since the age of 34 80 

years. He had no history of neonatal respiratory failure nor childhood respiratory symptoms. He first 81 

presented with dyspnea and cough, leading to a thoracic CT-scan showing mosaicism with ground 82 

glass opacities and emphysema (Figure 1-A). The lung biopsy (unavailable sample) reported lung 83 

fibrosis. His respiratory status deteriorated with, at the age of 42 years, a FEV1 of 2.21L (64%); FVC 84 

3.13L (74%), TLCO 45% and an impaired 6-min walking test with a nadir of SaO2 at 72% for 304m 85 

(50%). Despite treatments with oral corticosteroids, hydroxychloroquine, azathioprine (quickly 86 

stopped because of a lack of efficacy) and azithromycin, he required continuous oxygen therapy since 87 

the age of 44 years and benefited from a bi-pulmonary lung transplantation at the age of 51 years. The 88 

histopathology of the explanted lungs was consistent with a usual interstitial pneumonia (UIP) pattern 89 

(Figure 1-B). The genetic analysis by targeted-capture NGS sequencing of telomerase-related and 90 

surfactant-related genes identified no pathogenic variant in telomerase genes but a synonymous 91 

homozygous SFTPB variation: c.582G>A, p.(Gln194=). The patient had 7 children, also from a 92 

consanguineous union (Figure 1A, III.1, heterozygous for the reported variant), including 4 who died 93 

before one year of age from unknown cause and a boy who presented a neonatal respiratory distress at 94 

term with a pneumothorax. At 4 months, this boy was hospitalized for a Respiratory Syncytial Virus 95 

(RSV) bronchiolitis. At 10 months, alveolo-interstitial opacities have persisted and a working diagnosis 96 

of mild alveolar hemorrhage was first proposed based on a moderated anemia (Hb 11g/dl) and 30% of 97 

hemosiderin-laden macrophages at bronchoalveolar lavage cytology analysis. No CT-scan was 98 

available and he had no lung biopsy to confirm the diagnosis. After 2 years of corticosteroid treatment, 99 

he was stable. At 16 year-old, the CT-scan showed mild ground glass opacities, large areas of 100 

attenuations without emphysema or cysts. At last evaluation (aged 22), the patient presented a dyspnea 101 

on exertion with a distension (forced vital capacity 5.2L, 120% of expected values, FEV1 3.85L, 102 

101%) and his CT-scan showed mild ILD with ground glass opacifications, mosaic attenuation with 103 
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area of decreased attenuation and subtle distortion (Figure 1-A). He was also found to be homozygous 104 

for the SFTPB c.582G>A variation. 105 

 106 

MATERIAL AND METHODS 107 

Transcript study 108 

To assess the pathogenicity of the identified c.582G>A variation involving the last nucleotide of exon 109 

5 of SFTPB, we generated SFTPB mini-gene constructs. As the studied variant is synonymous, a 110 

cDNA expression vector could not be used for protein functional studies. Moreover, the genomic 111 

DNA of SFTPB is long (NM_000542.5, 13,436bp) and could hardly be used for the construction of a 112 

genomic expression vector. Thus, the genomic region spanning exons 4 to 6 of human SFTPB 113 

(NM_000542.5) was cloned into the pcDNA3.1_V5_His_TOPO vector resulting in plasmid 114 

pSFTPB_WT. The SFTPB c.582G>A variation and the c.582+1G>T pathogenic variant (used as a 115 

positive control fully disrupting the donor splice site of intron 5, MaxEntScan score: 1.56) were 116 

introduced into pSFTPB_WT by site-directed mutagenesis and were respectively designated 117 

pSFTPB_mut and pSFTPB_ctr. 118 

After FuGene transfection of the plasmids in A549 cells, total RNA was isolated at day 2 (RNeasy 119 

mini kit, Qiagen). cDNAs were generated from mRNA using oligodT with the Transcriptor High 120 

Fidelity cDNA Synthesis Kit and PCR-amplified before agarose gel electrophoresis and Sanger 121 

sequencing. 122 

Immunohistochemistry assay 123 

The lung biopsy from the proband was compared to three controls: a healthy child and adult as well as 124 

a SP-B-deficient neonate carrying a biallelic loss-of-function pathogenic variants in SFTPB 125 

(c.[75G>A];[361delinsGAA], p.[(Trp25*)];[(Pro121Glufs*95)]). Haematoxylin & eosin stainings 126 

were performed. Immunostaining assays were performed on a Leica Bond Platform using an anti-SP-B 127 

polyclonal antibody (HPA062148, Sigma, 1/20 targeting the 121-197 amino-acids) and an anti-SP-C 128 
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antibody (SC-13979, 1/100 targeting both SP-C and pro-SP-C). No frozen tissue was available to 129 

assess ex vivo RNA expression. 130 

Submission of data to public databases 131 

Variant and phenotypes of the proband and his son have been described in LOVD database under 132 

respective URL and https://databases.lovd.nl/shared/individuals/00435123 and 133 

https://databases.lovd.nl/shared/individuals/00435124, and accession numbers 00435123 and 134 

00435124.  135 

RESULTS 136 

Functional consequences of the SFTPB c.582G>A p.(Gln194=) variation 137 

The identified SFTPB c.582G>A variation has never been described in patients nor in the gnomAD 138 

variation database. In silico analysis predicts it to weaken the splice-donor site of intron 5 139 

(MaxEntScan score: 5.85 vs. 10.07). 140 

Transcripts isolated from cells transfected with pSFTPB_WT yielded a 363-bp amplicon 141 

corresponding to normal splicing and a 310-bp one resulting from the use of a cryptic splice-acceptor 142 

site in exon 6 (Figure 2). A similar assay performed with pSFTPB_mut generated three molecular 143 

species in addition to the 363-bp expected SFTPB amplicon. The first two amplicons lead to premature 144 

Stop codons: a 464-bp one [p.(Asp195Valfs*54)] resulting from the use of a cryptic splice-donor site 145 

located within intron 5 leading to the retention of the first 101-bp of this intron and a 121-bp one 146 

[p.(Asp132Glyfs*39)] resulting from the use of the cryptic splice-acceptor site in exon 6. As SFTPB 147 

encompasses 11 exons, it is highly likely that, in vivo, these transcripts leading to premature Stop 148 

codons trigger the nonsense-mediated mRNA decay (NMD) pathway and lead to the absence of 149 

protein production. The third amplicon, a 174-bp one [p.(Asp132_Gln194del)] lacking exon 5 150 

corresponds to an in-phase deletion located in the pro-protein (SP-B mature protein: amino acids 201-151 

279). This deletion includes two major protein cleavage sites, certainly preventing the production of a 152 

mature SP-B protein (Supplementary Figure 1) [8, 9]. Whether or not this shorter peptide, if not 153 

https://databases.lovd.nl/shared/individuals/00435123
https://databases.lovd.nl/shared/individuals/00435124
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degraded, could trigger unfolded protein response and induce an epithelial cell dysfunction remains to 154 

be ascertained. 155 

With a positive control of abnormal splicing – the c.582+1G>T variant predicted to fully disrupt the 156 

splice-donor site of intron 5 – we did not detect any normal transcript, but observed the same three 157 

aberrant transcripts. 158 

Altogether, the c.582G>A pathogenic variant is therefore consistent with a drastic alteration of the 159 

expression of SP-B with, however, a residual expression of normal SP-B. 160 

 161 

Lung tissue expression of SP-B and SP-C 162 

SP-B immunostaining revealed an almost complete loss of SP-B expression in the lung from the 163 

proband. A control experiment performed on a lung biopsy sample from a neonate with a SP-B 164 

deficiency due to a biallelic loss-of-function pathogenic variants in SFTPB showed a complete loss of 165 

SP-B expression (Figure 1-B). The SFTPB c.582G>A pathogenic variant also had an impact on SP-C 166 

metabolism, as observed by the higher expression of SP-C & pro-SP-C in both the proband and the 167 

SP-B deficient neonate compared to both controls.  168 

 169 

DISCUSSION 170 

We herein report for the first time two adult patients from a single family with bi-allelic SFTPB 171 

pathogenic variants. Very rare cases of prolonged survivals have been described in SP-B deficiency 172 

after infant lung transplantation [10–12]. Only one case has been reported with a delayed presentation 173 

in a 4-month infant carrying the homozygous c.706C>T p.(Arg236Cys) missense pathogenic variant 174 

[13]. The patient was alive at the age of 8 years with oxygen supplementation. Three other patients 175 

with a prolonged survival also presented at birth with a severe respiratory distress. Two of them were 176 

homozygous for the c.465G>T p.(Gly155=) splice variant which creates a strong donor splice site 177 

within exon 5 (MaxEntScan score 9.80) and one of them was still alive at school age [14]. The third 178 
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one was homozygous for the missense c.770T>C, p.Leu257Pro pathogenic variant and died at 13 179 

months from respiratory failure [15]. A mouse model of transgenic mice displaying a reduced 180 

expression of SP-B showed a different parenchymal aspect than in the described patient with an 181 

enlargement of the tissue airspaces at 6 weeks (corresponding to a young adult in human) [16]. Like in 182 

the family we are currently reporting, hypomorphic splice pathogenic variants may allow the 183 

persistence of a variable proportion of normal transcripts leading to a residual SP-B function which 184 

could explain the various age at onset (adult in the proband and neonate in his son) and the long-term 185 

survival of the patients. The possible epithelial cell dysfunction and the partial SP-B deficiency 186 

probably explain the fibrosing ILD in both patients [17]. Interestingly, ILD was initially diagnosed as 187 

mild alveolar hemorrhage in both patients. It is likely that the alveolar bleeding could be due either to 188 

chronic dysfunction of the alveolar epithelium eroding the alveolar capillaries or to pulmonary 189 

hypertension [18].  190 

Genetic causes of familial ILD have been better understood over the past decade and are mostly 191 

related to telomerase-related genes and surfactant related genes pathogenic variants [19–21]. 192 

Pathogenic variants in surfactant genes that were hitherto associated with ILD in childhood are 193 

increasingly linked to young-adult onset ILD, and should be considered in atypical presentations of 194 

ILD particularly when a family history is identified [20, 21]. In the former patients, whatever the age 195 

of the patient is, a genetic analysis of the genes involved in surfactant metabolism could increase the 196 

number of described cases and the awareness on adult forms of surfactant genes pathogenic variants.  197 

 198 
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Figure legends 272 

 273 

Figure 1. Family tree, CT scan and histological features 274 

A. Genealogical tree of the described family. Consanguineous unions are indicated with double lines. 275 

Black symbols show subjects with pulmonary fibrosis. The age at the time of the study is mentioned 276 

within symbols. The arrow indicates the proband. The genotypes are provided with the reference 277 

nucleotide in green and the pathogenic variant in red. 278 

The CT-scan of the proband (III.2) at 51 year-old (before lung transplantation) shows parenchymal 279 

distortion, ground glass opacities, centrilobular nodules and mosaic attenuation with area of decreased 280 

attenuation and pulmonary fibrosis. The CT-scan of his son (IV.7) at 16 year-old shows mild ground 281 

glass opacities, large areas of attenuation especially in the lingula and subtle distortion.  282 

B. The native lung explant examination of the proband (III.2) using Haematoxylin and eosin (HE) 283 

staining shows fibroblastic foci alternating with less affected areas consistent with a usual interstitial 284 

pneumonia pattern. Pulmonary hemosiderosis was not observed nor pulmonary alveolar proteinosis. 285 

The SP-B-deficient neonate showed thickened septa with moderate pulmonary alveolar proteinosis 286 

and the adult and infant controls showed a normal lung parenchyma.  287 

SP-B antibody targets pro-SP-B as it has been developed against amino acids 121 to 197. SP-B 288 

immunostaining (magnification x20 and x40) showed an almost complete loss of SP-B expression in 289 

the patient’s type 2 alveolar epithelial cells (AEC)2, a complete loss of SP-B expression in SP-B-290 

deficient neonate and a normal intracytoplasmic granular AEC2 SP-B expression in both adult and 291 

infant controls. Note that the anti-SP-B antibody does not target the peptide corresponding to the in-292 

phase deleted transcript (p.(Asp132_Gln194del)) which lacks most of the epitope (Figure 2). 293 

SP-C antibody has been developed against full length SP-C (amino acids 1-197) and can thus detect 294 

both pro-SP-C and mature SP-C. SP-C immunostaining (magnification x20 and x40) showed a higher 295 
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degree of expression in the patient’s and the SP-B-deficient neonate’s type 2 alveolar epithelial cells 296 

than in adult and infant controls. 297 

HE, haematoxylin and eosin; AEC alveolar epithelial cell 298 

 299 

Figure 2. In vitro assessment of SFTPB splicing defects associated with c.582G>A p.(Gln194=) 300 

SFTPB exons 4-6 pre-mRNA corresponding to plasmids pSFTPB-WT, pSFTPB_mut and pSFTPB_ctr 301 

are represented. The reference nucleotide is in green and the pathogenic variant is in red. The dotted 302 

line highlights a cryptic acceptor splice site in exon 6 (nucleotide 636).  303 

After transfection of A549 cells with the above-mentioned plasmids, the migration on a 1.5% agarose-304 

BET gel of the RT-PCR products obtained from extracted RNAs is shown. The main amplicons 305 

characterized by Sanger sequencing and obtained from the normal and mutant constructs are 306 

represented on the right of the gel image. Two amplicons were observed for the pSFTPB_WT: a 307 

363bp (canonical splicing) and a 310bp (using exon 6 cryptic splice-acceptor site corresponding to 308 

putative p.(Asp195Glyfs*39)). Both the c.582G>A (pSFTPB_mut) and the c.582+1G>T 309 

(pSFTPB_ctr) pathogenic variants resulted in three specific and aberrant amplicons, i.e. from top to 310 

bottom: one 464bp transcript related to the retention of the first 101bp of intron 5 and predicting a 311 

frameshift with a premature Stop codon in exon 6 (p.(Asp195Valfs*54)), and two 174bp and 121bp 312 

amplicons lacking exon 5 and corresponding to the use of intron 5 canonical splice-acceptor site 313 

(p.(Asp132_Gln194del) in-phase deletion), or exon 6 cryptic splice-acceptor site 314 

(p.(Asp132Glyfs*39)) respectively. The data are representative from 3 independent experiments.  315 

WT, wild type 316 
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Figure 1. Family tree, CT scan and histological features
A. Genealogical tree of the described family. Consanguineous unions are indicated with double lines. Black symbols
show subjects with pulmonary fibrosis. The age at the time of the study is mentioned within symbols. The arrow
indicates the proband. The genotypes are provided with the reference nucleotide in green and the pathogenic variant
in red.
The CT-scan of the proband (III.2) at 51 year-old (before lung transplantation) shows parenchymal distortion, ground
glass opacities, centrilobular nodules and mosaic attenuation with area of decreased attenuation and pulmonary
fibrosis. The CT-scan of his son (IV.7) at 16 year-old shows mild ground glass opacities, large areas of attenuation
especially in the lingula and subtle distortion.
B. The native lung explant examination of the proband (III.2) using Haematoxylin and eosin (HE) staining shows
fibroblastic foci alternating with less affected areas consistent with a usual interstitial pneumonia pattern. Pulmonary
hemosiderosis was not observed nor pulmonary alveolar proteinosis. The SP-B-deficient neonate showed thickened
septa with moderate pulmonary alveolar proteinosis and the adult and infant healthy controls showed a normal lung
parenchyma.
SP-B antibody targets pro-SP-B as it has been developed against amino acids 121 to 197. SP-B immunostaining
(magnification x20 and x40) showed an almost complete loss of SP-B expression in the patient’s type 2 alveolar
epithelial cells (AEC)2, a complete loss of SP-B expression in SP-B-deficient neonate and a normal intracytoplasmic
granular AEC2 SP-B expression in both adult and infant healthy controls. Note that the anti-SP-B antibody does not
target the peptide corresponding to the in-phase deleted transcript (p.(Asp132_Gln194del)) which lacks most of the
epitope (Figure 2).
SP-C antibody has been developed against full length SP-C (amino acids 1-197) and can thus detect both pro-SP-C and
mature SP-C. SP-C immunostaining (magnification x20 and x40) showed a higher degree of expression in the patient’s
and the SP-B-deficient neonate’s type 2 alveolar epithelial cells than in adult and infant controls.
HE, haematoxylin and eosin; AEC alveolar epithelial cell
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Figure 2. In vitro assessment of SFTPB splicing defects associated with c.582G>A p.(Gln194=)

SFTPB exons 4-6 pre-mRNA corresponding to plasmids pSFTPB-WT, pSFTPB_mut and pSFTPB_ctr are represented. The reference
nucleotide is in green and the pathogenic variant is in red. The dotted line highlights a cryptic acceptor splice site in exon 6
(nucleotide 636).
After transfection of A549 cells with the above-mentioned plasmids, the migration on a 1.5% agarose-BET gel of the RT-PCR
products obtained from extracted RNAs is shown. The main amplicons characterized by Sanger sequencing and obtained from the
normal and mutant constructs are represented on the right of the gel image. Two amplicons were observed for the pSFTPB_WT: a
363bp (canonical splicing) and a 310bp (using exon 6 cryptic splice-acceptor site corresponding to putative p.(Asp195Glyfs*39)).
Both the c.582G>A (pSFTPB_mut) and the c.582+1G>T (pSFTPB_ctr) pathogenic variants resulted in three specific and aberrant
amplicons, i.e. from top to bottom: one 464bp transcript related to the retention of the first 101bp of intron 5 and predicting a
frameshift with a premature Stop codon in exon 6 (p.(Asp195Valfs*54)), and two 174bp and 121bp amplicons lacking exon 5 and
corresponding to the use of intron 5 canonical splice-acceptor site (p.(Asp132_Gln194del) in-phase deletion), or exon 6 cryptic
splice-acceptor site (p.(Asp132Glyfs*39)) respectively. The data are representative from 3 independent experiments.
WT, wild type


