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Sophie Limou?, Matilde Karakachoff?, Matthieu Wargny® and Pierre-Antoine Gourraud

2,34

While nearly all computational methods operate on pseudonymized personal data, re-identification remains a risk. With personal
health data, this re-identification risk may be considered a double-crossing of patients’ trust. Herein, we present a new method to
generate synthetic data of individual granularity while holding on to patients’ privacy. Developed for sensitive biomedical data, the
method is patient-centric as it uses a local model to generate random new synthetic data, called an “avatar data”, for each initial
sensitive individual. This method, compared with 2 other synthetic data generation techniques (Synthpop, CT-GAN), is applied to
real health data with a clinical trial and a cancer observational study to evaluate the protection it provides while retaining the
original statistical information. Compared to Synthpop and CT-GAN, the Avatar method shows a similar level of signal maintenance
while allowing to compute additional privacy metrics. In the light of distance-based privacy metrics, each individual produces an
avatar simulation that is on average indistinguishable from 12 other generated avatar simulations for the clinical trial and 24 for the
observational study. Data transformation using the Avatar method both preserves, the evaluation of the treatment’s effectiveness
with similar hazard ratios for the clinical trial (original HR = 0.49 [95% Cl, 0.39-0.63] vs. avatar HR = 0.40 [95% Cl, 0.31-0.52]) and the
classification properties for the observational study (original AUC =99.46 (s.e. 0.25) vs. avatar AUC = 99.84 (s.e. 0.12)). Once
validated by privacy metrics, anonymous synthetic data enable the creation of value from sensitive pseudonymized data analyses

by tackling the risk of a privacy breach.
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INTRODUCTION

During the past decade, data value and accessibility have increased
tremendously’. Many private and public institutions generate,
analyze and store data on behalf of their stakeholders, users,
customers, or patients. Accumulated data are often considered a
byproduct of data activity. However, value is also created by re-
analyzing, sharing, and eventually licensing out data. Until recently,
threats to personal privacy have been considered unavoidable, and
the re-identification risk was either unstudied or underestimated?.
Rocher et al. showed that 99.98% of the people could be re-
identified in any pseudonymized dataset using 15 demographic
attributes. Other studies involving various data types such as
mobility>~5, credit card’, and browsing data® have shown that de-
identification is insufficient to protect personal data®'". Value is
too often extracted from data at the expense of privacy. In the
health domain, the emergence of biomedical data warehouses and
electronic health records has increased attention to data sensitivity.
For example, in 2017, Culnane et al.'? re-identified a patient from
an Australian de-identified open health dataset'>. The risk of
personal data being stolen is high'?, frequently underestimated
and could lead to ransomware in hospitals worldwide'>. Although
data sharing is fundamental for research, re-identification of
patients’ health issues'' and individually discriminating informa-
tion is a threat and a limiting factor.

Since 2018, the implementation of the General Data Protec-
tion Regulation (GDPR) in Europe has significantly changed the
regulatory framework for the circulation and use of personal
data, promoting among other things, a more systematic use of
anonymization techniques. However, patients, citizens, and

scientists alike often mistake pseudonymized data for anon-
ymized data. With pseudonymized data, all directly identifying
information (e.g., name, phone number, social security number)
has been removed to prevent the risk of direct identification of
the patient. However, the risk of re-identification remains and is
often unquantified. Pseudonymization is not a type of anonymi-
zation'S. According to Recital 26 of the GDPR'’, anonymous data
are defined as “information which does not relate to an
identified or identifiable natural person or to personal data
rendered anonymous in such a manner that the data subject is
not or no longer identifiable”.

The European Data Protection Board (EDPB) proposes three
principles to evaluate the robustness of an anonymization
process'®: (1) Singling out, which corresponds to the possibility
of isolating some or all records that identify an individual in a
dataset; (2) Linkability, which is the ability to link at least two
records concerning the same data subject or group of data
subjects (either in the same or different databases), and (3)
Inference, which is the possibility to deduce, with a significant
probability, the value of an attribute from the values of a set of
other attributes. In other words, once anonymized, it is no longer
possible to (1) single out a patient within a dataset, (2) match
records between different data sources, and (3) deduce the real
patient outcome.

To meet these legal and privacy issues, anonymization techni-
ques are worthwhile solutions for data privacy. Scientific research
has yielded a range of anonymization techniques (noise addition'?,
substitution; aggregation or K-anonymity'®; L-diversity?%; differential
privacy?'; hashing/tokenization?2). Among them, differential privacy
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is considered one of the most prominent properties by providing
a mathematical proof of the level of privacy with the concept
of e-differential privacy. Yet, its application requires access to the
original database and is designed to produce statistics. By
mathematically simulating the whole individual observation,
synthetic datasets protect individual privacy while attempting to
retain the statistical relevance of the dataset. Synthetic data are
defined as any production data not obtained from real measure-
ments?3, In practice, these data are drawn at random using data
models whose objective is to mimic a real dataset or an individual
observation. Synthetic datasets offer the following advantages?*:
(1) structural similarity (i.e, the same granularity): the synthetic
dataset contains the same number of observations, the same
number of variables, and the same variable types; (2) information
relevance: the analyst will obtain results from the synthetic dataset
that are comparable to the original data, and (3) subjective
assessment: neither experts nor trained algorithms can distinguish
synthetic data from original data. Recent techniques based on
computational power enabling machine learning®>=2° and more
accurate efforts of statistical modeling®®=3? have significantly
improved the possibility of creating synthetic data. The simulation
of synthetic data is often based on mathematical modeling and
fairly well mimics the statistical properties®® of the original data;
however, the privacy risk is rarely documented®>253% The
simulated nature of synthetic data drawn at random from a
model makes the individual privacy risk hard to quantify®.

Herein, we present a new algorithm for generating synthetic
data called the “Avatar” method. This methodology uses a built-in
patient-centered approach. As it uses each sensitive observation
to create a local simulation leading to the creation of a single
avatar simulation, the synthetic data can be evaluated in light of
the three criteria of the EDPB. We compare the Avatar method
with two reference techniques using, respectively, classification
and regression trees and Generative Adversarial Networks
approaches. The methods are applied to two biomedical datasets
to illustrate that synthetic data preserve the structure and
statistical relevance of the original dataset. The Avatar method
maintains a similar level of utility compared to other synthetic
data generation methods. The analysis performed on the clinical
trial data show similar treatment’s effectiveness (Original Hazard
Ratio (HR): 0.49, avatar HR: 0.40, Synthpop HR: 0.59, CT-GAN HR:
0.25). The classification properties of the observational study also
remain (Original AUC: 99.46, avatar AUC: 99.84, Synthpop AUC:
99.24, CT-GAN AUC: 99.95). Generic privacy metrics show that the
Avatar method generates data on average closer to the original
than Synthpop and CT-GAN. None of the methods generate
close and isolated original and synthetic pairs. We show that
the patient-centric nature of the Avatar method facilitates the
computation of privacy metrics that satisfy EDPB criteria while
allowing a level of signal maintenance equivalent to the most
efficient state-of-the-art methods. Its explainable approach allows
data sharing without compromising privacy.

RESULTS

Avatar method and comparative preservation of the statistical
relevance

The Avatar method retained the statistical value of the datasets.
Figure 1 shows the overlay of the original data (orange) and the
avatar data (green). For the AIDS (Fig. 1a) and WBCD (Fig. 1b)
datasets, the factor analysis of mixed data (FAMD) projection of
the first two components showed that the original data and
avatar data fully overlapped, including the outliers. This result
indicates that the structure of the information contained in the
data has been maintained. Figure 1c compares the survival curves
calculated with the avatar dataset and the original AIDS dataset. In
both treatment arms, the survival curves of the avatar data
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(dotted line) and originals (continuous line) overlapped. Regard-
ing the survival curves, the analysis of the avatar data is leading to
the same interpretations as the one obtained with sensitive data.
Distributions of times to events were estimated with the Kaplan
and Meier method and compared with the log-rank test and Cox
proportional-hazards model. The statistical p-values are computed
using Wald test. The main trial results remained unchanged: arm 1
was more effective than arm 0 when comparing CD4 T-cell count
over time (cf. original hazard ratio: HR = 0.49 (95% Cl, 0.39-0.63);
p=1.22e-08 vs. avatar data: HR=0.40 (95% Cl, 0.31-0.52);
p = 1.47e-11) (see Supplementary Table 1 for additional compara-
tive statistics). For the WBCD dataset, Fig. 1d shows the F-score
comparison for each cancer prediction variable. F-score computa-
tions for the avatar (green) and original (orange) datasets were
similar. The predictive models selected the same variables,
yielding the same feature importance. These models have
comparable prediction performances (original: AUC=99.46 (std =
0.25) vs. avatar: AUC=99.84 (std =0.12); see Supplementary
Table 2 for additional predictive statistics). Overall, these results
suggest that avatar data support similar analyses with potentially
decreased variance.

Comparison of the Avatar method to other synthetic data
generation methods

After showing that the Avatar method could reproduce the
original analyses, we evaluated its performance compared with
two other synthetic data generation methods (Synthpop and CT-
GAN). Figure 2 presents the main statistics of the comparative
analysis (see Supplementary Figs. 1 and 2 for method-specific
results). Figure 2a displays the hazard ratio obtained with the
original data and the three synthetic data generation methods
on the AIDS analysis. The three synthetic datasets lead to the
same conclusions as the original data: arm 1 is more effective
than arm 0 when comparing CD4 T-cell count over time (Wald
test—Original p-value: 1.22e-08, avatar p-value: 1.47e-11, Synth-
pop p-value: 5.24e-05, CT-GAN p-value: <2e-16). The Hazard ratio
values obtained with the avatar and Synthpop AIDS data are
within the confidence interval of the original data. The data
produced by CT-GAN induce an underestimation of the hazard
ratio. Figure 2b compares the AUC and the F-scores of each
variable obtained for the original WBCD data and its three
synthetic versions. The SVM models resulting from original and
synthetic data have comparable prediction performances for
WBCD. (Original AUC: 99.46, avatar AUC: 99.84, Synthpop AUC:
99.24, CT-GAN AUC: 99.95). The F-scores obtained with the avatar
data are the closest to the original F-scores. The higher F-scores
obtained with CT-GAN data for the Bare Nuclei and Clump
Thickness variables indicate that the model introduces bias giving
more importance to these two variables in predicting outcome.
Overall, the 3 synthetic datasets lead to the same conclusion as
the original data for each use case.

Beyond the preservation of the statistical utility, the main goal
of any anonymization method is to prevent re-identification. We
compared the distance to closest record®® (DCR) and nearest
neighbors distance ratio®®3% (NNDR) median values obtained
with original data and the three synthetic datasets for each use
case. Figure 2¢, d present privacy results for AIDS and WBCD.
Median DCR for original data is 3 for AIDS and 0.45 for WBCD.
CT-GAN data is the furthest from the original data for both use
cases with a median DCR of 4.43 for AIDS and 1.46 for WBCD. In
comparison, Synthpop data offer a median DCR of 2.9 for AIDS
and 0.36 for WBCD, and avatar data a median DCR of 2.04 for
AIDS and 0 for WBCD. In both use cases, the median DCR of the
CT-GAN data is higher than the original reference. It indicates
that the CT-GAN data is on average more distant from the
training data than the holdout of the original data itself. In
comparison, the data generated by Synthpop are at an
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equivalent distance to the holdout original data and the avatar
data are closer. The DCR metric states that CT-GAN and Synthpop
data provide more privacy than avatar data. Regarding NNDR,
original data yields a ratio of 0.91 for AIDS and 0.97 for WBCD.
The three synthetic methods show similar results with 0.8 (AIDS),
1 (WBCD) for avatar data, 0.9 (AIDS), 0.96 (WBCD) for Synthpop,
and 0.95 (AIDS), 0.94 (WBCD) for CT-GAN. The high NNDR values
for all methods (0.8, 0.9, 0.95, respectively, for AIDS and 1, 0.96,
0.94, respectively, for WBCD) indicate that none of the methods
generate close and isolated original and synthetic pairs. In terms
of privacy, the three datasets present satisfactory (=0.8) NNDR
results, however, these metrics alone do not allow us to rule on
the anonymous nature of the data.

Avatar method and assessment of the re-identification risk
with patient-centric metric

The patient-centric nature of the Avatar method allows the
computation of supplemental-specific metrics not applicable to
synthetic data generation methods based on the training of a
global model. Figure 3 shows the distribution of the local cloaking
metric (3a: AIDS dataset; 3b: WBCD dataset). In panel 3a, the
median local cloaking of 11 shows that there is a median of 11
avatar simulations between an original observation of the AIDS
dataset and its simulated avatar. The hidden rate of 93% means
that 7% of the individuals produced the avatar that most
resembled them (local cloaking equal to 0). In panel 3b, the
median local cloaking was 24, indicating that there is a median of

Published in partnership with Seoul National University Bundang Hospital

24 avatar simulations between the original WBCD dataset
observations and their avatar simulation. The hidden rate was
94%, suggesting strong data protection. In both the AIDS and
WBCD datasets, less than 7% of individuals appeared to be
unprotected because their avatar simulations showed a local
cloaking of 0. Figure 3c, d present the number of times each
sensitive individual observation generated the avatar simulation
closest to them over the 25 independent avatarizations.
Individuals (AIDS: 28.2% vs. WBCD: 85.5%) do not generally get
local cloakings of 0. For the AIDS dataset, only three individuals
(0.1% of the dataset) had 10 times or more a local cloaking of 0
after 25 avatarizations. For the WBCD dataset, one individual
(0.1% of the dataset) had 10 times or more a local cloaking of 0
after 25 avatarizations (see Supplementary Fig. 3 for additional
details). Overall, these metrics for the Avatar method demonstrate
that the re-identification risk is quantifiable and provides
protection for every single data contributor. Additionally, accord-
ing to Fig. 3¢, d, the generation of an avatar simulation that
resembles the original individual occurs at random and is beyond
the attacker’s knowledge.

Impact of local model size on avatar generation

The number of neighbors k is a crucial parameter. For each use
case, Fig. 4a, b compare the FAMD projections of avatar
simulations generated with a low k (respectively, 0.2% and 6%
of the total number of individuals, light green) and avatar
simulations generated with a high k (respectively, 50%-55% of the
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generative adversarial network.

total number of individuals, dark green). The dataset structures
were well-conserved for the lowest k values (compared with
Fig. 1a, b; k= 20). The structures and their boundaries faded with
the highest value of k. Figure 4¢, d show the evolution of the
major endpoint estimations as a function of k (hazard ratio for
AIDS; AUC of cancer prediction for WBCD). The estimations stayed
within the confidence interval of the estimations from the original
dataset when k was between 4 and 750 for the AIDS dataset and
between 4 and 150 for the WBCD dataset. For low k values, the
effect size tended to be overestimated; for higher k values, the
effect size tended to be underestimated.

Figure 4e, f present the local cloaking distributions according
to k. Lower k values indicated denser and lower local cloaking
distributions. The median local cloaking increased accordingly
with k. Overall, higher k values indicated less conserved data
structure and margins and more deviated estimations. However,
higher k values indicated more protected individuals. The statistical
relevance remained valuable when k reached its highest value.

DISCUSSION

Herein, we present and evaluate a new method, the Avatar
method, to generate synthetic data. We replicate this approach
with two other synthetic datasets generated using different
methods (Synthpop, CT-GAN) and compare utility and privacy
results. These methods aim to protect sensitive data from re-
identification while retaining the statistical value of the dataset.

npj Digital Medicine (2023) 37

We use a publicly available clinical trial dataset comparing HIV
treatments and a breast cancer prediction dataset for privacy and
utility retention assessments. Evaluation of the method is achieved
by comparing results obtained from sensitive data with those
obtained from avatar data and result in the same interpretation for
both datasets. All synthetic data show comparable utility with the
original data with an accountable level of privacy. The Avatar
method is patient-centric (i.e., it uses the characteristics of a single
patient as the starting point of its statistical modeling). Even if
each individual is at the origin of the creation of their avatar
simulation, they do not directly contribute to the local modeling
of their Avatar generation. This seemingly paradoxical nature of
the method limits re-identification risks. The choice to generate
each avatar randomly within a local space differs from the desire
to maximize the distance between the original and generated
individuals. This specificity implies that the generated avatar
simulations could potentially be closer to the original data in
denser areas than those generated with other methods. The
method is based on multidimensional projections and a selection
of local neighbors in a reduced space. In this manuscript, we use
FAMD*” to project the individuals in an Euclidean space. In
practice, other methods, such as discriminant analysis3®, t-SNE>°,
and autoencoders*® could be considered. The use of multivariate
analysis avoids the curse of dimensionality by searching for
neighbors in a reduced space, optimizing the core computation
(see Supplementary Table 3 for comparison of computation times)
of the KNN at the same time. Compared with other methods, the
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projection of the individuals in a mathematically explainable space
allows one to understand the influence of variables on the
neighbor computation. The choice of the projection method is a
balance between computational requirements and the relevance
of mathematical modeling, including distance choice, potential
loss of information, and noise propagation. It underlines the
central role of the projection used in Avatar method. The
limitations of the Avatar method are related to the limitations of
the projection method it uses*'. Multiple data projections or
transformations can be used (if any), for example, the use of
Fourier transform to handle time series instead of tabular data is
presented in another context*?.

The parameter k has a strong influence on data privacy and
quality and needs to be adapted given the data’s sensitivity and
intended use. We show that a worthy level of protection can be
achieved even with a low k value. This parameter is currently
uniformly applied to each simulation; future work may propose a
dynamic adaptation of k depending on the records surrounding
density. However, while the synthesized individuals reflect the
variability and quality of the original data, synthetic data
generation methods allow to generate a synthetic cohort of
infinite (lower or greater) size. For example, this method can be
used to compute empirical distributions of any estimates from the
original dataset (see Supplementary Fig. 4 for the hazard ratio and
Supplementary Fig. 5 for the F-score).

The Avatar method preserves the structure of the original
dataset and reaches high signal retention. The comparison of the
Avatar method with Synthpop and CT-GAN shows that the
performance of signal retention is similar or greater with avatar
simulations for the dataset treated in this experiment. Using the
default parameters, the Avatar method produces data that more
resemble the original data than the Synthpop and CT-GAN data.
The lower DCR values observed with the methods on the WBCD
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use case are related to the reduced variance of the dataset and
the presence of duplicates. The high NNDR value (=0.8) observed
for all methods on both use cases indicates that none of the
methods has the particularity to generate close and isolated
original and synthetic pairs. In addition, the patient-centric nature
of the Avatar method enables the calculation of additional privacy
metrics. The local cloaking and hidden rate metrics account for
privacy at the individual level. By comparing the Avatar method
with Synthpop and CT-GAN, we illustrate that the choice of a
synthetic data generation method is always a balance between
utility and privacy. While synthetic data generation opens the
possibility of multiple secondary uses, in particular for open-data
applications, it is influenced by the primary data usage context.
The adoption of methods is driven by the possibility to fine-tune
this balance. Where other data simulation methods (e.qg.,
GAN*728) use a global model to mimic the overall original
statistical properties, the Avatar method uses local simulation that
facilitates the computation of privacy protection metrics that
satisfy EDPB'®. Explainability and accountability are also reinforced
at both global and local levels, while parameter tuning enables
exploration of the method behavior, which may be seen as
particularly crucial in health applications**. The Avatar method
was built aiming for interpretability at each step for both privacy
protection and signal retention. The possibility to assess and adapt
the privacy level to data sensitivity and their context of use led the
French data protection authority (CNIL) to consider the Avatar
method as compliant with anonymization in the sense of GDPR.
Comparing the two families of anonymization techniques'®:
randomization (e.g., noise addition, permutation, and differential
privacy?') and generalization (e.g., K-anonymity'®, L-diversity?°,
and T-closeness**), synthetic data generation methods allow high
signal conservation®® while allowing privacy evaluation. These
methods are compatible with the use of randomization and
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Fig. 4 Influence of k on statistical relevance and re-identification risk. High k values lower the preservation of statistical information of the
dataset while enhancing privacy: a, b FAMD projections of a two AIDS avatar simulations with k=4 (light green dots) and k= 1166 (dark
green dots) and b two WBCD avatar simulations with k=4 (light green dots) and k=342 (dark green dots) in their original data FAMD
projection space. Contrary to Fig. 1 a, b, Fig. 4 a, b only present avatar data. ¢ Hazard ratio evolution for arm 1 compared with arm 0 as a
function of k. The green zone represents the 95% Cl of the hazard ratio mean. The orange line represents the original data results. d Accuracy
evolution as a function of k. For each k, 10 train/test datasets (70/30) SVM models were computed. Green zones represent 95% Cl. Orange lines
and associated areas represent the original data AUC mean and associated 95% Cl. A high k influence on data privacy. e, f Comparison of the
local cloaking distribution (base-10 log scale) for low k to high k. Boxplots present the median, first, and third quartiles. FAMD factor analysis
for mixed data, AUC area under the ROC curve, SVM support vector machine, Cl confidence interval.

generalization methods and can be combined with them in a
treatment depending on the intended use of the data. Compared
to differential privacy, synthetic data generation methods such as
the Avatar method have more flexibility in their use®* but do not
have an a priori mathematical proof of the privacy level provided.
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A current evolution of the method could deliver a local model that
would be differentially private. The control of the level of utility
and privacy allows for adapting the optimal treatment to the use,
particularly in the field of health where keeping utility is essential
although the data are sensitive.
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Fig.5 The Avatar method uses local modeling to stochastically generate a synthetic individual, termed an avatar simulation. (1) Original
pseudonymized sensitive data. (2) The core of the Avatar method consists of four steps: (a) individuals are projected in a multidimensional
space; (b) pairwise distances are computed to find the k nearest neighbors (here k=12) in a reduced space; (c) a synthetic individual is
pseudo-randomly generated in the subspace defined by the neighbors; (d) privacy metrics are evaluated. (3) Output of the dataset of
synthetic data. More details are provided online (https://docs.octopize.io/).

Synthetic data are becoming a key tool in an open-data world
and are streamlining making data available to data scientists*.
With the avatar dataset, researchers do not need to expose
sensitive patients or risk patients’ privacy when publishing their
results. This should be a proposed standard in analyzing
biomedical data and data in general and has already proven
its relevance to promote reproducibility*®. We develop our
analysis in the specific case of tabular data, but other real-life
data sources offer multiple possibilities, such as images, high-
dimensional data (-omics data), tracking data, geospatial data, or
time series. Applying the Avatar method to these specific data
types will require specific developments.

Synthetic data generation methods promote collective intelli-
gence and enable sharing codes that apply seamlessly to both
original and synthetic data®**, The use of synthetic data allows
unleashing personal data potential to improve future healthcare
systems while ensuring individual privacy. The Avatar method
respects GDPR constraints by enabling data sharing without
compromising privacy. Personal data should be restricted to
personal use. Not using synthetic data when possible, undermines
the trust required to build an open-knowledge society.

METHODS
Description of the Avatar method

The Avatar method uses a patient-centered approach. Each
original observation generates a local random simulation leading
to its avatar simulation. We consider a pseudonymized sensitive
dataset of size nxp, where n rows represent individuals, and
p columns are variables. Variables can either be continuous
variables, categorical variables, booleans or dates. The Avatar
method aims to create a new dataset of n synthetic observations
and p variables with consistent yet different values compared with
those of the original dataset. Avatar data are a synthetic dataset
composed of mathematically simulated individuals, originating
from the original sensitive dataset. Figure 5 illustrates this
operation. In short, the core of the Avatar method has three
major steps. (1) Input: the input data are a pseudonymized tabular
dataset. (2) The core of the Avatar method: (2a) individual
observations are projected in a complete multidimensional space
using factor analysis technique (e.g., PCA*, FAMD?’, and MCA*).
(2b) Using the first number of dimensions (nd) of this space,
pairwise distances are computed between each sensitive
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individual observation to find the k nearest neighbors with the
KNN algorithm#®°, which define a local area. (2c) For each
individual, a single avatar simulation is pseudo-stochastically
drawn in its local area. Considering an individual O in the original
dataset D, the aim is to create an avatar simulation A for each O.
Once the k neighbors of O are identified, a random weight is
affected for each neighbor®'. In this study, those k weights are
defined as follows:

Foriin[1,..,k],P; = Dix Rix M
with:

D; the inverse of the distance between O and its i*" neighbor k,
R; ~ &(1): a random weight following an exponential distribu-
tion, with A=1,

G = (3Y: a contribution, where j is the value at /" index of the
randomly shuffled vector [1, 2,..., k.

For example, considering an individual O having k=2
neighbors distant from 3 and 5 in the Euclidean space and with
the randomly shuffled vector [2,1],

Py = 1/3xrandom_valuex 1/4

P, = 1/5xrandom_valuex 1/2

Finally, each weighting term is divided by the sum of all the
neighbor’s weights as follows:

Tk
Zj:] Pi

where W; is the weight of the i" nearest neighbor.

Each of the k nearest neighbors of the individual O yield a
weight W, between 0 and 1. Avatar simulation coordinates are
then generated at the weighted center of the k nearest neighbors.
The parameters k, nd, and others, such as variable weights, drive
the randomness and information content of the simulations. (2d)
The properties of the avatar dataset are evaluated by computing
both Avatar-specific privacy metrics and signal retention metrics?*.
Importantly, this step allows reiterating phase 2b if the metrics
lack sufficient privacy or acceptable statistical conservation. (3)
Output: the avatar simulations are reverse transformed from their
coordinates in the full modeling space into values of the initial
structured dataset by performing the reverse mathematical

)

i
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process of the factor analysis used. Synthetic observations (rows)
are shuffled to remove the link between the original individuals
and the avatar simulations.

The method is controlled by two types of parameters: (1)
parameters affecting the local environment: distance used (e.g.,
Euclidean or Mahalanobis®2), number of neighbors (k), parameters
of multidimensional projection (e.g., standardization, number of
dimensions used in neighbor identification and variables custom
weighting for projection) and (2) parameters affecting how
stochastic an avatar generation can be: the weights distribution
law over neighbors (equal or unbalanced contribution) and the
percentage of perturbation applied to the avatar for each variable.

Privacy metrics definition

After generating the synthetic dataset, metrics are required to
assess privacy. For each dataset and each method, we computed
two metrics used in the literature to evaluate the privacy of any
synthetic data: the distance to closest record (DCR?®) and the
nearest neighbor distance ratio (NNDR?33%), The DCR is defined
as the Euclidean distance between each synthetic record and its
closest corresponding real neighbor. The higher this distance,
the better the privacy level. The NNDR is the ratio between the
Euclidean distance of the closest and the distance of the second
closest real neighbor for each synthetic record (see Supplemen-
tary Fig. 6 for details). The NNDR is bounded in [0, 1], the higher
the better the privacy level. Of the three EDPB criteria'®, singling
out represents the most unfavorable and sensitive attack
scenario. Herein, we also introduce two metrics specific to the
Avatar method addressing the singling-out issue, local cloaking
and hidden rate. It leverages the local nature of the model used
to sample each avatar simulation. We place ourselves in the
membership attack scenario®°3, The attacker seeks to deter-
mine an individual’'s membership in a cohort by establishing a
link between a sensitive individual and an avatar simulation. In
this context, the most likely attack is a distance-based linkage
attack®3. For each sensitive individual, the local cloaking metric
counts the number of avatar simulations that are more similar
(i.e., closer in the multidimensional space) to the original data
than the one avatar produced from the data. The hidden rate
metric represents the percentage of individuals in the original
dataset whose avatar simulation is not the most similar to
them. This metric evaluates the probability of an attack being
wrong when it associates an avatar simulation with the
individual to whom the avatar simulation is most similar (see
Supplementary Fig. 7 for details). Higher values for both metrics
imply a better privacy level.

Application of the method to biomedical dataset 1: Acquired
Immunodeficiency Syndrome (AIDS) clinical trial

The AIDS dataset includes 2139 patients and 26 variables for HIV-
infected patients who participated in a clinical trial published in
1996 in the New England Journal of Medicine. The clinical trial had
four arms and was analyzed by Hammer et al>* The main
endpoints used were survival and a 50% drop in CD4+ cell counts.

Application of the method to biomedical dataset 2: Wisconsin
Breast Cancer Diagnosis (WBCD) prediction issue

The WBCD dataset comprises 683 observations and 10 variables. It
is frequently used for student training purposes and can be
downloaded from the University of California Irvine machine-
learning repository>®. The outcome corresponds to the tumor
severity: benign (n = 444) vs. malignant (n = 239). The other nine
features are built from imaging-specific annotations and are
graduated from 1 to 10. Feature selection (F-score computation)
and a support vector machine (SVM) were used to predict the
severity of a patient’s breast cancer diagnosis as per Akay et al.’®.
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Protocol

For each use case (AIDS and WBCD), synthetic datasets were
generated. We generated a synthetic dataset using the Avatar
method>” with the parameter k = 20. To evaluate the ability to retain
the utility of the original datasets, we performed four analyses
(two per use case). For both AIDS and WBCD, we compared the
multidimensional reduction representation of each original dataset
with its synthetic avatar version. For AIDS we compared the survival
curve of two treatments and the hazard ratio value computed
with original and avatar data. For WBCD, we compared the
F-score computation (see supplementary method 1 for details) and
classification performance (area under the receiver operating
characteristic curve; AUC, see supplementary method 2 for details)
of the original and avatar data. We then evaluated the performance
of the Avatar method against two other synthetic data generation
methods. For both use cases, we generated two additional synthetic
datasets, one relying on classification and regression tree (Synth-
pop3Y), and the second one using conditional generative adversarial
network (CT-GAN?’). To compare methods on the utility preservation
ground, the two additional synthetic datasets for each use case went
through the same pipeline of analysis described above. For privacy
comparison of the synthetic data generation methods, we used DCR
and NNDR metrics in both use cases. For this analysis, we generated
one synthetic dataset per method (Avatar, Synthpop, CT-GAN) based
on 10 sampling of 70% of the original set, i.e, 10 synthetic datasets
per method per use case. The DCR and NNDR were computed
between the generated synthetic data and the original sampling. We
also computed DCR and NNDR between sampling and the holdout
30% original data to be used as a comparison basis. Since the Avatar
method has the particularity of being patient-centric, we were able
to compute the specific re-identification metrics (local cloaking and
hidden rate) on avatar data. The last part of the study focuses on
evaluating the behavior of the Avatar method. To illustrate the
stochasticity of the method, we performed 25 Avatar generation
experiments (k= 20) of each dataset, and for each individual, we
looked at the number of times a distance-based linkage attack
would have led to correct re-identification. Then, to evaluate the
impact of k on AIDS and WBCD data, we performed survival analyses
over 10 Avatar generation expriments for each k ranging from 4 to
1200 (to achieve half-size of the dataset) for AIDS and we computed
the AUC over 10 Avatar generation experiments for multiple k
ranging from 4 to 334 (to exceed the size of the smallest group of
interest, i.e, 239 malignant tumors) for WBCD.

DATA AVAILABILITY

The reference datasets (AIDS and WBCD) and all synthetic datasets used in this study
as well as data that support the findings of this study have been deposited in the
public “avatar-paper” repository available on GitHub (https://github.com/octopize/
avatar-paper/tree/main/datasets).

CODE AVAILABILITY

To promote transparency and reproducibility of the results, all synthetization
parameters used for Avatar, Synthpop and CT-GAN, and analysis codes are available
on GitHub (https://github.com/octopize/avatar_paper) without any restriction access.
Analyses were performed using R (version 4.1) and Python (version 3.9).
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