
HAL Id: inserm-04095980
https://inserm.hal.science/inserm-04095980v1

Submitted on 12 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Intrusive Annotation-Based Domain-Specific
Analysis to Certify Event-B Models Behaviours

Ismail Mendil, Peter Riviere, Yamine Aït-Ameur, Neeraj Kumar Singh,
Dominique Méry, Philippe Palanque

To cite this version:
Ismail Mendil, Peter Riviere, Yamine Aït-Ameur, Neeraj Kumar Singh, Dominique Méry, et al.. Non-
Intrusive Annotation-Based Domain-Specific Analysis to Certify Event-B Models Behaviours. 29th
Asia-Pacific Software Engineering Conference (APSEC 2022), Dec 2022, Virtual conference, Japan.
pp.129-138, �10.1109/APSEC57359.2022.00025�. �inserm-04095980�

https://inserm.hal.science/inserm-04095980v1
https://hal.archives-ouvertes.fr

Non-Intrusive Annotation-Based Domain-Specific
Analysis to Certify Event-B Models Behaviours

I. Mendil1, P. Rivière1, Y. Aït-Ameur1, N. K. Singh1, D. Méry2, and P.
Palanque3

1INPT-ENSEEIHT/IRIT, University of Toulouse, France
2Telecom Nancy, LORIA, Université de Lorraine, France

3IRIT, Université de Toulouse, France
{ismail.mendil,peter.riviere,yamine,nsingh}@enseeiht.fr,

dominique.mery@loria.fr, palanque@irit.fr

Abstract. System engineering advocates a thorough understanding of
the engineering domain or certification standards (aeronautics, railway,
medical, etc.) associated to the system under design. In this context, en-
gineering domain knowledge plays a predominant role in system design
and/or certification. Furthermore, it is a prerequisite to achieve the effec-
tiveness and performance of the designed system. This article proposes a
formal method for describing and setting up domain-specific behavioural
analyses. It defines a formal verification technique for dynamic properties
entailed by engineering domain knowledge where Event-B formal models
are annotated and analysed in a non-intrusive way, i.e. without destruc-
tive alteration. This method is based on the formalisation of behavioural
properties analyses relying on domain knowledge as an ontology on the
one hand and a meta-theory for Event-B on the other hand. The pro-
posed method is illustrated using a critical interactive system.

Keywords: Domain knowledge · Formal Methods · Ontology · Event-B
Theories · Refinement · Proof · Behavioural Analyses.

1 Introduction

Context. System behaviour analysis necessitates handling domain constraints,
knowledge and standards together with the use of different logics and in par-
ticular temporal logic which allows for expressing requirements related to the
system behaviour. Event-B [1], like other formal methods, offers built-in mech-
anisms like invariant preservation for verifying properties of complex systems
models expressed using abstract machines. However, in order to formalise com-
plex properties, in particular behavioural properties, the designer must accom-
modate the Event-B modelling language constructs especially since these con-
structs are based on first-order logic and set theory.

While safety properties are explicitly modelled in Event-B thanks to invari-
ants and theorems, the temporal properties related to liveness require a complex
operational formalisation. Moreover, handling constraints raised by standards or
domain knowledge properties require ad hoc modelling by the designer.

2 Mendil et al.

M0

M1

Mi

Mn

refines

refines

refines

Domain
Theory

analysed by

Domain Knowledge
Behavioural Properties

Analysis

Event-B
Modelling

Chain

Fig. 1: Methodology overview

In [11], the authors extend the class of live-
ness properties for Event-B by defining a list
of proof obligations used to express proof rules.
In [18,10], a behavioural semantics to Event-B
and a collection of conditions allowing for veri-
fying LTL properties across a refinement chain
are proposed. Although the approach supports
extended LTL operators, the paper does not
address the issue of explicitly handling domain
knowledge. Several modelling frameworks, in-
cluding DOL, CASL [14] and RAISE [6,7,8],
advocate for explicit domain knowledge in for-
mal modelling where several fields, such as rail-
ways systems, shipping, and logistics, are de-
scribed. Additionally, [4] highlights the benefits
of expressing explicitly domain properties and [3] compiled a collection of appli-
cations that use explicit domain knowledge in modelling. In [13], we discussed a
certification process ensuring that a system model meets the requirements of a
standard formalised as an ontology. The approach is constructive, it relies on the
annotation of state variables by references to ontology concepts and on a set of
operators used to transfer to models domain knowledge formalised as properties.

In this paper, we describe behavioural analyses mined from domain knowl-
edge. Moreover, the analyses discussed here do not require an a priori alteration
of the models (non-intrusive approach) but rather the certification of the be-
havioural model is established using annotations.

Objective of this paper. Our goal is to provide an integrated framework (see
Fig. 1) for verifying domain-specific behavioural properties of formal design mod-
els. The framework meets an important requirement: non-intrusiveness, achieved
by annotation i.e. the model’s elements are associated with domain knowledge
concepts. This high-level goal is divided into subgoals as follows:

1. Supply a language for expressing domain knowledge concepts and rules. On-
tologies are good candidates for this purpose.

2. Lift formal models to a meta-level to manipulate explicitly their constituents.
3. Provide a mechanism for defining analyses combining both domain knowl-

edge and formal modelling concepts
4. Bind system models concepts and domain knowledge concepts and set up

the domain-specific behavioural analysis.

Organisation of this paper. The sequel of this paper is structured following our
solutions to the identified sub-goals. Section 2 overviews the Event-B method
which is the backbone of the proposed framework. Section 3 recalls the two
formal languages used to address sub-goals (1) and (2) respectively, where the
ontology modelling and the meta-Event-B languages are introduced. Section 4
presents the integrated framework, meeting sub-goals (3) and (4), to address

Non-Intrusive Annotation-Based Domain-Specific · · · 3

formal model analyses and annotation mechanisms. Section 5 describes the case
study illustrating our approach and section 6 defines a specific domain knowledge
based analysis according to the methodology devised in this article. Sections 7
draws an assessment and section 8 provides a conclusion and future perspectives.

2 Event-B method

Event-B [1] is a correct-by-construction method based on set theory and first-
order logic. It supports state-based modelling where a set of events encodes state
changes. Proof Obligations (PO) (see Table 2) are automatically generated.

Theory Context Machine
THEORY Th CONTEXT Ctx MACHINE M
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)

Type1(E, ...) THEOREMS Tctx THEOREMS Tmch(x)
constructors END VARIANT V (x)

cstr1(p1: T1, ...) EVENTS
OPERATORS EVENT evt

Op1 <nature> (p1: T1, ...) ANY α
well−definedness WD(p1, ...) WHERE Gi(x, α)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x :| BAP(α, x, x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)
Table 1: Global structure of Event-B Theories, Contexts and Machines

2.1 Contexts and machines (see Table 1.(b) and 1.(c))

A Context describes the static properties of a model: Axioms and theorems
describing required concepts using carrier sets s, constants c, axioms A and
theorems Tctx . A Machine describes the model behaviour as a transition system.
A set of guarded events is used to modify the state using Before-After Predicates.

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ G(α) ∧ BAP(α, x′) ⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 2: Relevant Proof Obligations for Event-B contexts and machines

Refinements. Refinement decomposes a machine into a less abstract one with
more design decisions moving from an abstract level to a less abstract one. Gluing
invariants relating abstract and concrete variables ensure property preservation.

Core Well-definedness (WD). WD POs are associated with all Event-B opera-
tors. Once proved, these WD conditions are used as hypotheses to prove other
POs.

4 Mendil et al.

2.2 Event-B extensions with Theories (see Table 1.(a))

To handle more complex and abstract concepts beyond set theory and first-order
logic, an Event-B extension for externally defined mathematical objects has been
proposed in [2,9]. It introduces user data types, operators, theorems and associ-
ated rewrite and inference rules, all bundled in so-called theories similar to other
proof assistants like Coq [5], Isabelle/HOL [15] or PVS [16].

Theories Definition. Theories contain datatypes and operators that can be used
in Event-B expressions as predicates or expressions producing values. Operators
may be defined explicitly in the OPERATORS clause, or defined axiomatically in the
AXIOMATIC DEFINITIONS clause. Last, a theory may provide theorems and proof
rules . Many theories have been defined for lists, reals, differential equations, etc.

Well-definedness (WD) in Theories. An important feature provided by Event-B
theories is the possibility to define Well-Definedness (WD) conditions (close to
TCC conditions in PVS [16]). Each defined operator (thus partially defined) is
associated with a user-defined condition ensuring its correct definition. When it
is applied this WD condition generates a PO that needs to be discharged.

Event-B proof system and Rodin. Rodin1 is an open source IDE for modelling in
Event-B. It provides model editing, automatic PO generation, project manage-
ment, refinement and proof, model checking, model animation and code genera-
tion. The Event-B theories extension is available as a plug-in. They tightly inte-
grated in the proof process. Depending on their definition, operator definitions
are expanded either using their direct definition or by enriching the hypotheses
pool using their axiomatic definition. Theorems may be imported as hypotheses.
Many provers for first-order logic as well as SMT solvers are plugged into Rodin.

3 Previous Work

3.1 Ontology Modelling Language as Event-B Theory

The ontology modelling language [12] is used for describing domain-specific be-
havioural properties. It features a trade-off between the expressive power of first-
order logic and the practicality of high-level primitives. It comes as an Event-B
theory providing one data type and a collection of operators and theorems.

Listing 1 shows important elements used for modelling an ontology. Ontolo-
giesTheory is an Event-B theory which is parameterised by C, P and I denoting
Classes, Properties and Instances, respectively. This theory defines a construc-
tor consOntology with 7 attributes: classes, properties, instances, class-
Properties, classInstances, classAssociations, instanceAssociations.

1 Rodin Integrated Development Environment http://www.event-b.org/index.html

Non-Intrusive Annotation-Based Domain-Specific · · · 5

In addition, expression and predicate operators allowing to manipulate the
ontology are defined. Operators returning an expression allows computing val-
ues based on ontology attributes. Predicate operators are used defining well-
definedness conditions and to check logical properties. For example, getClassIns-
tances is an operator that allows retrieve the relation class to instances in a
safe way since the operator is correctly used only if its well-defined condition
is discharged. The well-definedness condition of this operator is formalised in
the isWDClassInstances stating that the classes and instances of the relation
correspond respectively to classes and instances of the ontology. Another impor-
tant operator is isWDOntology which checks that an ontology is well defined in
the sense that all the attributes obey the individual well-definedness condition.
Other operators are provided among them isA and ontologyContainsClasses
where the former checks where a class subsumes another class and the latter
verifies whether a collection of classes belongs to a given ontology.

Last, theorems may be derived for the ontology modelling language from the
data type definition and the operator specifications. For example, the theorem
isATran states that isA is transitive. It is noteworthy that the theorems are valid
provided that the ontology is well defined, the same applies to all the operators
which require a well-defined ontology as an argument.

THEORY OntologiesTheory
TYPE PARAMETERS C,P, I
DATA TYPES

Ontology(C,P, I)
CONSTRUCTORS

consOntology(classes : P(C), properties : P(P), instances : P(I) ,
classProperties : P(C × P), classInstances : P(C × I) ,
classAssociations : P(C × P × C), instanceAssociations : P(I × P × I))

OPERATORS
isWDClassInstances <predicate> . . .
getClassInstances <expression> . . .
isWDOntology <predicate> (o : Ontology(C,P, I))

direct def init ion
isWDClassProperites(o) ∧ isWDClassInstances(o) ∧
isWDClassAssociations(o) ∧ isWDInstancesAssociations(o)

ontologyContainsClasses <predicate> . . .
isA <predicate> (o : Ontology(C,P, I), c1 : C, c2 : C)

well−definedness isWDOntology(o), ontologyContainsClasses(o, c1, c2)
direct def init ion

getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)
. . .

THEOREMS
isATrans :

∀o, c1, c2, c3 · o ∈ Ontology(C,P, I) ∧ isWDOntology(o) ∧
c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C ∧ ontologyContainsClasses(o, c1, c2, c3)

⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

Listing 1: Ontology modelling language Event-B theory

3.2 The Event-B Meta-theory

For enhancing the reasoning support of Event-B, a reflexive framework has been
defined in [17]. To access Event-B components as first-class elements and keep the
semantics, and propose a reasoning mechanism expressed with the meta-level.

6 Mendil et al.

THEORY EvtBTheo
TYPE PARAMETERS St, Ev
DATATYPES Machine (St , Ev)
CONSTRUCTORS

Cons_machine(
Event : P(Ev),
State : P(St),
Init : Ev,Progress : P(Ev)
V ariant : P(St × Z),
AP : P(St),
BAP : P(Ev × (St × St)),
Grd : P(Ev × St),
Inv : P(St) ,
. . .)

Listing 2: Machine Data type

Listing 2 shows the data type representing
the machine’s elements, which are param-
eterised by two types: Ev and St. A con-
structor is defined Cons_machine where each
argument corresponds to a machine compo-
nent. The machine denotes a state transi-
tion system on the set of states (State) con-
strained by the invariant (Inv).

Machine structure. Events are triggered
by the initialisation event (Init) then by
progress events (Progress). State changes
are provoked by the After predicate (AP) for Init, and the Before After Pred-
icate (BAP) for progress events if their corresponding guards (Grd) are true. A
numeric variant (Variant) is defined, it is used for liveness properties.

Event_WellCons <predicate> (m : Machine(St, Ev))
direct def init ion partition(Event(m), {Init(m)}, Progress(m))
. . .

Machine_WellCons <predicate> (m : Machine(St, Ev))
direct def init ion Event_WellCons(m) ∧ . . .

Listing 3: Operators to check well-defined data type (static semantics)

Well-Constructed machines. The data type requires to formalise the constraints
on the constructor’s arguments. For example Event_WellCons (see Listing 3)
encodes the property stating that events are partitioned as initialisation event
and progress events and Machine_WellCons defines well constructed machines
(not detailed here because of space limitations reasons).

Machine POs (Semantics of Event-B machines). The proof obligations are for-
malised based on the semantics of guarded transitions systems. Each proof obli-
gation is formalised using set theory. Predicates over state variables are modelled
as sets of states satisfying the predicate and logical connectives are formalised
by operations on sets.

Mch_THM <predicate> . . .
Mch_INV_Init <predicate> (m : Machine(St, Ev))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <predicate> (m : Machine(St, Ev), e : Ev)

well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <predicate> (m : Machine(St, Ev))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_INV _One_Ev(m, e))
Mch_FIS_Init <predicate> . . .
Mch_FIS_One_Ev <predicate> . . .
Mch_FIS <predicate> . . .
Mch_VARIANT_One_Ev <predicate> . . .
Mch_VARIANT <predicate> . . .
Mch_NAT_One_Ev <predicate> . . .
Mch_NAT <predicate> . . .

Listing 4: Well-defined data type operators (behavioural semantics)

Non-Intrusive Annotation-Based Domain-Specific · · · 7

For example, Listing 4 describes the induction principle for verifying the
invariant PO where Mch_INV_Init predicate states that the initialisation event
must establish the invariant (AP (m) ⊆ Inv(m)) and Mch_INV_One_Ev states
that a given progress event e must preserve the invariant (BAP (m)[{e}] [Inv(m)∩
Grd(m)[{e}]] ⊆ Inv(m)). Last, the Inv PO (see. Table 2) is formalised by the
Mch_INV operator as the conjunction of the two previous operators. Likewise, all
POs are formalised using the same transformation principle.

check_Machine_Consistency <predicate> (m : Machine(St, Ev))
well−definedness Machine_WellCons (m)
direct def init ion Mch_THM(m) ∧ Mch_INV (m) ∧ Mch_FIS(m)∧

Mch_V ARIANT (m) ∧ Mch_NAT (m)

Listing 5: Operator for Event-B machine consistency
Last, the operator check_Machine_Consistency of Listing 5 is the conjunc-

tion of all the predicates formalising the various POs. It formalises an Event-B
machine correctness condition.

When this predicate is used as a theorem in an Event-B system development
then the core POs (see Table 2) as well as the well-definedness POs are auto-
matically generated by the Rodin platform. Discharging all the generated POs
along with this theorem ensures the consistency of the machine.

Instantiation of the meta-theory. The defined meta-theory is instantiated to
define specific Event-B machines. Instantiation consists in defining an Event-B
context with instances for the type parameters St and Ev and providing instances
for the attributes of Cons_machine.

4 Domain-Specific Behavioural Analysis

Our proposal consists in describing domain knowledge properties, particularly
behavioural ones, as generic properties expressed on Event-B model concepts.
Such properties usually occur in domain requirements or standards.

The proposed framework (see Fig. 2) is composed of two basic blocks: ontol-
ogy modelling language (see Section 3.1) and meta-Event-B language (see Section
3.2). The first component provides primitives to write domain concepts and con-
straints as ontologies, while the second component allows for the abstraction of
a system as an instance of the meta-Event-B language, allowing for a reasoning
extension. Moreover, all the behavioural properties encoded in first-order logic
can be written in our framework and validated on models using our methodol-
ogy. In addition to purely temporal properties, the framework allows expressing
enriched analyses that take the domain knowledge into account. A mechanism
for referencing domain knowledge in design models is also defined. The frame-
work is composed of three parts, and the resulting step-by-step methodology for
analysing some Event-B models is divided into four major steps.

4.1 Components of the methodology

Three main components have been identified: Event-B development Fig. 2.(A),
theories Fig. 2.(B) and instances as Event-B contexts Fig. 2.(C).

8 Mendil et al.

Ontology modelling
language

OntologiesTheory

Meta-Event-B Language

EvtBTheory

Behavioural Properties
Theory

predicate operator

Annotated machine

Analysis Theorem

Domain Ontology

ontoContext

Mi
Machine as Context

MiContext

(A)
Event-B

development

(B)
Theories

(C)
Instances

(Event-B contexts)

extendsextends

importsimports

instantiates

instantiates
(operator use)

exports

refines

refines

instantiates

(1)

(4)

(2)

(3)

Mn

M1

M0

refines

Fig. 2: Event-B-based framework for domain behavioural properties analysis

(A) Event-B development represents the Event-B model development,
including the refinement chain for the system design with an abstract machine
Mito be analysed;
(B) Theories enabling a designer to manipulate and analyse Event-B models.
Three theories have been introduced as follows.

- EvtBTheory Event-B theory, introduced in section 3.2, allowing to formalise
an Event-B model as a context and to define proof obligations;

- An ontology modelling language (OntologiesTheory in Listing 1 of Sec-
tion 3.1) for describing domain knowledge concepts and constraints.

- A theory importing both theories in order to 1) annotate Event-B models
with ontological concepts and to 2) define new proof obligations as predicate
operators expressing specific behavioural domain properties and used as
theorems on specific Event-B models expressed as instances.

(C) Instances (Event-B contexts). The third part describes the contexts
instantiating the theories of Part (B). The context (4) describes the annotated
model, which extends the ontology context, the Event-B model context, and
defines theorems corresponding to the behavioural properties to be checked.
The proof of these theorems guarantees that the properties hold on the analysed
machine Mi of part (A).

4.2 A Methodology for defining Event-B models domain knowledge
based analyses

The methodology we propose follows four steps (see Fig. 2).
Step 1: Ontology definition. This step consists in describing the domain

ontology with the domain concepts and properties as an instance, represented
by an Event-B context, of the theory presented in Section 3.1.

Step 2: Express a domain-specific behavioural analysis. It consists in defining
a predicate based on an ontology and applying it to an Event-B model

Non-Intrusive Annotation-Based Domain-Specific · · · 9

Step 3: Export the Event-B machine. Export the Event-B machine as an
instance of the theory EvtBTheory to be analysed. The produced instance al-
lows the machine elements to be explicitly manipulated using the operators of
Section 3.2 theory.

Step 4: Annotate the Event-B machine. Annotate the Event-B machine with
the ontology concepts from Step 1. Machine concepts (variables and events) are
linked to ontology concepts (tags). The annotated machine is an instance of
the theory defining the behavioural properties with a theorem, formalising this
property requirement by a theorem to be proved.

The remainder of the article demonstrates the approach using Event-B method.

5 Case Study

5.1 Informal Description

A critical interactive system is modelled to demonstrate our approach: the user
interface of an automatic teller machine (ATM), where the primary requirement
is that an authenticated client withdraws banknotes safely. Below, we present
important requirements associated with HMI only.

REQ-1 A user can exclusively use a keyboard or a screen.
REQ-2 To withdraw banknotes, a user must be authenticated.
REQ-3 A user can adjust the brightness a finite number of times.
REQ-4 Any entered passcode must be followed by a confirmation.
First, a user inserts a credit card and chooses an input device to enter a

passcode. The user must confirm the entered passcode. Before performing this
operation, the user may adjust the brightness of the screen. When the user
confirms the input, validation starts. It may result in the acceptance or refusal
of the passcode. If the passcode is correct, the ATM delivers banknotes and
ejects the card. Otherwise, the user may try again to enter the correct passcode.
A user makes new attempts a limited and fixed number of times only.

5.2 Formal Description in Event-B

CONTEXT ATMEnvironment
SETS IPT_MOD, IRT_STS, STR
CONSTANTS MAX_ATP,CRT_KYW,KBD,

SCR, IN,OUT,BRT_LV S,BRT_MIN,B
RT_MAX,EPT_STR,MAX_BRT_UPD

AXIOMS
axm1 : partition(IPT_MOD, {KBD}, {SCR})
axm2 : partition(IRT_STS , {IN}, {OUT})
axm3 : MAX_ATP ∈ N1
axm4 : CRT_KYW ∈ STR
axm5 EPT_STR ∈ STR
axm6 : CRT_KYW ̸= EPT_STR
axm7−8 : BRT_MIN ∈ N ∧ BRT_MAX ∈ N
axm9 : BRT_MAX > BRT_MIN
axm10 : BRT_LVS = BRT_MIN ..BRT_MAX
axm11 : MAX_BRT_UPD ∈ N

END

Listing 6: Context of the ATM

This section presents the for-
mal development of the ATM
user interface corresponding to
Fig. 2.(A). It consists of a con-
text and a machine defining static
dynamic properties, respectively.
Listing 6 shows relevant types
and constants for modelling the
ATM interface. In axm1 and axm2,
two enumerated types, IPT_MOD
and IRT_STS, are defined to select
possible input devices (keyboard,

10 Mendil et al.

screen) and credit card modes (in, out), respectively. MAX_ATP represents the
maximum number of attempts. Contextual information for managing the bright-
ness limit and brightness levels are defined using axioms (axm7-axm11). Moreover
axm4 to axm6 defines the string type with two important constants: EPT_STR for
the empty string and CRT_STR representing the correct password.

Listing 7 shows an extract of the machine where 14 variables and safety
properties are introduced to formalize ATM interactions. Several Events are
introduced; chnBrt is defined to cover REQ-3, for adjusting the brightness of
the screen. The guard of chnBrt ensures that the maximum number of updates
is not exceeded.

Other requirements are checked by invariant proving like inv16: the entered
password is never displayed. REQ-4 embeds a different kind of properties since
(1) it references domain knowledge concepts (2) it is a behavioural property. Due
to space limitation, we show only important variables and safety properties.

MACHINE ATMUserInterface
SEES ATMEnvironment
VARIABLES str , scrReg , kbdReg , atp ,

cnfSts , valSts , dlvSts , isStrVis ,
iptMod , crdSts , brt , brtUpd ,
cnfKBDstr , cnfSCRstr

INVARIANTS
inv1−14 : . . .
inv15 : str = scrReg ∨ str = kbdReg
inv16 : isStrVis = ⊥

EVENTS
INITIALISATION. . .
etrKBDStr
WHERE
grd1 : 0 ≤ atp ∧ atp < MAX_ATP
grd2−3 : iptMod = KBD ∧ crdSts = IN
grd4 : cnfKBDstr = ⊥
THEN
act1 : str , kbdReg :| kbdReg′ ∈ STR∧

str ′ = kbdReg′

act2 : brtUpd, cnfKBDstr := 0,⊤
END

chnBrt
WHERE
grd1 : crdSts = IN
grd2 : brtUpd < MAX_BRT_UPD

THEN
act1 : brt :∈ BRT_LVS
act2 : brtUpd := brtUpd + 1
END
cnfKBDStr
WHERE
grd1 : 0 ≤ atp ∧ atp < MAX_ATP
grd2−3 : iptMod = KBD ∧ crdSts = IN
THEN
act1 : atp := atp + 1
act2 : cnfSts := ⊤
act3 : cnfKBDstr := ⊥
END
. . .

Listing 7: ATM machine

6 Our methodology at work

The methodology’s first step (see Section 4) is to define an ontology of events
that will serve as the basis for modelling domain analyses. Our main objective is
to check if the ATM model follows REQ-4 stating that when an event annotated
as input is triggered, a confirmation event must be triggerable in the future.

6.1 Step 1 - Event Ontology Instantiation (Fig. 2.(1))

The ontology modelling language (see. Section 3.1) is used to describe Event
tags. input, confirmation, and finite are particularly relevant in the ATM
case study. The first two tags are used to denote interaction events that provide
user input information and formalise a user response. Finally, finite designates
events that does not occur indefinitely. Listing 8 (corresponding to ontoContext

Non-Intrusive Annotation-Based Domain-Specific · · · 11

of Fig. 2.(1)) contains the instantiation of the ontology modelling theory. It
provides 3 type parameters: tags for ontology classes, Ps for tag properties, and
instances for model events. The other ontology contents are not provided here
as they are not relevant for our development.
CONTEXT EventTagOntology
SETS Tags, Ps, Ev
CONSTANTS eventOntology, tag, input, confirmation, . . . , finite
AXIOMS

axm1 : partition(Tags, {tag}, {input}, {confirmation}, . . . , {finite})
axm2 : eventOntology ∈ Ontology(Tags,Ps,Ev)
axm3−4 : classes(eventOntology) = Tags ∧ instances(eventOntology) = Ev
. . .

END

Listing 8: Context for event ontology instantiation

6.2 Step 2 - Behaviour Analysis definition (Fig. 2.(2))

The definition of the the analysis is composed of 2 phases. First, the terms defin-
ing the analysis are specified and then the predicate formed by the conjunction
of these conditions is parameterised by the domain ontology. This subsection is
divided accordingly and starts with the latter phase.

Domain-Specific Analysis Operator Definition. The theory for expressing
behavioural properties is presented in Listing 9. It corresponds to the predicate
operator in Fig. 2.(2). For example, REQ-4 is formalised using two opera-
tors, isNecFollowedByWD defining the WD condition of the second one defin-
ing the property analysis isNecFollowedBy . Indeed, isNecFollowedBy verifies
whether events annotated by tags in srcTg are always followed by events anno-
tated by tags in trgTg passing through the intermediate events annotated with
internalTg. It asserts that each EvtInst event annotated as srcTg is reachable
in the sense of is_Reachable predicate operator.
THEORY BehaviouralPropertiesTheory
IMPORT THEORY Theo4Reachability, OntologiesTheory
TYPE PARAMETERS St, Ev, Tg, Prop
OPERATORS
isNecFollowedByWD <predicate> (m : Mach(St, Ev), eo : Ontology(Tg, Prop, Ev),

srcTg : P(Tg), internalTg : P(Tg), trgTg : P(Tg), v : P(E × P(St × Z)))
direct def init ion

isWDOntology(eo) ∧ srcTg ∪ internalTg ∪ trgTg ⊆ cls(eo)∧
srcTg ̸= ∅ ∧ trgTg ̸= ∅ ∧ internalTg ̸= ∅∧
srcTg ∩ internalTg = ∅ ∧ trgTg ∩ internalTg = ∅∧
(∀ti · ti ∈ srcTg ∪ internalTg ∪ trgTg ⇒ insOfC(eo, ti) ̸= ∅)∧
v ∈ insOfC(eo, srcTg) → P(St × Z)∧
(∀i, t · i ∈ insOfC(eo, srcTg) ∧ t ∈ insOfC(eo, trgTg) ⇒

WD_reach(m, i, insOfC(eo, trgTg), insOfC(eo, internalTg), v(i)))
isNecFollowedBy <predicate> (m : Mach(St,E), eo : Ontology(Tg,Prop,Ev),

srcTg : P(Tg), internalTg : P(Tg), trgTg : P(Tg), v : P(Ev × P(St × Z)))
well−definedness isNecFollowedByWD(m, eo, srcTg, internalTg, trgTg, v)
direct def init ion

∀EvtInst · EvtInst ∈ insOfC(eo, srcTg) ⇒
Is_Reachable(m,EvtInst, insOfC(eo, trgTg),

insOfC(eo, internalTg), v(EvtInst))
END

Listing 9: Domain Behavioural Properties Theory

12 Mendil et al.

This operator has 6 arguments: m - machine to be analysed, eo - ontology to
represent the domain concepts and constraints, srcTg - source tags, internalTg
- transit tags, trgTg - target tags, and v - a list of variants. Note that insOfC
returns events annotated by tags. To ensure the correct application of this oper-
ator, we provide a WD condition: isNecFollowedByWD predicate. This operator
has six arguments similar to the previous operator. The direct definition of this
operator ensures the well-defined ontology (isWDOntology), reachability con-
ditions (WD_reach) and satisfies the given variant for each departing event.

Analysis Terms Definition Listing 10, based on EvtBTheory in Fig. 2.(2),
shows reachability theory where several operators are defined for analysing the
reachability properties. WD_reach operator is defined and its direct definition en-
sures that the machine m is well constructed (Machine_WellCons), the machine
invariants are preserved (Mch_INV), the target event is not the initialisation event
(Init(m)), the variant is defined for all reachable states.

Given a source event src, a set of intermediary events es, and a target event
trg, Is_Reachable(m, src, trg, es, v) holds if, when src is activated, then
some intermediate events in es may be observed finitely many times before trg
is activated.

THEORY Theo4Reachabi l i ty IMPORT THEORY EvtBTheory
TYPE PARAMETERS St, Ev
OPERATORS
next_states <expression> (m : M(St, Ev)) direct def init ion . . .
WD_reach <predicate> (m : M(St, Ev), src : Ev, trg : P, es : P(Ev), v : P(St × Z))

direct def init ion
Machine_WellCons(m) ∧ trg ⊆ Progress(m) ∧ src ∈ Event(m)∧
Inv(m) ◁ v ∈ Inv(m) → Z ∧ Mch_INV (m) ∧ es ⊆ Progress(m)

Init_Local_Inv <predicate> (m : M(St, Ev), src : Ev, lInv : P(St)) . . .
Local_Inv_Preserved <predicate> (m : M(St, Ev), initE : Ev, evs : P(Ev), lInv : P(St))

. . .
No_Exit <predicate> (m : M(St, Ev), yesE : P(Ev), noE : P(Ev), trg : P(Ev), v : P(St × Z))

. . .
TGMch_VARIANT <predicate> (m : M(St, Ev), v : P(St × Z), es : P(Ev)) . . .
TGMch_NAT <predicate> (m : M(St, Ev), v : P(St × Z), es : P(Ev)) . . .
Is_Reachable <predicate> (m : M(St, Ev), src : Ev, trg : Ev, es : P(Ev), v : P(St × Z))

well−definedness WD_reach(m, src, trg, es, v)
direct def init ion

Init_Local_Inv(m, src,Grd(m)[trg])∧
Local_Inv_Preserved(m, src, es,Grd(m)[trg])∧
No_Exit(m, es, Progress(m) \ (es ∪ src ∪ trg), trg, v)
TGMch_NAT (m, v, es) ∧ TGMch_V ARIANT (m, v, es)∧

END

Listing 10: Reachability Theory
The definition of Is_Reachable operator states that first, the src event

must imply either the guards of the events in es or the guard of the events
in trg (Init_Local_Inv). Second, the local invariant Local_Inv_Preserved
must be preserved by intermediary events. Note that the set Grd(m)[{trg}]
defined by the local invariant guarantees that the guard of the trg always holds.
Then, the definition excludes the events not in es (No_Exit operator). Last,
the intermediary events es must not be indefinitely active (variants operator
TGMch_NAT and TGMch_VARIANT).

Non-Intrusive Annotation-Based Domain-Specific · · · 13

The analysis is strong since it requires that the events imply the guards of the
target events. Without a loss of generality, we can apply this analysis to systems
not satisfying this condition, indeed by refinement we can address systems that
reach the wanted states after many steps; the refinement of the intermediary
events does not break the analysis.

6.3 Step 3 - Exporting Event-B models as instances of the
Meta-Event-B theory (Fig. 2.(3))

Each Event-B machine can be formalised as an instance of the Event-B meta-
theory (Machine Mi on Fig. 2.(A)) . To define an Event-B machine as an instance,
it is enough to instantiate (give values) the Machine(St, Ev) attributes at in-
stantiation (see Listing 2). The St type parameter is substituted by a Cartesian
product of the set types of ATMUserInterface machine state variables (14 in
total) and Ev by the set of the events of this machine.

Listing 11, corresponding to MiContext in Fig. 2.(3), shows an extract of
the ATMUserInterface machine exported as an instance of the meta-Event-B
theory. Guards and actions of the events are formalised, as instances, in the
Grd(ATM) and BAP(ATM) sets (axioms axm4 and axm5).

CONTEXT ATMmEBModel
EXTENDS ATMEnvironment, EventTagOntology
CONSTANTS ATM, init, istCrd,KBDStr, SCRStr, chnBrt, cnfKBDStr, cnfSCRStr,

chkStrCrt, chkStrWrg, dlvBnkNts
AXIOMS

axm1 : partition(Ev , {KBDStr}, {chnBrt}, {cnfKBDStr}, . . . , {chkStrWrg}, {dlvBnkNts})
axm2 :ATM ∈ Machine(STR × STR × STR × Z × BOOL × BOOL × BOOL × BOOL×

IPT_MOD × IRT_STS × Z × Z × BOOL × AMT ,Ev)
axm3 : Event(ATM) = Ev
axm4 : Grd(ATM) = {e 7→ (str 7→ scrReg 7→ kbdReg 7→ atp 7→ cnfSts 7→ valSts 7→ dlvSts 7→

isStrVis 7→ iptMod 7→ crdSts 7→ brt 7→ brtUpd 7→ nStr 7→ sum) |
(e = istCrd ∧ crdSts = OUT)∨
(e = KBDStr ∧ 0 ≤ atp ∧ atp < MAX_ATP ∧ iptMod = KBD ∧ crdSts = IN ∧ nStr = ⊥)∨
(e = chnBrt ∧ brtUpd ≤ MAX_BRT_UPD ∧ crdSts = IN)∨
(e = cnfKBDStr ∧ 0 ≤ atp ∧ atp < MAX_ATP ∧ iptMod = KBD ∧ crdSts = IN∧

cnfSts = ⊥ ∧ valSts = ⊥ ∧ nStr = ⊥) ∨ . . .}
axm5 BAP(ATM) = {e 7→ ((str 7→ 7→ sum) 7→ (strp 7→ . . . 7→ sump)) |

(e = KBDStr ∧ kbdRegp ∈ STR ∧ strp = kbdRegp ∧ brtUpdp = 0 ∧ nStrp = ⊤∧
scrReg 7→ atp 7→ . . . 7→ sum = scrRegp 7→ atpp 7→ . . . 7→ sump)∨

(e = cnfKBDStr ∧ atpp = atp + 1 ∧ cnfStsp = ⊤∧
str 7→ . . . 7→ sum = strp 7→ . . . 7→ sump)∨

(e = chnBrt ∧ brtp ∈ BRT_LVS ∧ brtUpdp = brtUpd + 1∧
str 7→ . . . sum = strp 7→ . . . sump) ∨ . . .}

THEOREMS
thm: check_Machine_Consistency(ATM)

END

Listing 11: Annotation and analysis context

6.4 Step 4 - Annotation & analysis (Fig. 2.(4))

The final step before checking the property is annotation. It links the domain
knowledge concepts and constraints to the design model. The events are as-
signed to tags satisfying the subsumption relation. For example, the cnfKBDStr
is assigned to textualConfirmation, confirmation and Tag.

14 Mendil et al.

The model events are annotated using the annotationDef relation. They are
related to the eventOntology via classInstances. Indeed, the events are in-
stances of the ontology classes of tags. In Listing 12, which materialises Analysis
Theorem in Fig. 2.(4), there are 3 main theorems isWDOntologyThm, vThm and
anaTh. The first proves that the eventOntology is well-defined as described in
Section 3.1. The second is important to establish the WD condition of the anal-
ysis operator; it ensures that variants are supplied for all events annotated with
input. The last theorem is the most important, it ensures the correctness of the
analysis performed by discharging the generated proof obligations associated to
theorems. The proof of application of the predicate operator isNecFollowedBy
states that the requirement REQ-4 is satisfied for the ATMUserInterface.

CONTEXT AnnotatedMachine
EXTENDS EventTagOntology,ATMmEBModel
CONSTANTS annotationDef, variantsDef
AXIOMS

axm1 :annotationDef = ({bounded} × {chnBrt}) ∪ ({inputByKeyboard} × {KBDStr}) ∪ . . .∪
({input} × {KBDStr ,SCRStr}) ∪ ({textualConfirmation} × {cnfKBDStr})∪
({confirmation} × {cnfSCRStr , cnfKBDStr})∪
({interaction} × {KBDStr ,SCRStr , cnfKBDStr , cnfSCRStr}) ∪ ({tag} × Ev

axm2 : classInstances(eventOntology) = annotationDef
axm3 : variantsDef = {KBDStr 7→ {p 7→ bright 7→ ck 7→ cs 7→ v

| p 7→ bright 7→ ck 7→ cs ∈ State(ATM) ∧ v = MAX_BRT_UPD − bright}}∪
{SCRStr 7→ {p 7→ bright 7→ ck 7→ cs 7→ v

| p 7→ bright 7→ ck 7→ cs ∈ State(ATM) ∧ v = MAX_BRT_UPD − bright}}
THEOREMS

isWDOntologyThm : isWDOntology(eventOntology)
vThm : variantsDef ∈ annotationDef [{input}] → P(State(ATM) × Z)
anaThm : isNecFollowedBy(ATM , eventOntology,

{input},{bounded},{confirmation, abortion}, variantsDef)
END

Listing 12: Annotation and analysis context

7 Assessment

This section discusses the evaluation of the framework described in section 4
corroborated by the observations of section 6. All the models are available at
https://www.irit.fr/~Ismail.Mendil/recherches.

Principled Methodology vs. Ad hoc Analysis. The prime objective of
the methodology is to define a set of principles that can be used for describ-
ing domain-specific behavioural analyses. A direct approach would be to follow
a shallow paradigm analysis, which consists of incorporating the analysis ele-
ments into the model. The methodology provides two modules: (1) the ontology
modelling language which allows defining domain knowledge as an ontology, and
(2) the Meta-Event-B modelling language which provides a handle to reason on
Event-B concepts. Furthermore, refinement is used when possible to overcome
the definition of complex analyses (see. section 6.2).

Domain-Specific Analyses and Reusability & Sharability. The abil-
ity to parameterise the behavioural analyses with domain-specific constraints
and concepts is a significant aspect of the analyses discussed in this article.
This enables precise analyses based on concepts and rules drawn from a domain

Non-Intrusive Annotation-Based Domain-Specific · · · 15

knowledge description. This was the case for the analysis presented in this arti-
cle, which is based on an event ontology. The framework architecture (see Fig.
2) improves the reusability and shareability of the analysis.

The Methodology Is Non-Intrusive. Integrating domain knowledge con-
cepts and constraints directly into the system model could be one approach to
investigating the behaviour properties. Such an approach suffers from a lack of
generalisation and is intrusive when modelling a system is mixed with analysis
details and it may not be scalable. The approach presented in this article al-
lows to avoid these difficulties; indeed, the methodology uses the model as an
argument, and the annotation is not intrusive.

Proof-Based Verification. Another approach would be to boil down the
domain knowledge behaviour properties into temporal properties and then use
model checking to verify the resulting set of temporal properties. The model is
passed as an argument to the analysis procedure alongside the domain knowl-
edge model, which has the advantage of being non-intrusive. Yet, this method
meets quickly its limitation when the systems are large and complex due to the
classical problem of state explosion. Furthermore, manual translation of domain
knowledge constraints is fastidious. The methodology proposed in this article
goes beyond this limitation thanks to the proof-based verification. Indeed, the
analysis is established by proving a predicate operator where variant and invari-
ant proof obligations are discharged.

Proof & Modelling Effort Reduction. The methodology proposed in
this article reduces proof effort by factorising out common parts such as the proof
of the well-definedness analysis and the definition of a collection of lemmas useful
at the model side. In addition, the framework components are described once
and for all, and they are only proved before being deployed and used for multiple
system models. All the proofs performed on the theory side (see Fig. 2.(A)) are
achived once and for all. They are reused at the machine instance level.

8 Conclusion

In this article, we addressed the issue of analysing domain-specific behavioural
properties over formal models of systems. The proposal begins by identifying
several intermediate subgoals for achieving the main goal and consists of an in-
tegrated framework and methodology centred around the Event-B method for
investigating non-intrusively behavioural properties mined from domain knowl-
edge. Several challenges are identified: (1) formalising domain knowledge, (2)
accessing and manipulating Event-B concepts (3) defining domain-specific be-
havioural analyses, and (4) annotating and analysing Event-B models. Solutions
for all subgoals are proposed in the Event-B setting, indeed (1) domain knowl-
edge is formalised using an ontology modelling language; (2) meta-Event-B is
used as a handle for expressing properties on Event-B machines; (3) a method-
ology for formalising analyses based on the two former theories is presented;
and (4) annotating Event-B models for analysis purposes. The methodology is
illustrated through a concrete analysis applied to a real-world case study.

16 Mendil et al.

In future work, we plan to apply the framework to other case studies and gen-
eralise the ontology of events to include associations between events. In addition,
we believe that the approach can be exploited for certification purposes. Indeed,
a non-intrusive analysis may be carried out for such purposes if certification
standards are formalised as theories formalising certification properties.

References
1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge

University Press (2010)
2. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:

Proposals for mathematical extensions for Event-B. Tech. rep. (2009)
3. Aït Ameur, Y., Nakajima, S., Méry, D.: Implicit and Explicit Semantics Integration

in Proof-Based Developments of Discrete Systems. Springer (2021)
4. Aït Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system

development. Sci. Comput. Program. 121, 100–127 (2016)
5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:

Coq’Art The Calculus of Inductive Constructions (2010)
6. Bjørner, D.: Software Engineering 3 - Domains, Requirements, and Software De-

sign. Texts in Theoretical Computer Science. An EATCS Series, Springer (2006)
7. Bjørner, D.: Manifest domains: analysis and description. Formal Aspects Comput.

29(2), 175–225 (2017)
8. Bjørner, D.: Domain analysis and description principles, techniques, and modelling

languages. ACM Trans. Softw. Eng. Methodol. 28(2), 8:1–8:67 (2019)
9. Butler, M., Maamria, I.: Practical Theory Extension in Event-B, pp. 67–81.

Springer (2013)
10. Hoang, S., Schneider, S.A., Treharne, H., Williams, D.M.: Foundations for using

linear temporal logic in event-b refinement. Formal Aspects of Computing 28,
909–935 (2016)

11. Hoang, T.S., Abrial, J.: Reasoning about liveness properties in event-b. In: Qin,
S., Qiu, Z. (eds.) 13th International Conference ICFEM. LNCS, vol. 6991, pp.
456–471. Springer (2011)

12. Mendil, I., Aït Ameur, Y., Singh, N.K., Méry, D., Palanque, P.A.: Leveraging event-
b theories for handling domain knowledge in design models. In: Qin, S., Woodcock,
J., Zhang, W. (eds.) 7th International Symposium, SETTA. LNCS, vol. 13071, pp.
40–58. Springer (2021)

13. Mendil, I., Aït Ameur, Y., Singh, N.K., Méry, D., Palanque, P.A.: Standard
conformance-by-construction with event-b. In: Lluch-Lafuente, A., Mavridou, A.
(eds.) 26th International Conference, FMICS. LNCS, vol. 12863, pp. 126–146.
Springer (2021)

14. Mossakowski, T.: The Distributed Ontology, Model and Specification Language -
DOL, LNCS, vol. 10644, pp. 5–10. Springer (2016)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

16. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) 11th International Conference CADE. LNAI, vol. 607, pp. 748–752.
Springer-Verlag (1992)

17. Rivière, P., Singh, N.K., Aït Ameur, Y.: EB4EB: A Framework for Reflexive Event-
B. In: 26th International conference ICECCS). pp. 71–80 (2022)

18. Schneider, S.A., Treharne, H., Wehrheim, H.: The behavioural semantics of event-b
refinement. Formal Aspects of Computing 26, 251–280 (2012)

