Incomplete Hippocampal Inversion and hippocampal subfield volumes: Implementation and inter-reliability of automatic segmentation
Agustina Fragueiro, Giorgia Committeri, Claire Cury

To cite this version:

HAL Id: inserm-04085099
https://inserm.hal.science/inserm-04085099
Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTRODUCTION

The incomplete hippocampal inversion (IHI) is an atypical anatomical pattern [1], that is more prevalent in epilepsy and it is a factor of susceptibility for hippocampal sclerosis [2]. However, the hippocampus consists of distinct and functionally segregated subfields. Although their segmentation is challenging due to the small size and lack of contrast, there are algorithms allowing their automatic segmentation.

Aims

→ Testing the inter-method (i.e. ASHS and FreeSurfer) reliability for volumetric analysis using automatic segmentation of hippocampal subfields.

→ Exploring the relationship between IHI scores and hippocampal subfields’ volumes extracted with both ASHS and FreeSurfer methods.

METHOD AND MATERIALS

Participants. Preprocessed 3T T1w-MRI scans belonging to a total of 390 healthy young adults (age=26-30, 217 F) have been downloaded from the Human Connectome Dataset WU-Minn [3].

As subfields definition differed among methods, we first combined the subfields by summing their volumes to obtain four common subfields: CA1, CA2/3, subiculum (including presubiculum and parasubiculum), tail.

RESULTS

• Correlations between volumes obtained through both segmentation methods were significant for all common subfields and whole hippocampus (all p<0.001).

• Significant differences between volumes extracted with ASHS vs FreeSurfer (all p<0.001).

Two regression models including IHI scores as dependent variable and subfield volumes as independent variables:

<table>
<thead>
<tr>
<th>Volumes extracted with ASHS:</th>
<th>Volumes extracted with FreeSurfer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Model significant bilaterally (Left: R²=0.337, p=0.014; Right: R²=0.508, p=0.027).</td>
<td>• Model significant bilaterally (Left: R²=0.537, p=0.014; Right: R²=0.508, p=0.027).</td>
</tr>
<tr>
<td>• Smaller CA2 (L: β=-0.308, p=0.001; R: β=-0.26, p=0.001) and CA1 (L: β=-0.174, p=0.004; R: β=-0.254, p=0.001) volumes were associated to IHI severity.</td>
<td>• Smaller CA1 (L: β=-0.477, p=0.001; R: β=-0.435, p=0.001) and bigger subiculum (L: β=-0.445, p=0.001; R: β=0.308, p=0.001) volumes, both of them exclusively at the level of the hippocampal body, were associated to higher IHI scores.</td>
</tr>
</tbody>
</table>

Although volumes extracted from common subfields differed among methods due to the different atlas used, they highly correlated between methods. Higher IHI scores were associated to bigger subiculum and smaller CA volumes.

References