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Mass spectrometry-based proteomics in clinical practice 
amyloid typing: state-of-the-art from a French nationwide 
cohort

Amyloidosis refers to a large spectrum of diseases, all 
characterized by the deposition of extracellular misfolded 
proteins in the form of insoluble highly ordered amyloid 
fibrils in one (localized amyloidosis) or multiple tissues 
(systemic amyloidosis).1-3 Amyloid deposits progressively 
disrupt tissue structure and exert a toxic effect on the ad-
jacent cells that ultimately result in organ dysfunction. To 
date, 36 different proteins are known to form amyloid fi-
brils in humans.1 The identification of the causal protein 
is of paramount importance for patient management be-
cause effective treatments are now available, especially 
for the main amyloid types derived from immunoglobulin 
light chain (AL) and transthyretin (ATTR).2 
Although there is a predilection for particular organs de-
pending on the amyloid type, clinical manifestations are 
heterogeneous and may overlap between the different 
types.2,3 Therefore, determination of the amyloid type can-
not rely on the sole clinical findings. Traditionally, amyloid 
typing is performed using immunofluorescence (IF) on 
frozen sections and immunohistochemistry (IHC) on paraf-
fin sections. Interpretation of antibody labeling with mod-
ified proteins is often challenging despite experience.3-5 
Indeed, commercial antibodies are not optimized for rec-
ognizing mutant and truncated amyloid proteins and the 
β-pleated conformation may elicit non-specific positivity. 
Therefore, laser microdissection from formalin-fixed paraf-
fin-embedded (FFPE) tissue combined with tandem mass 
spectrometry (LMD-MS/MS) has been developed and pro-
gressively implemented in routine practice.6-13 The rationale 
for the application of this method is based on the relative 
abundance of amyloid protein that usually corresponds to 
one of the dominant proteins within the studied biopsy 
sample.6-13 In recent years, MS-based proteomics has be-
come the reference method because of its excellent 
identification capacity.6-13 However, its performance on 
various tissues/organs remains still limited to a few expert 
centers worldwide.6-13 In the present study, we document 
our experience of amyloid typing by LMD-MS/MS, over a 
10-year period.  
We conducted a retrospective study including 833 amy-
loidosis specimens retrieved from our collection from Ja-
nuary 2010 to Sept 2021. The diagnosis of amyloidosis was 
established on biopsy specimens using Congo red (CR) 
staining. As Vrana et al. in their pioneering report in 2009, 
we studied two independent sets of amyloidosis speci-
mens.6 The first set was a training set that consisted of 

92 tissue specimens (90 patients, 67.6±14.0 years, 29 fe-
male[F]/61 male[M]). Each case of this set was well clas-
sified using the IF/IHC method and the identified amyloid 
type was in keeping with the extensive clinical, biological, 
genetic and imaging workup. The training set included 42 
ATTR, 38 AL (35 λ, 3 k) and 12 AA amyloidosis. The second 
set was a validation set that consisted of 741 tissue speci-
mens (686 patients, 68.6±13.3 years, 249 F/437 M). For 
each case, LMD-MS/MS was indicated because of inad-
equate or absence of frozen sample available for IF, 
negative IF/IHC, equivocal IF/IHC, and IF/IHC inconsistent 
with clinical, biological, genetic and imaging investiga-
tions. Patient consent was obtained according to the In-
stitutional Review board of CHU de Toulouse. 
We used a previously established proteomics method.13,14 

For each sample, a 10 µm-thick section of FFPE tissue was 
mounted on slides (Expression Pathology, USA) and 
stained with CR (Merck, Germany). One hundred thousand 
µm2 of deposits were selected by laser microdissection 
under fluorescent light (Leica 6500, Germany). Proteins 
were extracted from the collected material in ammonium 
bicarbonate buffer, reduced with dithiothreitol, and alky-
lated with iodoacetamide. Then, proteins were digested 
into peptides with trypsin (SIGMA, France) and analyzed 
by nano-liquid chromatography (nanoLC) coupled to tan-
dem MS (LMD-MS/MS) using an Ultimate 3000 RSLCnano 
system (Dionex, Netherlands) coupled to an LTQ-Orbitrap 
Velos or to a Q-Exactive Plus mass spectrometer (Thermo 
Fischer Scientific, Germany). Data were processed with 
Mascot against human entries of the SwissProt protein 
database. Validation of results was performed through a 
false discovery rate set to 1% at protein and peptide se-
quence match levels determined by target decoy search 
using the in-house-developed Proline software 
(http://proline.profiproteomics.fr/). The spectral count 
metrics (number of MS/MS spectra) was used to rank the 
proteins according to their relative abundance in the 
sample. The most abundant protein identified was con-
sidered to be the causative protein. This allowed us to de-
termine the amyloid subtype and the presence/absence 
of four proteins usually associated with amyloid deposits: 
serum amyloid-P component (SAP), apolipoprotein E 
(ApoE), apolipoprotein A4 (ApoA4), and apolipoprotein A1 
(ApoA1).6,15 A minimum number of four MS/MS spectra per 
protein was considered clinically valid.  
Univariate testing was performed using Fisher exact test, 
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Table 1. Amyloid types identified by mass spectrometry and their frequency (N=705).

Type Precursor protein N % Age in years Sex, F/M

AL* Immunoglobulin light chain 407# 57.7 67.3±11.9 171/236

ATTR Transthyretin 182 25.8 76.6±10.9 36/146

AA Serum amyloid A 43 6.1 63.0±15.7 17/26

AApoAI Apolipoprotein A I 16 2.3 53.3±10.3 9/7

ASem1 Semenogelin 1 12 1.7 67.1±5.0 0/12

AApoAIV Apolipoprotein A IV 8 1.1 67.1±11.5 2/6

AFib Fibrinogen α 6 0.9 61.0±12.4 2/4

AKRT5-14 Keratin 5 and keratin 14 4 0.6 60.3±12.1 3/1

ALac Lactoferrin 4 0.6 41.5±27.6 4/0

BGH3
Transforming growth factor-β-

induced protein ig-h3
4 0.6 64.5±9.7 2/2

AIns Insulin 4 0.6 37.5±13.4 2/2

ACal Calcitonin 4 0.6 47.5±6.4 2/2

AApoCII Apolipoprotein C II 3 0.4 74.7±6.1 1/2

Aβ2M β2-microglobulin 2 0.3 53±5.7 1/1

APTH Parathyroid hormone 2 0.3 52.5±6.4 1/1

AApoAII Apolipoprotein A II 1 0.1 52 0/1

ALECT2
Leukocyte chemotactic  

factor-2
1 0.1 67 0/1

AANF Atrial natriuretic factor 1 0.1 74 1/0

AH Immunoglobulin heavy chain 1 0.1 70 1/0

*Co-deposition of a heavy chain (IGG, IGA, IGM or IGD) was found in 20% of cases; #194 k and 213 λ. F: female; M, male.

with Benjamini-Hochberg adjustment for multiple com-
parisons. Multivariate adjustment was done using multi-
variate logistic regression with age, sex and tissue origin 
explicative covariables. 
In the training set, we found that LMD-MS/MS success-
fully identified the amyloid type in all cases and the con-
cordance rate between LMD-MS/MS and IF/IHC was of 
100%. In the validation set, the indications of proteomic 
analysis were in order of frequency: absence of frozen 
sample available for IF (70.5%), equivocal IF/IHC (15.7%), 
negative IF/IHC (9.9%), and inconsistent result (3.9%). 
LMD-MS/MS successfully identified the amyloid protein 
in 95.0% with 19 different amyloid types. The main amy-
loid types were AL (n=407), ATTR (n=182) and AA (n=43) 
accounting for 89.6% of our cohort. The patient demo-
graphics and the frequency of the 19 amyloid types are 
reported in Table 1. The tissue/organ tropism and the tis-
sue/organ amyloid protein identification rate are detailed 
in Figure 1. Specific analysis of the AL (n=101) and ATTR 

(n=58) subgroups with equivocal or negative IHC/IF re-
vealed false-negative and false-positive staining in 48.5% 
and 41.5% for immunoglobulin light chain antibodies and, 
in 12.0% and 56.8% for TTR antibody, respectively. The uni-
versal amyloid signature SAP/ApoE/ApoA4 was present in 
81.6% of cases with an overrepresentation of ApoA1 in AL 
amyloidosis compared to ATTR and AA amyloidosis (64.3% 
vs. 27.0% and 29.3% respectively, P<0.001), and an under-
representation of ApoA4 in AA amyloidosis compared to 
AL and ATTR amyloidosis (56.1% vs. 91.6% and 90.4% re-
spectively, P<0.001), that persisted after adjustment for 
age, sex and organ/tissue (P<0.001). 
Overall, our study, based on one of the largest cohort ever 
reported,6-13 confirms that MS-based proteomics after 
laser microdissection is the new gold standard for typing 
amyloidosis. In the literature, the identification rate of the 
amyloid protein ranged from 85% to 100%. In the largest 
series by the Mayo Clinic, Rochester, USA, 21 amyloid 
types were detected, the frequency of AL (58.9%) and 
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Figure 1. Tissue/organ tropism and identification rate of the amyloid protein per tissue/organ. The tissue/organ distribution of 
the 19 amyloid types identified in the present study is illustrated in decreasing order of frequency. Among the 26 tissue/organs 
analyzed herein, the 5 most commonly (67.5% of cases) analyzed anatomic sites were secondary salivary glands (21.0%), heart 
(17.2%), lung (10.8%), gastrointestinal tract (9.4%), and kidney (9.1%). Fat aspirate/biopsy was not analyzed in this series because 
this procedure is not as commonly performed in France as in other countries. The diversity of the amyloid types was greater in 
the kidney and the heart with 10 and 6 different types identified, respectively. The amyloid protein identification rate (IR) is re-
ported for each of the 26 tissues/organs. CNS: central nervous system; GI tract: gastrointestinal tract; PTH: parathyroid hormon.

ATTR (28.4%) being quite similar to that found in our co-
hort (Table 1).11 We confirm that AL patients were also a 
decade younger than ATTR patients (Table 1).11 For the re-
maining types, the main difference was represented by 
the lower proportion of ALECT2, the rarity of which in our 
cohort being explained by ethnic bias as >92% of ALECT2 
patients are Hispanic and particularly Mexican.3,11 As ex-
pected, the present study demonstrates again that IHC/IF 
alone may lead to misdiagnosis, especially for ATTR and 
AL.4,5 
A key finding of our study was the significant differential 
expression of ApoA1 and ApoA4 between AL, ATTR and AA 
amyloidosis, suggesting a singular implication of these 
proteins in the amyloid formation mechanisms. 
In conclusion, in addition to its reliability, the several ad-
vantages of MS over IHC/IF are now well documented: i) 
no frozen tissue sample required, ii) very small amounts 
of material needed, easily obtained from routine biopsy 
sampling, iii) detection in a single assay of all amyloid 
types and, iv) determination of the organ tropism for each 
amyloid protein that can be visualized in a comprehensive 
map.  
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