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Abstract 24 

The evidence for an association between Coxsackievirus B (CVB) infection, pancreatic islet 25 

autoimmunity and clinical type 1 diabetes is increasing. Results from prospective cohorts and 26 

pancreas histopathology studies have provided a compelling case. However, the demonstration of 27 

a causal relationship is missing, and is likely to remain elusive until tested in humans by avoiding 28 

exposure to this candidate viral trigger. To this end, CVB vaccines have been developed and are 29 

entering clinical trials. However, the progress made in understanding the biology of the virus and 30 

in providing tools to address the long-standing question of causality contrasts with the scarcity of 31 

information about the anti-viral immune responses triggered by infection. Beta-cell death may be 32 

primarily induced by CVB itself, possibly in the context of poor immune protection, or secondarily 33 

provoked by T-cell responses against CVB-infected beta cells. The possible involvment of epitope 34 

mimicry mechanisms skewing the physiological anti-viral response toward autoimmunity has also 35 

been suggested. We here review the available evidence for each of these three non-mutually 36 

exclusive scenarios. Understanding which ones are at play is critical to maximize the odds of 37 

success of CVB vaccination, and to develop suitable tools to monitor the efficacy of immunization 38 

and its intermingling with autoimmune onset or prevention. 39 

 40 

Key Words: beta cells, Enterovirus, immune evasion, mimicry, T cell, vaccine. 41 

 42 

  43 
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I. Introduction 44 

The most outstanding question in the field of type 1 diabetes (T1D) concerns the identification of 45 

environmental triggers (1), a conundrum shared with many other autoimmune diseases. These 46 

environmental triggers are gaining importance, as the steady progression of T1D incidence in the 47 

last 50 years cannot be accounted for by a genetic drift of the human population. Rather, the 48 

relative weight of predisposing gene variants (mostly mapping to HLA Class II loci) is decreasing. 49 

Indeed, T1D patients diagnosed in more recent years carry HLA haplotypes considered protective 50 

to a larger extent than patients diagnosed decades ago, while high-risk haplotypes are becoming 51 

less common (2). This observation indirectly suggests that environmental pressure is increasing. 52 

Moreover, these environmental factors exert their role very early in life, as the majority (~64%) of 53 

children that later develop T1D display their first seroconversion for islet auto-antibodies (aAbs) 54 

during the first 2 years of life (3,4). 55 

Given the heterogeneity of disease, mostly related to age (5), a universal environmental trigger 56 

underlying all T1D cases is unlikely to exist. Nonetheless, the strongest evidence for an association 57 

with T1D points to Enterovirus infection, particularly to Coxsackieviruses B (CVBs) (6-8). This 58 

echoes the robust evidence linking Epstein-Barr virus infection with multiple sclerosis (9-12). We 59 

will discuss current evidence for the association between CVB and T1D, and the possible 60 

pathogenic mechanisms at play. We contend that a better knowledge of such mechanisms is 61 

essential to inform the design of T1D prevention trials based on CVB vaccination (13,14).  62 

 63 

II. Common features of putative diabetogenic viruses 64 

Many different viruses have been implicated as candidate triggers for T1D. These include 65 

Enterovirus (both CVB and Echovirus), Parechovirus and Rotavirus. The strength of evidence for 66 
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each of those has been recently reviewed (15), but it is important to note that they share four key 67 

features: 68 

1) They are responsible for infections during the first years of life, which may be in line with the 69 

early timing of aAb seroconversion in most pediatric T1D progressors (3,4). CVB infections show 70 

some seasonal trends, being more common during the summer and early fall. 71 

2) These infections are highly prevalent, with >95% of the general population being Enterovirus 72 

seropositive. It thus needs to be explained how such prevalent infections may trigger T1D in only 73 

few individuals. As discussed, genetic susceptibility, infection timing, viral clearance vs. 74 

persistence and anti-viral immune responses may be at play.  75 

3) They are transmitted mainly through the oro-fecal route and, to a lesser extent, through the 76 

respiratory route. This feature is relevant because pancreatic lymph nodes drain not only the 77 

pancreas itself but also parts of the intestinal tract (16), thus providing an ideal cross-road for 78 

immune cells and viruses to reach the pancreas. 79 

4) They can infect beta cells. They can thus exert their pathogenic mechanisms on the same cells 80 

that are targeted by T1D autoimmunity. 81 

CVBs are classified into 6 serotypes (1 to 6) and belong to the family Picornaviridae and the genus 82 

Enterovirus, which also includes Poliovirus and Echovirus. They are small non-enveloped single-83 

stranded RNA viruses that initially replicate in the submucosal lymph tissue of the distal small 84 

bowel, and of the upper respiratory tract when transmitted by aerosols. Although they usually 85 

cause asymptomatic infections, further dissemination to target organs can occur following a 86 

secondary viremia. This can occasionally result in severe diseases, such as meningitis, 87 

encephalitis, myocarditis, and systemic neonatal infections. Some of these clinical conditions, e.g. 88 

myocarditis, exemplify the capacity of CVBs to cause persistent (chronic) infections (8,17-19).  89 
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 90 

III. Association between CVB infection and T1D: prospective and histopathology studies 91 

The association between CVB infection and T1D is supported by temporal correlations from 92 

prospective cohorts and by spatial correlations documented in histopathological studies.  93 

Temporal correlations 94 

A 2011 meta-analysis of 26 case-control studies reported a significant association between 95 

Enterovirus infection and islet autoimmunity (odds ratio, OR 3.7) or clinical T1D (OR 9.8) (20), 96 

although some publication bias in favor of positive results is likely. The CVB serotypes more 97 

frequently associated with T1D are CVB1 (21) and CVB4 (22), while some others, e.g. CVB3 and 98 

CVB6, have occasionally been suggested to be protective (21). Associations between CVB 99 

exposure (i.e. detection of CVB RNA in stools) and seroconversion and T1D progression were 100 

provided by prospective cohorts such as the Finnish T1D Prediction and Prevention (DIPP; 101 

https://dipp.fi) and The Environmental Determinants of Diabetes in the Young (TEDDY; 102 

https://teddy.epi.usf.edu) studies. Based on serological evidence, i.e. neutralizing antibody (Ab) 103 

titers against different CVB serotypes, the group of H. Hyöty (21) reported that the prevalence of 104 

anti-CVB1 Abs was higher in children later seroconverting for islet aAbs, while that of anti-CVB3 105 

and anti-CVB6 Abs was lower. When considered altogether, a positive CVB1 serology and a 106 

negative CVB3/CVB6 serology conferred a 2.5 OR for subsequent islet aAb seroconversion. A 107 

protective role for maternal Abs was further suggested, as a negative CVB1 serology in cord blood 108 

and subsequent CVB1 seroconversion by 18 months of age was associated with a similar OR of 109 

2.6. Given its focus on preclinical stage 1 (i.e. asymptomatic islet autoimmunity with normal 110 

insulin secretion), this study suggested that CVB exposure may be associated with aAb 111 

seroconversion rather than clinical progression. This is in line with previous studies from Cuba 112 

https://dipp.fi/
https://teddy.epi.usf.edu/
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reporting an association between epidemic Echovirus infection and aAb seroconversion in the 113 

convalescent phase (23-25). This possibility was confirmed by a recent TEDDY study based on 114 

the longitudinal analysis of the fecal viral metagenome enhanced through a preliminary culture 115 

step (22). The risk of future aAb seroconversion was not associated with short and independent 116 

infections, but rather with prolonged infections with the same Enterovirus B (mostly CVB4) 117 

serotype, with a risk increase of ~20% at each positive stool sample.  118 

Spatial correlations 119 

A spatial correlation between CVB infection and insulitis (i.e. the immune infiltration of islets) 120 

has been highlighted by immunohistochemistry (26-29), reverse-transcription polymerase chain 121 

reaction (29) and in-situ hybridization (30) using tissue specimens available through the network 122 

for Pancreatic Organ Donors with T1D (nPOD; https://www.jdrfnpod.org), from brain-dead organ 123 

donors; the UK Exeter Archival Diabetes Biobank (EADB; 124 

https://pancreatlas.org/datasets/960/overview), from autopsy material; and the Norwegian 125 

Diabetes Virus Detection Study (DiViD; https://www.oslodiabetes.no/diabetes-virus-detection-126 

study-divid), from living donors (29,31). Immunohistochemistry for the Enterovirus viral protein 127 

(VP)1 revealed a co-localization with T-cell infiltration and/or HLA Class I hyper-expression, 128 

which are the two hallmarks of insulitis. When considering these immunohistochemistry studies 129 

altogether (26-29), VP1+ islets were detected in ~70% of T1D cases and 14% of non-diabetic 130 

controls. All these studies also conclude that only a fraction (7-29%) of islets with residual insulin-131 

containing cells are VP1+, suggesting that persistent low-grade rather than short-lived high-grade 132 

infections may occur, probably long before T1D clinical onset (13).  133 

 134 

IV. Possible mechanisms of persistent CVB infection 135 

https://www.jdrfnpod.org/
https://www.oslodiabetes.no/diabetes-virus-detection-study-divid
https://www.oslodiabetes.no/diabetes-virus-detection-study-divid
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As discussed above, the small fraction of VP1+ cells in the pancreas of T1D patients 136 

(corresponding to the late stage 3 disease in natural history) together with the temporal association 137 

between prolonged fecal CVB shedding and aAb seroconversion (i.e. early stage 1 disease) suggest 138 

a scenario of prolonged CVB infections. On the other hand, the few cases of aAb+ organ donors 139 

analyzed to date did not show evidence of acute, extensively lytic CVB infection (5), although also 140 

in this case we only have a ‘snapshot’ available, which may date well beyond the time of CVB 141 

encounter. It should be noted that this does not exclude the possibility that a more limited lysis of 142 

CVB-infected beta cells may occur. The TEDDY stool virome study (22) further indicates that 143 

these prolonged CVB infections are the result of viral persistence (i.e. chronic infection following 144 

a single viral encounter) rather than recurrence (i.e. multiple viral encounters). 145 

The viral mechanisms leading to persistent CVB infections have been recently reviewed (8). A 146 

first mechanism involves repeated CVB seeding from infection reservoirs in the gut (mostly 147 

duodenal epithelial cells), pancreas (ductal and beta cells) and blood cells (mostly antigen-148 

presenting cells, APCs) (32,33), through infections that can be either cytolytic (with release of new 149 

virions) or not (with virions released through other mechanisms, e.g. extracellular vesicles) (34). 150 

A predisposing allele of the T1D risk gene IFIH1 (interferon induced with helicase C domain 1; 151 

coding for the melanoma differentiation associated protein 5 MDA5) may favor CVB persistence 152 

in the blood (33). Reservoirs of viral persistence are also established in microvascular endothelial 153 

cells, without causing overt cytopathic effects but inducing the upregulation of adhesion molecules 154 

that may contribute to leukocyte recruitment (35). 155 

A second mechanism exploits a naturally occurring deletion in the 5ʹ non-coding region of the 156 

viral genome, which leads to reduced viral replication and persistent low-grade infection (36,37). 157 
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Such deletions might be favored by the high mutation rate of CVBs, due to the lack of proofreading 158 

in their RNA-dependent RNA polymerase (38). 159 

A third mechanism may be a non-lytic CVB egress pathway active in beta cells. This is mediated 160 

by extracellular vesicles, which also protect CVB from neutralizing Abs, thus also providing an 161 

immune evasion mechanism (34). Another immune-evading CVB transfer mechanism via cell 162 

protrusions has been described in other cells (39). 163 

Immune mechanisms may also participate, and include innate type I interferon (IFN, mainly IFN-164 

α) responses (40) (another hallmark of T1D, starting from its early preclinical stages) (41,42) 165 

limiting viral replication and beta-cell lysis (43); and insufficient adaptive anti-viral responses that 166 

do not clear the virus, as discussed below. These mechanisms may also engage a vicious cycle, 167 

with persistent infection promoting a prolonged immune activation favoring loss of tolerance, 168 

possibly through re-iterative priming of autoimmune T cells. Figure 1 summarized the timeline of 169 

the immune responses triggered by CVB infection. 170 

 171 

V. From association to causality: possible diabetogenic mechanisms of CVB infection 172 

With these points in mind, three non-mutually exclusive mechanisms can be proposed to explain 173 

the triggering effect of CVB infection on islet autoimmunity (Figure 2):  174 

1) Direct (primary) pathogenic effects of CVB on infected beta cells. These may imply poor 175 

immune responses unable to efficiently clear the virus. 176 

2) Indirect (secondary) pathogenic effects of anti-viral immune responses on infected beta cells, 177 

e.g. involving cytotoxic CD8+ T-cell-mediated beta-cell lysis, among others. These may imply 178 

strong immune responses leading to viral clearance. 179 
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Both mechanisms would lead to the release of beta-cell antigens in a pro-inflammatory 180 

environment, which may subsequently trigger islet autoimmunity. 181 

3) Epitope mimicry. The physiological antiviral immune response may turn into a pathological 182 

autoimmune response against beta cells due to T-cell cross-reactivity between homologous CVB 183 

and beta-cell epitopes.  184 

In the following sections, we will review the level of evidence for each of these mechanisms. 185 

 186 

VI. Direct pathogenic effects of CVB on infected beta cells. 187 

CVB enters cells primarily by binding to surface Coxsackievirus and Adenovirus Receptor (CAR). 188 

Both human and murine alpha and beta cells express CAR and are CVB-permissive (43). 189 

Moreover, beta cells selectively express a CAR isoform (CAR-SIV), which is localized mainly in 190 

secretory granules (44). Hence, these granules may be hijacked by CVB during exocytosis and 191 

subsequent recycling, possibly contributing to the high sensitivity of human beta cells to CVB 192 

infection. An increased secretory demand on beta cells (e.g. during growth spurts) may thus 193 

increase their susceptibility to infection, and the infectious and metabolic stress may synergize 194 

toward beta-cell demise.    195 

Mouse studies 196 

Several in-vivo experimental models document the lytic effect of CVB on beta cells and its 197 

capacity to trigger diabetes without engaging potent anti-viral T-cell responses. These effects are 198 

dependent on the CVB serotype and the genetic background of the murine host. For instance, 199 

infection of C57BL/6 mice with CVB3/4 does not induce diabetes, while it does in 25% of infected 200 

SJL and CD1 hosts, independently of T cells (45,46). This variable susceptibility is reminiscent of 201 

that observed with experimental CVB3-induced myocarditis (47). Most strains develop a severe 202 

acute myocarditis, but completely recover; few others develop chronic myocarditis associated with 203 
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anti-cardiac myosin heavy chain aAbs that are also found in humans. This disease can be 204 

recapitulated by immunizing mice with cardiac myosin. 205 

A direct lytic effect is also suggested in the multiple low-dose streptozotocin (LD-STZ) model, 206 

which triggers autoimmunity by inducing a moderate beta-cell lysis that releases autoantigens in 207 

an inflammatory environment. While a single LD-STZ injection was not diabetogenic, its 208 

combination with CVB3/4/5 inoculation induced hyperglycemia in CD1 mice (48,49). Moreover, 209 

only a peri-islet insulitis pattern was observed (49), suggesting an accessory role for T cells in 210 

mediating beta-cell destruction.  211 

Humanized immunodeficient mouse models further highlighted the beta-cell-lytic effect of CVB 212 

infection. These models are based on NOD/scid/gamma (NSG) mice deprived of endogenous islets 213 

by high-dose STZ or diphtheria toxin (DT) treatment (via a rat insulin promoter/DT-receptor 214 

transgene) and grafted with human islets (50,51). Subsequent CVB4 infection led to 215 

hyperglycemia in 50% of animals 28 days later. Hyperglycemia was associated with CVB4 RNA 216 

and protein persistence in transplanted islets, increased endoplasmic reticulum (ER) stress and a 217 

type I IFN gene signature. Notably, pancreas histopathology revealed reduced insulin content but 218 

no significant islet destruction.  219 

In spontaneously diabetes-prone non-obese diabetic (NOD) mice, CVB1/CVB3/CVB4 inoculation 220 

precipitates diabetes only when applied at the pre-diabetic stage - starting at 9 weeks of age, when 221 

invasive insulitis is already present (52-55). At this stage, CVB replicates efficiently in islets (56). 222 

On the contrary, CVB3 or CVB4 inoculation of young (<8-week-old) NOD mice with minimal 223 

insulitis has a preventative effect (52,53), which is associated with a defective ability of CVB to 224 

replicate in islets, despite the detection of high viral titers in islets 1-2 days after inoculation and 225 

the expression of the CVB receptor CAR (53,57). This CVB failure to replicate in islets has been 226 
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associated with the induction of beta-cell-intrinsic IFN responses and HIF-1α expression. Indeed, 227 

NOD mice with a beta-cell-specific HIF-1α deficiency display accelerated diabetes upon 228 

CVB1/CVB4 infection, accompanied by increased pancreatic viral loads (58). This provides a 229 

mechanistic link between the susceptibility or resistance of beta cells to CVB infection and their 230 

capacity to sense viral RNA and induce intracellular anti-viral, IFN-mediated defense mechanisms. 231 

Accordingly, the inhibition of IFN responses with a beta-cell-specific transgene for the suppressor 232 

of cytokine signaling-1 (socs-1) rapidly induces diabetes after CVB1/CVB3/CVB4 infection, with 233 

very few residual insulin-positive cells (59-61). Also in this case, disease onset does not require T 234 

cells, as the outcome is similar in immunodeficient socs-1-transgenic NOD/scid mice (60). 235 

The diabetes protection in young NOD mice vs. acceleration at an older age seem at variance with 236 

the notion that, in humans, CVB infection may be an early trigger that precedes islet autoimmunity 237 

(21,22). Possible explanations include the fact that the persistent CVB infections that may release 238 

a critical self-antigen load in humans are difficult to reproduce in NOD mice, and that the 239 

magnitude and/or quality of anti-CVB immune responses may be different. In NOD mice, the 240 

requirement for persistent CVB infection may be bypassed by the critical threshold of beta-cell 241 

destruction already achieved by autoimmune mechanisms on their own. The relatively high CVB 242 

doses used in these infection models, which are administered through the intraperitoneal rather 243 

than the natural oral route, are another confounder.  244 

Human studies 245 

Lytic effects on beta cells. An early study assessed the lytic effect of several CVB and A strains on 246 

islet cells (62). The infected outer islet cells died over a few days and detached from islets, leading 247 

to smaller structures. No features of apoptosis were observed, rather suggesting necrosis with early 248 

chromatin condensation (pyknosis). Nonetheless, some beta cells in close proximity to infected 249 
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and damaged ones remained virtually intact. This underlines the heterogeneous outcome of CVB 250 

infection (62), possibly reflecting different levels of basal ER stress across beta cells and/or 251 

preferential CVB replication in dividing cells and latent infection of quiescent cells (63), a feature 252 

shared by many viruses (64,65). 253 

Non-lytic effects on beta cells. CVB infection impacts beta cells on many other levels. First, the 254 

double-stranded (ds)RNA replicative intermediate is recognized by pattern recognition receptors 255 

(PRRs) such as toll-like receptor 3 (TLR3), retinoic-acid-inducible gene I (RIG-I) and 256 

MDA5/IFIH1 that trigger the production of pro-inflammatory cytokines, notably type I IFNs. 257 

Indeed, children sampled at the time of enteroviral RNA appearance in the blood display an IFN 258 

response gene signature, similar to that of peripheral blood mononuclear cells (PBMCs) or islets 259 

exposed in vitro to Enteroviruses (40). Accordingly, infection of human islets with CVB3, CVB4 260 

or CVB5 induces type I IFN (mostly IFN-β) expression (43,66). These results suggest that the 261 

early blood type I IFN signature of T1D (41,42) may reflect an anti-viral response (40). While this 262 

IFN response limits CVB replication and spreading, it also enhances beta-cell apoptosis (43). Of 263 

note, four rare single-nucleotide polymorphisms that reduce MDA5 function provide T1D 264 

protection (67). Additional effects of dsRNA on beta cells have been observed in an in vitro model 265 

using the synthetic dsRNA mimic polyinosinic-polycytidyilic acid (polyI:C) on a beta-cell line 266 

and on primary human islets (68). PolyI:C downregulated beta-cell-specific genes (e.g. INS, 267 

G6PC2, SLC30A8, MAFA), induced de-novo expression of the progenitor-like transcription factor 268 

SOX9 and impaired glucose-stimulated insulin secretion. This gene expression pattern suggests a 269 

dedifferentiation process and was recapitulated upon CVB5 infection. This dedifferentiated 270 

phenotype seems beta-cell-specific, as glucagon mRNA levels were unaffected in infected human 271 

islets (69). These polyI:C effects were triggered by the NF-κB and IFN regulatory factor pathways, 272 
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and by the secretion of their downstream cytokines IFN-α and tumor necrosis factor (TNF)-α. 273 

Indeed, the use of IFN-α, alone or in combination with TNF-α, led to a similar SOX9 expression 274 

(68), suggesting that IFN-α may trigger a vicious cycle by disrupting the identity of neighboring 275 

cells in a paracrine fashion.  276 

Other outcomes of CVB infection on different cells include intensive viral protein production, 277 

inhibition of host cell protein translation, impaired cellular calcium homeostasis and ER membrane 278 

modifications (70-72). Altogether, these alterations potentiate ER stress, therefore activating the 279 

unfolded protein response (UPR). The UPR is a natural cellular response to stress which aims at 280 

decreasing the translation rate, increasing the biosynthesis of protein-folding chaperones, and 281 

inducing the degradation of misfolded proteins. If the UPR fails to resolve cellular stress, it triggers 282 

apoptosis. Given their high insulin synthesis, beta cells have high basal levels of ER stress and 283 

naturally adjust the UPR to survive (73). This situation is easily decompensated by triggers such 284 

as CVB infection (74). Of further note, the anterograde vesicular trafficking is reduced, 285 

concomitantly with increased retrograde trafficking (75). In the highly secretory beta cells, this 286 

translates into reduced secretory activity and insulin stores (76), likely imposing an additional 287 

stress. The disruption of protein trafficking induced by CVB infection extends to autophagy (77), 288 

which is vital for beta cells to dispose of unused insulin granules (78). Like other Enteroviruses, 289 

CVB3 hijacks the autophagy pathway to replicate into vesicles (77,79-81). Yet, the step at which 290 

CVB disturbs the autophagic processes remains controversial. Indeed, CVB has alternatively been 291 

reported to enhance the autophagic flux (80) or to drive autophagosome accumulation by inhibiting 292 

the fusion of autophagosomes with lysosomes and endosomes (77,79,81). These discrepancies 293 

possibly reflect methodological differences, including cell models, infection conditions and 294 

autophagy readouts. 295 
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Summing up 296 

Both mouse and human studies suggest that direct cytopathic effects of CVB infection are major 297 

contributors to beta-cell demise. Besides cytolysis, the strategies used by CVBs to hijack cellular 298 

pathways and favor its own replication impact beta-cell survival, identity and insulin secretion. 299 

The same is true for the pro-inflammatory cytokine release triggered by PRRs, which enhances 300 

beta-cell apoptosis. These direct, immune-independent lytic and non-lytic effects on beta cells may 301 

secondarily trigger islet autoimmunity and are summarized in Figure 3. 302 

 303 

VII. Effects of CVB on other cell types relevant to T1D. 304 

Effects on other islet cells. In alpha cells, several T1D candidate genes regulating anti-viral 305 

responses display higher expression than in beta cells (82), notably IFIH1 (83) and its protein 306 

product, the dsRNA sensor MDA5 (84). Moreover, IFN-α signalling in alpha cells leads to higher 307 

expression of other anti-viral factors, e.g. GBP1/3, OAS2, TRIM22, XAF1 (82). Altogether, these 308 

gene signatures may explain the observation that alpha cells can clear CVB more efficiently (85). 309 

Effects on the exocrine pancreas. A recent report (86) employed a highly sensitive single-310 

molecule-based fluorescent in situ hybridization method to clarify the localization of infected cells 311 

in the pancreas. Although Enterovirus-positive beta cells were found at higher densities in T1D vs. 312 

control donors, they were rare and outnumbered by the infected cells found scattered in the 313 

exocrine pancreas. Moreover, the exocrine pancreas harboured more infected cells in both T1D 314 

and aAb+ donors than in controls. Morphological signs of plasma membrane disintegration were 315 

noted in virus-containing cells, suggesting a lytic infection.   316 

Effects on immune cells. The above report (86) also documented that most of the scattered infected 317 

cells in the exocrine pancreas were of hematopoietic origin (CD45+) or in close proximity to 318 
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CD45+ cells (possibly suggesting a combination of anti-viral immune responses and viral transfer 319 

to immune cells), and that infected (CD45+) cells were largely more abundant in the spleen than 320 

in the pancreas, and in T1D donors. Other reports previously documented enteroviral RNA in 321 

PBMCs (32,33), mostly localized in APCs [B cells, monocytes, dendritic cells (DCs)] (33,87), but 322 

not in the plasma (33). Interestingly, the prevalence of enterovirus-positive PBMCs was not 323 

different between T1D and control adults, while it was higher in multiple-aAb+ children 324 

considered altogether (i.e. with or without stage 3 clinical T1D). The effects elicited by enteroviral 325 

infections on immune cells are largely unknown. A mouse study (88) reported that CVB3, although 326 

marginally infective on DCs both in vitro and in vivo, diminished their capacity to prime naïve 327 

CD8+ T cells in vivo. This correlated with a surge in spleen plasmacytoid DCs and the loss of 328 

spleen and pancreatic lymph node conventional DCs, notably of the cross-presenting CD8α+ 329 

subset, with neither downregulation of surface MHC Class I/II and co-stimulatory molecules nor 330 

reduced T-cell stimulatory capacity in vitro on a per cell basis. This DC-depleting effect of CVB 331 

is more profound than for other viruses and, given the DC resistance to infection, must be indirect, 332 

likely mediated by type I IFNs, as described for lymphocytic choriomeningitis virus (89). Together 333 

with the lack of infectious permissiveness in DCs, it may represent another efficient immune 334 

escape mechanism. In human monocyte-derived DCs, phagocytosis of CVB3-infected islet cells 335 

was shown to induce IFN-stimulated genes without ensuing viral replication (90). CVB3 infection 336 

in mice further induces a transient T and B lymphopenia, which is also partly mediated by type I 337 

IFNs (91). 338 

Effects on enterocytes. The gut, mostly duodenal enterocytes, is a major entry site for 339 

Enteroviruses, and provides a viral reservoir that may contribute to persistent infections. Indeed, 340 

duodenal biopsies from living T1D patients yielded higher enteroviral titers than PBMCs or 341 
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pancreas tissues (32). Moreover, Enteroviruses are more frequently found in duodenal biopsies 342 

from T1D patients (92,93), although this finding has been questioned (94). Using stem-cell-derived 343 

human small intestine enteroids infected with different Enteroviruses, including CVB3, a study 344 

(95) documented that epithelial cells were infected by CVB3 without inducing neither significant 345 

cell lysis nor anti-viral responses, as assessed by the lack of cytokine, chemokine and IFN-346 

stimulated gene transcripts. Thus, the effects induced by CVB infection at the intestinal entry site 347 

are quite different than those induced on beta cells. 348 

Summing up 349 

Alpha cells are more resistant to CVB infection than beta cells. Enteroviral RNA-positive cells, 350 

largely CD45+, are instead abundant in the exocrine pancreas, and more so in T1D and aAb+ 351 

donors. In human circulating immune cells, enteroviral RNA is mostly detected in APCs, despite 352 

the fact that DCs are poorly permissive to CVB infection. The effects of CVB on human immune 353 

cells have not been investigated, although infection in the mouse boosts plasmacytoid DCs and 354 

depletes conventional DCs, thus favouring immune escape. Human enterocytes are readily infected 355 

but do not undergo lysis nor mount anti-viral responses.   356 

 357 

VIII. Indirect pathogenic effects of anti-viral immune responses on infected beta cells  358 

Mouse studies 359 

Innate anti-viral responses. CVB3 was unable to precipitate diabetes in NOD mice deficient for 360 

the NADPH oxidase, which display reduced superoxide production and impaired M1 (pro-361 

inflammatory) responses by macrophages (96). This underlines the importance of the 362 

inflammatory microenvironment driven by CVB3, independently of the direct, viral-mediated 363 
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lysis. Conversely, diabetes protection may result from innate immune responses triggered by 364 

invariant natural killer T cells (97), which may limit viral spreading. 365 

Ab-mediated anti-viral responses. Anti-viral neutralizing Abs are important for CVB clearance. 366 

Mirroring data in the human (21), CVB infection induces neutralizing Abs in NOD mice (98). 367 

These Abs are transferred to the offspring of CVB-infected NOD mice and protect the offspring 368 

from infection, and from diabetes development in socs-1-transgenic NOD mice (98). As discussed 369 

below, an increased risk of developing T1D may be linked to a weak anti-CVB Ab response and 370 

lack of protection by maternally transferred neutralizing Abs.  371 

Effects of CVB infection on antigen processing and presentation. Beta-cell and immune-derived 372 

IFN responses increase surface MHC Class I expression and upregulate several genes of the 373 

antigen processing and presentation pathway. This results in an increased beta-cell visibility to 374 

islet-reactive, and possibly viral-reactive, CD8+ T cells. Indeed, CVB3 inoculation failed to 375 

exacerbate T-cell insulitis and diabetes onset in tlr3-/- NOD mice that mount impaired IFN 376 

responses (99), despite higher viral titers than in wild-type mice (100). 377 

Following CVB4 infection, while necrosis occurs in neighboring acinar cells but not in islets, beta-378 

cell engulfment by resident APCs is observed in diabetes-resistant immunodeficient NOD/scid 379 

mice, and these APCs can prime diabetogenic islet-reactive BDC2.5 T cells in vitro (101). In 380 

addition, adoptive transfer of macrophages from CVB4-infected NOD/scid mice into 381 

NOD/BDC2.5 T-cell receptor (TCR)-transgenic animals triggers diabetes (101). This suggests that 382 

diabetes may result from the uptake of infected beta cells by APCs and subsequent presentation of 383 

islet antigens. 384 

T-cell-mediated anti-viral responses. The mechanisms underlying diabetes protection in younger 385 

NOD mice following CVB infection are unclear, but increased TGF-β-producing regulatory T 386 
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cells (Tregs) have been reported (102). In older NOD mice, data point to a role of CVB as a 387 

diabetes accelerator through bystander activation of islet-reactive effector T-cell responses and 388 

autoimmune beta-cell lysis. Only indirect clues are instead available on whether CVB-reactive T-389 

cell responses are required to trigger diabetes. For instance, CVB4-infected NOD/scid mice 390 

develop high CVB4 titers but no diabetes (103), suggesting that CVB-mediated beta-cell lysis 391 

alone is not sufficient to trigger disease without downstream autoimmune priming. Diabetes is 392 

instead triggered when CVB4-infected NOD/scid mice are adoptively transferred with islet-393 

reactive BDC2.5 TCR-transgenic T cells (101), suggesting a requirement for islet-reactive but not 394 

CVB-reactive T cells. Similarly, CVB4 induces diabetes in BDC2.5 TCR-transgenic NOD mice 395 

that are otherwise diabetes-resistant (104).  396 

Collectively, the diabetes acceleration induced by CVB infection in NOD mice does not seem to 397 

exclusively rely on a direct, viral-mediated lytic effect on beta cells, but also on the presence of 398 

autoreactive T cells and the enhanced presentation of islet antigens by APCs through phagocytosis 399 

of infected beta cells. Anti-CVB T-cell responses seem instead dispensable and even protective. 400 

Human studies 401 

Innate anti-viral immune responses. Apart from the beta-cell-autonomous pro-inflammatory 402 

response triggered by CVB infection through PRRs, direct evidence about the innate immune 403 

responses that may be triggered by CVB infection in human T1D is very limited. This likely 404 

reflects experimental challenges: the question could be addressed either with in-vitro co-culture 405 

systems of human islets and relevant immune subsets or with histopathological studies, but neither 406 

approach has been reported to date. Most histopathological studies have rather sought evidence of 407 

anti-viral responses in beta cells. A recent report from the DiViD study (105) documented that the 408 

pancreas from newly diagnosed living T1D donors harbored a small subset of VP1+ beta cells with 409 



 19 

markedly increased expression of the viral response protein kinase R. An increased islet expression 410 

of other viral response proteins, i.e. MDA5 and MxA, relative to non-diabetic controls was also 411 

noted. A colocalization of IFN response markers (MxA, protein kinase R and HLA Class I) and 412 

VP1, together with downregulation of genes in the insulin secretion pathway, was also reported in 413 

aAb+ donors (106). An IFN response gene signature coincident with enteroviral RNA detection 414 

has also been reported in the blood of children (40). Of note, Enteroviruses can mount mechanisms 415 

to limit such innate responses, including the formation of replication organelles derived from the 416 

host cell membranes that protect viral RNA from sensing by PRRs and viral protease-mediated 417 

cleavage of PRRs and their downstream signaling molecules (72,107).  418 

Ab-mediated anti-viral responses. CVB serology has often been used as an indirect readout of viral 419 

exposure (21). A recent work by the group of E. Bonifacio measured neutralizing anti-VP1 Abs to 420 

look at the magnitude of response according to islet aAb status (108). The results were striking: 421 

anti-VP1 Abs against all 6 major CVB serotypes were absent in children later developing early 422 

anti-insulin aAbs, which represent a fast-progressing T1D endotype (5,109) preferentially 423 

associated with CVB1 infection in another study (110). This contrasted with the detection of anti-424 

VP1 Abs in children without islet aAb seroconversion and in those positive for anti-glutamic acid 425 

decarboxylase (GAD) aAbs at a later age. A caveat of this study is that, although anti-VP2 Abs 426 

were detected in anti-VP1 Ab-negative children, no direct evidence of prior CVB infection was 427 

provided. Hence, the lack of anti-VP1 Abs could also reflect an absence of viral exposure. 428 

Nonetheless, these results may suggest that weak anti-CVB Ab responses predispose to islet 429 

autoimmunity. This scenario would help explain the epidemiological paradox that T1D incidence 430 

is higher where CVB exposure is lower. Indeed, CVB exposure drastically dropped over the last 431 

40 years, while T1D incidence steadily increased (111). Also geographically (111,112), the world 432 
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highest T1D incidence of Finland contrasts with its very low CVB circulation. This paradox has 433 

led to the ‘Poliovirus hypothesis’ (113,114), postulating that this scenario may be similar to that 434 

of the beginning of the 20th century, when reduced Poliovirus circulation due to improved sanitary 435 

conditions was paralleled by an increased incidence of its severe form, poliomyelitis (115). The 436 

explanation proposed is that a low frequency of CVB infection in the background population leads 437 

to decreased herd immunity and transmission of protective maternal Abs. Children are thus less 438 

protected during the first years of life and tend to develop higher-titer CVB infections, which favor 439 

viremia and viral spreading to vulnerable organs such as the heart or the pancreas (or motor 440 

neurons in the case of Poliovirus). It would be informative to know whether the incidence of CVB 441 

myocarditis has also increased during the last decades, but the improved diagnostic workup, which 442 

identified CVB as a major etiologic agent (116), introduces a major bias.  443 

Effects of CVB infection on antigen processing and presentation. The CVB-induced disruption of 444 

membrane trafficking (decreased anterograde flux and increased endocytosis) that perturbs insulin 445 

secretion also represents an immune evasion mechanism. This disruption results in the 446 

internalization of surface MHC Class I molecules and limits presentation of newly-formed 447 

complexes, notably of viral peptides (75). It is plausible that internalized complexes are returned 448 

to the cell surface, circumventing natural killer cell detection (117). This mechanism likely 449 

involves the internalization of other surface molecules such as cytokine receptors.  450 

Moreover, CVB infection distinctively alters the antigen processing and presentation pathway, as 451 

observed in CVB3-induced myocarditis models (118). Also in this case, self-limited viral 452 

myocarditis can lead to loss of tolerance to cardiac antigens and autoimmunity (47). Infection 453 

induces IFN-α expression, which upregulates MHC Class I and promotes the switch from the 454 

constitutive proteasome to immuno-proteasome (118). The immuno-proteasome has different 455 
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cleavage preferences to process peptides for the MHC Class I pathway, thus generating more 456 

antigenic peptides for cell surface presentation. In-vivo studies revealed that CVB3-susceptible 457 

mouse strains display a longer and higher immuno-proteasome expression post-infection (118) 458 

along with higher expression of genes of the antigen processing and presentation pathway. 459 

However, most proteasomal enzymatic activities were reduced upon infection (118), suggesting 460 

the existence of other immune escape mechanisms to counteract the IFN-α effects. Similar 461 

processes might be at play in infected beta cells to limit anti-viral T-cell responses. 462 

T-cell-mediated anti-viral responses. A major gap in knowledge concerns the features of anti-CVB 463 

T-cell responses, which is largely due to the lack of information about the viral epitopes 464 

recognized. A first report by M. Atkinson in 1994 (119) identified an antigenic CVB region by 465 

first analyzing T-cell responses against GAD in unfractionated PBMCs stimulated with 466 

overlapping peptides. While these responses were detected in both T1D and healthy donors, a 467 

GAD247-279 region was preferentially recognized in T1D and at-risk individuals compared to 468 

healthy controls. This region harbors a significant homology with the P2C protein of CVB (the so 469 

called PEVKEK region), and this homologous CVB sequence was recognized by the same donors. 470 

Although this suggests the possibility of epitope mimicry and T-cell cross-reactivity, formal proof 471 

at the single T-cell level and whether of the CD4+ or CD8+ subset was not provided. Indeed, a 472 

subsequent study by Schloot et al. (120) using CD4+ T-cell clones dismissed this possibility. 473 

Anti-CVB CD4+ T-cell responses are likely to be elicited upon CVB infection, as they are required 474 

to drive B-cell activation and Ab production. Using individual recombinant CVB proteins, Varela-475 

Calvino et al. (121) reported that the structural proteins VP1, VP2 and VP3 were preferentially 476 

targeted by T cells (likely CD4+ T cells in the unfractionated PBMCs used in these assays), and 477 

that T1D patients harbored lower frequencies of proliferative responses against VP2 but stronger 478 
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IFN-γ responses against VP3 and P2C. Another study (122) identified human CD4+ T-cell 479 

responses against Poliovirus VP2 and VP3 peptides selected from regions conserved across 480 

Enteroviruses. 481 

CVB infection is also likely to recruit CD8+ T cells, as they are key players of viral clearance via 482 

the cytotoxic destruction of infected cells. Using HLA-A2 binding prediction algorithms, Varela-483 

Calvino et al. (123) identified a CVB41137-1145 epitope (EVKEKHEFL) located in the same P2C 484 

region described by Atkinson et al. This peptide was naturally processed and presented by protein-485 

pulsed APCs and recognized by IFN-γ-producing CD8+ T cells from 2 of 3 HLA-A2+ healthy 486 

donors tested. While T-cell lines raised against this epitope were cytotoxic against peptide-pulsed 487 

target B cells, there was no evidence of cross-reactivity with the homologous GAD261-269 sequence 488 

(EVKEKGMAA). Another study (124) identified an HLA-A2-restricted epitope 489 

(ILMNDQEVGV) largely conserved across serotypes that was naturally processed and presented 490 

by CVB3-infected PBMCs and recognized by 25% of tested donors. Responses against an 491 

EVREKHEFL variant of the epitope previously described by Varela-Calvino et al. were not 492 

detected. CD8+ T-cell responses, quantified by either IFN-γ ELISpot or tetramer/IFN-γ staining, 493 

were overall weak, requiring a prior 12-day in-vitro PBMC sensitisation. Using more sophisticated 494 

in-silico approaches, additional HLA-A2-restricted CVB epitopes were proposed, but cognate 495 

CD8+ T-cell responses detected by IFN-γ ELISpot were marginal (125). 496 

Finally, like other viruses, CVB can also mount mechanisms to escape T-cell recognition, such as 497 

downregulating surface HLA Class I expression (75,117). It is unknown whether HLA Class II 498 

expression is also downregulated. This is part of a more general immune evasion mechanism by 499 

which CVB inhibits protein trafficking (126), thus limiting the routing toward the cell surface of 500 

multiple immune receptors and the secretion of soluble immune mediators (127,128). Another 501 
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open question is whether CVB persistence may favor the induction of CD8+ T-cell exhaustion 502 

and, ultimately, poor anti-viral memory (129-131), and whether viral persistence is a common 503 

outcome following an acute CVB infection.    504 

Summing up 505 

There is very limited information about the anti-CVB CD4+ and CD8+ T-cell responses mounted 506 

upon infection that may secondarily cause beta-cell damage. This gap in knowledge reflects the 507 

lack of reliable epitopes to track them. Mouse studies support a role for autoimmune T cells, while 508 

anti-viral T cells might be protective rather than harmful. The overall indirect, immune-mediated 509 

effects targeting beta cells that may secondarily trigger islet autoimmunity are summarized in 510 

Figure 4. 511 

  512 

IX. Epitope mimicry 513 

Mouse studies 514 

CVB/GAD homologous peptides can be presented by the diabetes-predisposing I-Ag7 MHC Class 515 

II allele of NOD mice (132). Although T-cell cross-reactivity was demonstrated by in-vitro 516 

functional assays, in-vivo evidence that CVB-reactive T cells can also recognize GAD peptides 517 

and amplify autoimmune anti-GAD T-cell responses or transfer diabetes is lacking. Indeed, T cells 518 

isolated from CVB4-infected NOD mice neither exhibited increased proliferation to GAD protein 519 

or homologous GAD/CVB peptide, nor triggered diabetes (104). Molecular similarities were also 520 

identified between the VP1 capsid protein of CVB and the T1D autoantigens tyrosine phosphatases 521 

IA-2 and IAR, and sera from NOD mice inoculated with CVB4 showed some cross-reactivity with 522 

a IAR peptide (133). However, whether such mechanism can trigger autoreactive T cells to attack 523 

beta cells has not been demonstrated. 524 
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Human studies 525 

Despite some initial enthusiasm on the possibility of T-cell cross-reactivity between CVB and 526 

GAD peptides mapping to the PEVKEK region (119), subsequent reports dismissed this possibility 527 

for both CD4+ (120) and CD8+ T cells (123). Cross-reactive responses between a Rotavirus VP716-528 

49 region and sequences from the IA-2 and GAD islet antigens encompassing both CD4+ and CD8+ 529 

epitopes have also been described (134).  530 

Summing up 531 

Although molecular mimicry is an intriguing scenario, the evidence for a CVB cross-reactivity 532 

with islet antigens that may underlie this hypothetical mechanism is limited and conflicting. 533 

Moreover, the evidence for a causal role of this cross-reactivity in triggering islet autoimmunity is 534 

missing altogether, in both humans and mice. These putative molecular mimicry mechanisms are 535 

summarized in Figure 4 together with the other immune-mediated effects of CVB infection on 536 

beta cells. 537 

 538 

X. Implications for T1D prevention strategies 539 

Despite the strength of evidence for an association between CVB infections and islet 540 

autoimmunity, demonstration of a cause-effect relationship is lacking, and is likely to remain 541 

elusive until tested in the human by removing this candidate environmental trigger (13). The most 542 

effective way to achieve this would be through vaccination against CVB. This could allow to 543 

prevent the most common manifestations of this infection (common cold) and, more importantly, 544 

its rare but severe complications (myocarditis, encephalitis, meningitis). This is similar to what 545 

has been achieved by Rotavirus vaccination in several countries. Following this rationale, a 546 

formalin-inactivated non-adjuvanted CVB vaccine has been developed. Preclinical studies using a 547 
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prototype CVB1 vaccine were performed in BALB/c and NOD mice (54). High titers of 548 

neutralizing Abs were induced. While non-immunized NOD mice displayed accelerated diabetes 549 

after CVB1 infection, this was not the case in vaccinated animals, suggesting that the vaccine itself 550 

does not accelerate diabetes development. A subsequent study in CVB1-infected socs-1-transgenic 551 

NOD mice, which harbor beta cells that are unable to respond to IFNs and thus develop diabetes 552 

due to massive beta-cell destruction, documented protection against both CVB1 infection and 553 

subsequent CVB1-induced diabetes (61). A hexavalent version of the vaccine comprising the 6 554 

CVB serotypes was subsequently shown to induce strong neutralizing Ab responses without 555 

adjuvant in both mice and non-human primates, and provided immunity and protection against 556 

CVB-induced myocarditis and diabetes (135). In NOD mice, the vaccine did not accelerate 557 

spontaneous diabetes, while it delayed diabetes acceleration upon CVB1 infection (55). 558 

On these grounds, a formalin-inactivated non-adjuvanted pentavalent intramuscular vaccine 559 

comprising the 5 most common serotypes (CVB1 to CVB5, i.e. barring the less prevalent CVB6) 560 

is undergoing a phase I safety trial in CVB-seronegative and -seropositive healthy adults 561 

(NCT04690426). Early timing of vaccination will be critical for subsequent trials in order to 562 

intervene before CVB exposure, e.g. starting at 2 months of age as for the inactivated polio (Salk) 563 

vaccine. This will also require an excellent safety profile. In this perspective, it is important to gain 564 

further insights into the mechanisms by which CVB infection may trigger beta-cell autoimmunity. 565 

Such mechanisms hold implications for the clinical benefit that may be expected (Figure 2). If 566 

beta-cell destruction is mainly provoked by the secondary pathogenic effect of anti-viral immune 567 

responses on infected beta cells, vaccination may increase such responses and accelerate beta-cell 568 

destruction. The same could be true if epitope mimicry mechanisms contribute to this destruction, 569 

unless the viral sequences at play are excised from the vaccine constructs. While this possibility 570 
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assumes that CVB may still reach the pancreas in vaccinated individuals, preclinical studies 571 

demonstrate that the vaccine efficiently prevents infection ab initio, including viremia and 572 

systemic spreading (54,55,135). Conversely, the scenario of a primary pathogenic effect of CVB 573 

on infected beta cells leading to self-antigen release and autoimmune priming, possibly associated 574 

with poor anti-CVB immune responses, would lend a strong rationale for boosting these responses 575 

by vaccination.  576 

 577 

XI. Conclusions and Perspectives 578 

Recent advances in our understanding of the association between CVB infections and islet 579 

autoimmunity, and between Epstein-Barr virus and multiple sclerosis, invite us to move one step 580 

further to definitely prove or disprove causality and explore preventative interventions through 581 

anti-viral vaccination. Several lines of evidence support the possibility of persistent CVB infection 582 

in individuals later developing islet autoimmunity. This persistent infection status is located in beta 583 

cells, in the exocrine pancreas as well as in the gut, and is favoured by multiple immune escape 584 

mechanisms mounted in different immune and non-immune cell types. While this provides a 585 

strong rationale for preventing such infections ab initio, it might also encourage efforts to eradicate 586 

them by antiviral treatment. In both cases, the timing of intervention will be critical, since 587 

association studies highlight a temporal sequence where CVB infection is an early event preceding 588 

aAb seroconversion and autoimmune initiation. Whether autoimmune progression can be halted 589 

by viral eradication once initiated remains uncertain. A better knowledge of the immune responses 590 

elicited by CVB infections and vaccines is vital to optimize vaccination strategies and their 591 

risk/benefit ratio. On one hand, available evidence suggests that direct CVB-induced cytopathic 592 

effects are major contributors to beta-cell demise, which may be favoured by poor immune 593 



 27 

responses unable to efficiently clear the virus. On the other hand, there is very limited information 594 

about the anti-CVB T-cell responses mounted and about the epitopes targeted upon infection. 595 

These responses may secondarily cause damage by recognizing viral antigens exposed by infected 596 

beta cells and, possibly, homologous self-antigens on non-infected beta cells. The magnitude of 597 

these anti-viral responses and whether they are eventually protective or harmful for beta cells 598 

deserve further scrutiny. Elucidating their dynamics will also provide immune monitoring tools 599 

and surrogate markers to predict vaccination efficacy and, hopefully, protection from T1D. 600 
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Figure legends 1036 

Figure 1. Timeline of the immune responses triggered by CVB infection. CVB infection 1037 

through the digestive or respiratory route first leads to the activation of innate immune responses, 1038 

including the production of type I and III interferons. CVB-reactive T and B cells are subsequently 1039 

activated along with other adaptive immune cell subsets. Finally, the formation of an immune 1040 

memory is well documented for B cells (as neutralizing Abs persist for decades after CVB 1041 

encounter), but not for T cells, where exhaustion mechanisms may also be at play. The predicted 1042 

time course of CVB load and its associated immune responses is shown in the bottom graph. APCs, 1043 

antigen-presenting cells; NK, natural killer; NKT, natural killer T; Treg, T regulatory; Tfh: T 1044 

follicular helper. 1045 

 1046 

Figure 2. Three hypothetical, non-mutually exclusive mechanisms leading to beta-cell 1047 

autoimmunity, and implications for T1D prevention by means of CVB vaccination. The direct 1048 

(primary) pathogenic effects of CVB on infected beta cells are detailed in Figure 3. The indirect 1049 

(secondary) pathogenic effects of anti-viral immune responses on infected beta cells, including 1050 

epitope mimicry mechanisms, are detailed in Figure 4. 1051 

 1052 

Figure 3. Direct pathogenic (lytic and non-lytic) effects of CVB on infected and neighboring 1053 

beta cells. Infected beta cells increase the synthesis of viral proteins at the expense of endogenous 1054 

proteins, resulting in a dedifferentiated phenotype and impaired insulin secretion. Insulin secretion 1055 

is further impacted by a decreased anterograde and increased retrograde vesicular trafficking. 1056 

Enhanced endoplasmic reticulum (ER) stress leads to the activation of the unfolded protein 1057 

response (UPR). Significant beta-cell death ensues, leading to release of double stranded (ds)RNA 1058 
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and viral particles. In antigen-presenting cells like DCs and macrophages, dsRNA sensing through 1059 

toll-like receptors (TLRs) leads to the activation of IFN response factors (IRF) and to type I IFN 1060 

release, which inhibits viral replication. Type I IFNs are also secreted by non-infected beta cells 1061 

sensing dsRNA through intracellular sensors such as MDA5 and RIG-I that activate the NF-κB 1062 

pathway. The binding of type I IFNs on surface receptors of beta cells enhances ER stress and 1063 

apoptosis independently of CVB infection. 1064 

 1065 

Figure 4. Indirect immune-mediated pathogenic effects of CVB infection on beta cells. 1066 

Infected beta cells downregulate surface HLA Class I (HLA-I) expression, thus providing an 1067 

immune escape mechanism by limiting recognition by anti-viral CD8+ T cells and, possibly, 1068 

enhancing recognition by natural killer (NK) cells. Infected beta cells are lysed and antigens are 1069 

taken up by antigen-presenting cells (APCs), thus favoring priming of both islet-reactive and CVB-1070 

reactive CD4+ and CD8+ T cells. CD4+ T-cell activation provides help to B cells for anti-CVB 1071 

antibody production, which inhibits viral replication along with invariant (i)NK cells and 1072 

macrophages. APC activation also leads to type I IFN secretion, which upregulates surface HLA-1073 

I presentation on beta cells, favoring recognition by islet-reactive CD8+ T cells of beta-cell 1074 

endogenous epitopes, including neo-epitopes generated under these inflammatory conditions. 1075 

CVB-reactive CD8+ T cells may also be diverted toward recognition of non-infected beta cells if 1076 

epitope mimicry mechanisms are at play.  1077 












