Analysis of V_HH dynamics

Akhila Melarkode Vattekatte¹, Julien Diharce², Catherine Etchebest² & Alexandre G. de Brevern^{1,2}

¹ DSIMB, INSERM UMRS_1134, Biochemistry, Université de la Reunion Island, Saint Denis, France,

² DSIMB, INSERM UMRS_1134, Université Paris Cité, Paris, France.

Abstract

Protein conformational flexibility is crucial for its structural stability and function. The concerted displacements of residues in an antigen-antibody complex facilitate and determine their interactions' strength, making their study essential to modulating their function. Members of the family Camelidae express a unique subset of Immunoglobulin Gamma called the Heavy Chain only Antibody (HCAbs), consisting of one Variable domain (V₄H) at the Nterminus of each heavy chain. Each V_HH domain comprises two types of amino acid regions varying in sequence identity arranged alternatingly called the Framework Regions (FRs) and Complementarity Determining Regions (CDRs). Even when expressed independently in*vitro*, $V_{\rm H}$ H domains exhibit excellent solubility and thermostability compared to the $V_{\rm H}$ - $V_{\rm L}$ complexes, so they present a valuable opportunity to exploit their biophysical and biochemical properties to generate the next generation of therapeutic and diagnostic molecules. Recent studies have reported sequence and structural features of V₁H domains contributing to these abilities in comparison to classical V_H-V_L complexes. In this study, we performed large-scale classical molecular dynamics simulations for a dataset of unrelated V₁H structures to understand the local and global differences in their dynamics. We used classical metrics such as the Normalised B-factors of C α atoms, RMSF of C α atoms and an innovative method called the Protein Blocks (PBs) to investigate flexibility in V_HH domains and trajectories. We have classified the trajectories based on $C\alpha$ Root Mean Squared Fluctuation, which revealed four main clusters of the V_HH trajectories. We observed various local changes in CDRs but within different ranges in trajectories within the same cluster as well as from other clusters. The FR-CDR boundary regions showed distinct local backbone conformational diversity when assessed using PBs. This study sheds light on region-wise changes in flexibility during dynamics which could aid in improving the design and function of V_HH domains.