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Abstract
Objectives: The aim of this study was to repurpose a drug for the treatment of bipolar 
depression.
Methods: A gene expression signature representing the overall transcriptomic effects 
of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using 
human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent 
drugs were then screened to identify those drugs that affect transcription most simi-
lar to the effects of the bipolar depression drug cocktail. For mechanistic studies, 
peripheral blood mononuclear cells were obtained from a healthy subject and repro-
grammed into induced pluripotent stem cells, which were then differentiated into 
co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal 
models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation 
with chronic restraint stress rats).
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1  |  INTRODUC TION

Many medications for BD have substantial tolerability burdens, and 
do not adequately alleviate symptoms for many people with BD, par-
ticularly depression1 that leaves individuals severely incapacitated. 
Undesirable side effects also lead to high levels of treatment non-
adherence. The first line treatment for BD is a mood stabiliser such 
as lithium,2 however many patients either do not respond or discon-
tinue due to side effects. Symptoms of mania can be treated with 
antipsychotics and/or mood stabilisers,2 however these medications 
do not effectively address bipolar depression, neurocognitive defi-
cits and quality of life.3 No significant progress has been made for 
decades in pharmacological treatments for BD, and polypharmacy is 
the norm.4 Faced with a lack of optimal treatments and limited bio-
logical knowledge, it is essential to use novel approaches to identify 
new therapeutics for BD, especially those that display novel target 
engagement.

The heterogeneity of BD, in combination with its complex and 
poorly understood neurobiology, makes it unsuitable for traditional 
drug discovery approaches that target a single protein thought to 
play a role in the aetiology and/or pathophysiology of the disease. 
Here we used a novel approach to drug discovery for BD to bypass 
this impasse, validated by our group for type 2 diabetes5–7 and by 
others in oncology.8 The process involves the use of next-generation 
sequencing in human neuronal-like (NT2-N) cells to identify a gene 
expression signature (GES) that highlights a small number of genes 
whose expression levels best define the overall biological effects of 
a treatment or disease.

The aim of the study was to identify drugs that may be repur-
posed to treat BD using a GES-based screen and then test the best 
candidate on depression-like behaviours using rat models. We first 
created a GES for the effects of a combination of drugs commonly 
prescribed to treat BD, and then used the GES to screen a library of 
off-patent drugs to identify those drugs that most closely mimic the 
effects of the BD drug combination.

2  |  MATERIAL S AND METHODS

2.1  |  Ethics

Procedures were approved by the Barwon Health Human Research 
Ethics Committee (Project 17.205), Deakin University Human 
Research Ethics Committee (Project 2018-240), North-West 
University AnimCare Animal Research Ethics Committee (DoH reg. 
no. AREC-130913-015, Approval Number: NWU-00578-19-A5), or 
Florey Animal Ethics Committee (Approval Number 20-042-FINMH). 
All procedures were concordant with the relevant national guide-
lines for research.

2.2  |  GES cell culture and next generation 
sequencing (NGS)

Ntera2 human teratocarcinoma cells (NT2) were cultured and dif-
ferentiated as previously described.9 Following differentiation, the 
neuronal-like cells (NT2-N) were treated with the “BD drug cock-
tail” (2.5 mM lithium chloride, 0.5 mM valproate, 50 μM lamotrigine 
and 50 μM quetiapine; Sigma-Aldrich, Castle Hill, Australia) or vehi-
cle control (0.2% DMSO; Sigma-Aldrich) for 24 h (n = 20 per group). 
Total RNA was extracted, quantified and quality controlled as previ-
ously described.9 RNAseq was performed as previously described.9

2.3  |  Generation of GES

NGS data was interrogated to identify the optimal set of genes 
(GES) that best predicts the differences between the BD drug 
cocktail-treated and vehicle-treated control cells as we have pre-
viously described.5 Given a set of 20 replicates per treatment, the 
predictive set of genes was limited to <8 to guarantee sufficient 
statistical estimation of joint predictors. A GES of <8 genes was 

Results: The screen identified trimetazidine as a potential drug for repurposing. 
Trimetazidine alters metabolic processes to increase ATP production, which is thought 
to be deficient in bipolar depression. We showed that trimetazidine increased mito-
chondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis 
in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested ad-
ditional mechanisms of action via the focal adhesion and MAPK signalling pathways. 
In two different rodent models of depressive-like behaviours, trimetazidine exhibited 
antidepressant-like activity with reduced anhedonia and reduced immobility in the 
forced swim test.
Conclusion: Collectively our data support the repurposing of trimetazidine for the 
treatment of bipolar depression.

K E Y W O R D S
bipolar depression, drug repurposing, gene expression signature, trimetazidine
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    |  3BORTOLASCI et al.

also preferred in view of its subsequent requirement—a manage-
able number of genes that can be measured for compound library 
screening.

Briefly, we used diagonal linear discriminant analysis (DLDA) and 
the signal-to-noise ratio (SNR) statistic on genes with evidence of 
differential expression between the BD drug cocktail and vehicle-
treated cells (p < 0.01, t-tests). DLDA was then performed with a for-
ward stepwise variable selection to identify the minimal set of genes 
that best discriminate the BD drug cocktail treatment group from 
the vehicle treatment group. The DLDA-selected genes were ranked 
using the SNR statistic according to their discriminating ability. SPSS 
(IBM, NY, USA) was then used to reduce signature genes to a small 
subset that was discriminating and displayed divergent expression 
profiles.

2.4  |  Compound screen

NT2-N cells were treated with drugs (10  μM for 24 h) from the 
Prestwick library comprising 960 approved, off-patent drugs, most 
of which have long and well-known clinical safety histories and di-
verse mechanisms of action. Each plate also contained 4 wells of 
positive controls (drug combination) and 4 wells of negative controls 
(vehicle).

RNA was extracted, real-time PCR was performed and nor-
malised as described previously,9 using primers in Table S1. The GES 
gene expression in control samples was checked. Treatment was re-
peated if any gene was expressed at >2 standard deviations outside 
the mean for the whole screen.

The mean gene expression value for each compound was divided 
by the mean of the vehicle-treated cells, and this value was used 
to generate an intraplate score for each compound by dividing the 
effect of the compound on gene expression relative to the vehicle-
treated cells by the effect of the BD drug combination relative to 
the vehicle. For each compound, the values of 1 minus the absolute 
value of the intraplate scores for each of the three genes in the GES 
were summed to generate an overall “similarity score” (how similar 
the overall effects were relative to the BD drug cocktail effects), 
and the compounds ranked accordingly. The net result was a ranked 
list of compounds in order of those that most closely resemble the 
effects of the BD drug combination on the GES.

2.5  |  Induced pluripotent stem cell 
(iPSC) generation

Blood samples were collected in EDTA tubes from a healthy adult 
(male, 49 years-old, Caucasian) and peripheral blood mononuclear 
cells (PBMCs) were isolated from total blood cells using Lymphoprep 
(StemCell Technologies) in SepMate™-15 tubes (StemCell 
Technologies).

PBMCs were used to generate iPSCs using Cytotune™-iPS 2.0 
Sendai Reprograming kit (ThermoFisher Scientific) at the Murdoch 

Children's Research Institute using a methodology described previ-
ously.10 The absence of mycoplasma contamination in the iPSC line 
was confirmed by PCR.

2.6  |  iPSC differentiation into neurons and 
astrocytes co-culture

A culture of deep- and upper-layer excitatory neurons and astro-
cytes, which form functional cortical networks, was generated from 
iPSCs as previously described with modifications.11,12 Neural in-
duction of stem cells was achieved by dual inhibition of the SMAD 
signalling pathway. Details of the iPSC and cortical networks' char-
acterisation are described in Table S2.

2.7  |  Effects of trimetazidine in cortical networks

Cells were seeded (100 K/well) into 24-well plates and treated 
with 0.1, 1, 10 or 100 μM trimetazidine (Sigma) or vehicle con-
trol (0.01% water). After 24 h, cells were harvested and NGS was 
performed as described previously. Genes with trends of up- or 
down-regulation across increased trimetazidine doses were iden-
tified using the R package IsoGene.13 The likelihood ratio test for 
monotonic trend was calculated based on permutations (n = 100). 
p-values were adjusted for multiple testing using Benjamini-
Hochberg correction.

To find potential pathways regulated by trimetazidine, genes 
with significant dose–response analysis results (adjusted p-
value<0.05) were submitted to the functional annotation tool of 
the database for annotation, visualization and integrated discov-
ery (DAVID).14

2.8  |  Flinders sensitive line rat study

Flinders Sensitive Line (FSL) rats are a widely used genetic ani-
mal model of depression.15 FSL rats were bred and housed at the 
vivarium (SAVC reg: FR15/13458) of the North-West University, 
South Africa. Male rats were group-housed (3–4 rats/cage) from 
post-natal day (PND)40, with corncob bedding changed weekly 
and temperature maintained at 22 ± 1°C in a relative humidity of 
55% ± 10%. A 12 h light/dark cycle was followed with food provided 
ad libitum. Body weight was measured daily. Rats were randomly 
assigned into different test groups: Vehicle control, 10 mg/kg/d or 
20 mg/kg/d trimetazidine (n  =  12-13/group), for which the doses 
were based on an earlier behavioural pharmacology study with tri-
metazidine in animals.16 Trimetazidine was administered in drinking 
water over a 28-day period, commencing on PND40. Behavioural 
tests were performed as previously described in the following order: 
sucrose preference test on PND60, open field tests on PNDs 66 
and 67, forced swim test17 on PND67, and elevated plus maze on 
PND68.18 Rats were humanely killed, and the hippocampi dissected 
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4  |    BORTOLASCI et al.

and immediately immersed in isolation buffer (pH 7.2) for respiration 
analysis.

2.9  |  Cellular bioenergetics and mitochondrial 
function analysis

NT2-N cells were seeded (80 K/well) into 24-well Seahorse V7 plates 
and treated with 0.1 or 1 μM trimetazidine or vehicle control (n = 4) 
for 24 h. The oxygen consumption rate (OCR) was assessed using a 
Seahorse XFe Flux Analyser (Seahorse Bioscience) as previously de-
scribed.19 Data was normalised to total protein using the Pierce BCA 
Protein Assay (ThermoFisher).

For respiration analyses from rat hippocampus, tissue was sam-
pled using a 1 mM punch biopsy needle and placed in a Seahorse 
Islet capture plate in Kreb Henseleit Buffer (KHB) followed by cap-
ture screens before the plate was incubated in a non-CO2 incubator 
for 10 min at 30°C. Respiration was measured for two 2 min peri-
ods, separated by a 2 min mix period, after injection of malate 5 mM, 
glutamate 1 mM and succinate 5 mM. 5 mM ADP (pH 7.4) was then 
injected and respiration was measured again. Data were normalised 
to total protein within each sample and the maximal respiratory ca-
pacity was established as the peak respiration values obtained fol-
lowing ADP injection.

2.10  |  Social isolation with chronic restraint stress 
rat model

To assess the effects of 30 mg/kg trimetazidine on depression-
like behaviours, adolescent rats received isolation combined with 
daily restraint stress. This model was chosen because it is widely 
used at this age,20 well-established as mildly stressful to change 
the hypothalamus-pituitary–adrenal axis response,21 and causes 
depression-like behaviours that can be rescued with experimen-
tal manipulation/s.22,23 Male Sprague–Dawley rats were weaned 
and group-housed with littermates until PND 35, then weighed 
and moved to single-housing in open-top cages (60 × 40 × 26 cm) 
on a 12:12 h light: dark cycle (lights on:07:00). Standard chow and 
water were provided ad libitum. Rats were weighed every 4 days. 
From PND 37, each rat received restraint stress for 30 min per day 
for 10 days. At PND 47, rats were randomly allocated to vehicle or 
trimetazidine (30 mg/kg dissolved in saline with 1% DMSO) inter-
vention administered intraperitoneally daily for 14d. At PND 59, 
all rats were tested in a large open field (1 × 1 meter). Rats were 
placed in the central zone of the arena and allowed to move freely 
for 10 min. At PND 60, rats were assessed in Porsolt's forced swim 
test, with 10 min pre-swim learning phase in a clear perspex cylinder 
(10 litres) containing tepid water (23–25°C) followed by an identical 
5 min test the next day (PND 61).24 This second session was video 
recorded for manual scoring for immobility, a subset of which was 
validated with automated and unbiased analysis of total immobility 
time using ForcedSwimScan (CleverSys Inc.). Trimetazidine injection 

occurred 5 h after behavioural tests on PND 59 and 60 (last 2 days of 
trimetazidine intervention) to avoid any potential acute behavioural 
responses to drug administration.

2.11  |  Statistical analysis

For mitochondrial respiration analyses, data were checked for nor-
mality of distribution using Kolmogorov–Smirnov tests. Because 
data were normally distributed and group variances were homoge-
neous (Levene's test), group mean differences were assessed using 
one-way ANOVAs with post hoc LSD tests.

For the behavioural assessments in FSL rats, a one-way ANOVA 
or Kruskal-Wallis test was used to analyse group differences be-
tween treatment groups in the sucrose preference, open field and 
forced swim tests. A two-way ANOVA was used to compare time 
spent in the closed and open arms of the elevated plus maze. A 
repeated-measures ANOVA was used (with sphericity assumed in all 
instances) for bodyweight analyses. In all instances, analyses were 
followed by the Bonferroni post hoc test. For social isolation with 
chronic restraint stress rat model, t-tests were used for each mea-
sure, except for bodyweight analyses that used repeated-measures 
ANOVA.

3  |  RESULTS

The overall features of the NGS dataset obtained from the NT2-N 
cells treated with a combination of BD drugs are described else-
where.9 A GES was generated which best describes the overall bio-
logical effects of the drug cocktail in NT2-N cells (Figure 1A). The 
GES consists of 3 genes: ANXA2 and FBN1, whose expression was 
decreased after drug treatment, and TPP3, which was increased. 
Together, the expression of these three genes predicted which treat-
ment group the cells were in with a power of >99%. The differential 
expression of the GES genes was confirmed by RT-PCR (Figure 1B). 
The effects of the drug cocktail on these genes were not dominated 
by one of the drugs but were representative of the overall effects 
of the 4 drugs in combination (Figure 1C), representing a net thera-
peutic effect.

In total, 960 drugs were screened for their effects on the expres-
sion of the GES genes in NT2-N cells and this data was used to cal-
culate a similarity score for each drug, with a lower similarity score 
indicating more similar effects to the BD drug cocktail. The screen-
ing results were filtered to exclude drugs that were not approved for 
use in humans, had been withdrawn or received a black box warning. 
The “hit” drugs from the screen are shown in Table  1, along with 
their effects on the expression of the GES genes and overall GES 
similarity scores.

Trimetazidine was identified as a drug of interest for further in-
vestigation because it has an excellent safety profile, is known to 
cross the blood-brain barrier and has not previously been used to 
treat neuropsychiatric disorders. Given that trimetazidine has been 
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shown to act on mitochondrial function, we wanted to determine 
whether trimetazidine had a similar mechanism of action in neurons 
as in cardiomyocytes. Cells treated with trimetazidine displayed in-
creased oxygen consumption indicative of improved mitochondrial 
function (Figure 2).

NGS was also used to investigate the transcriptional effects 
of trimetazidine in iPSC-derived cortical networks, a more biolog-
ically relevant human pre-clinical model. Isogene analysis identi-
fied several genes with evidence for dose-dependent regulation by 
trimetazidine, and these genes were enriched for several pathways 
(Table  S3), including focal adhesion and MAPK signalling. Further 
analysis revealed that genes in both the focal adhesion and MAPK 
signalling pathways showed overall evidence of downregulation 
as the dose of trimetazidine increased. Within the focal adhesion 
pathway, there were notable groups of structural genes that showed 
evidence of dose-dependent downregulation by trimetazidine, in-
cluding collagens, laminins and filamins (Figure S1).

In FSL rats, treatment with 10 or 20 mg/kg/d trimetazidine for 
28 days had no effect on bodyweight or general locomotor activity 
(Figure 3A), yet tended to reduce immobility in the forced swim test 
(by 8%, p = 0.11; Figure 3B), increase time spent in the open arms 
and decrease time spent in the closed arms of the EPM, consistent 

with an anxiolytic effect (p  ≤ 0.0005; Figure  3C) and reduced an-
hedonia as indicated by increased sucrose preference at the higher 
dose (p  =  0.021; Figure  3D). Trimetazidine at 20 mg/kg/d signifi-
cantly increased respiratory capacity in the hippocampus of rats 
compared to the vehicle control group (p = 0.001; Figure 3E).

Given the tendency for reduced immobility in the forced swim 
test in FSL rats, we conducted a follow-up study using the social 
isolation with chronic restraint stress rat model of depressive-like 
behaviour using a higher dose of trimetazidine (30 mg/kg/d). This 
study showed no effect of trimetazidine on bodyweight (p = 0.34) or 
locomotion (p = 0.58) (Figure 4A,B). However, trimetazidine signifi-
cantly reduced immobility in the forced swim test (p = 0.03), consis-
tent with an antidepressant-like effect (Figure 4C).

4  |  DISCUSSION

A combination of transcriptomics, drug screening and in vitro and 
in vivo mechanistic studies identified trimetazidine as a potential 
drug to treat BD depression. Trimetazidine acts primarily on mito-
chondrial capacity, function and substrate utilisation, increasing the 
efficiency of ATP production, which is likely to be beneficial in BD 

F I G U R E  1  (A) Gene expression 
signature that best describes the 
overall biological effects of the bipolar 
disorder drug cocktail in NT2-N cells. 
(B) Confirmation of the differential 
expression of the GES genes by RT-PCR. 
(C) Confirmation of the overall effects 
of the four drugs on the expression of 
the signature genes individually and in 
combination (*p < 0.05; ***p < 0.001 
compared to vehicle). 
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depression. This is concordant with extant theoretical models which 
see mitochondrial function at the core of the disorder; decreased 
in depression and increased in mania with regulatory failure at the 
heart of the disorder.25 We also showed effects on focal adhe-
sion and MAPK signalling pathways, both of which could plausibly 
contribute to improvements in depressive symptoms. Finally, we 
showed anxiolytic and antidepressant-like properties of trimetazi-
dine in two different animal models of depressive-like behaviour, 
providing evidence to support the repurposing of trimetazidine for 
the treatment of BD depression.

The genes comprising the GES were: (1) ANXA2 (Annexin 2), 
which encodes a calcium-dependent phospholipid-binding protein 
involved in the regulation of cellular growth and signal transduction 
pathways. ANXA2 had increased gene expression in PBMCs of pa-
tients with BD (p < 0.001).26 (2) FBN1 (Fibrillin 1), encoding an extra-
cellular matrix protein which may be a structural component of the 
blood–brain barrier.27 Genetic variation in FBN1 was associated with 
BD in a Norwegian sample (GWAS study; adj. p < 0.001, odds ratios 
0.59–0.61).28 (3) TPPP3 (Tubulin Polymerization Promoting Protein 
Family Member 3), which encodes a tubulin binding protein with mi-
crotubule stabilising activity and may play a role in cell proliferation 
and mitosis.29 TPPP3 has not been previously associated with BD.

The drug screen highlighted agents with known effects in the dis-
order such as antidepressants (maprotiline, protriptyline; both used 
for treating BD depression) and antipsychotics (pirenpirone, risperi-
done) already in use for treating mania, as well as non-steroidal anti-
inflammatory agents (isoxicam, glafenine) which are already under 
investigation for such disorders.

Trimetazidine is a cytoprotective anti-ischaemic agent used  
to treat stable angina pectoris. It is a selective inhibitor of 
3-ketoacyl-CoA thiolase (the final step in beta-oxidation of fatty 
acids), which results in impaired fatty acid uptake and oxidation,30 
which in turn results in enhanced myocardial glucose oxidation, a 
more efficient way to make ATP.31 It is currently being tested for 
the treatment of hypertension, coronary artery disease, heart failure 
and hepatocellular carcinoma, and several studies/meta-analyses 
have shown an overall decrease in all-cause mortality in participants 
taking trimetazidine.32,33

Mechanistic studies in cells (mainly cardiomyocytes), animal 
models and human participants have shown that trimetazidine 
improves mitochondrial function,34,35 lowers oxidative stress36,37 
and has anti-inflammatory properties.38,39 All these mechanisms 
are currently proposed to be targets for the treatment of BD. We 
showed that trimetazidine has similar metabolic effects in neuronal 
cells, with an increase in OCR following treatment, which is consis-
tent with previous effects seen in cardiomyocytes. This effect in cell 
culture translated to an improved maximal respiratory capacity in 
the hippocampus of rats. Therefore, the beneficial metabolic effects 
of trimetazidine may also be seen in the brain, and this increase in 
metabolic efficiency may be useful for improving symptoms in the 
depressive phase of BD.

We further investigated the mechanism(s) of action of trimetazi-
dine in co-cultured neurons and astrocytes through transcriptomic 
analysis. Genes affected by trimetazidine were enriched for the 
focal adhesion and MAPK signalling pathways, both of which ap-
peared to be down-regulated following treatment. Focal adhesions 
are specialised structures that form at cell-extracellular matrix 
contact points and are involved in cell shape and motility, as well 
as receptor-mediated signalling. Focal adhesion is critical for neu-
rite outgrowth and axon pathfinding, and likely plays a key role 
in neuronal plasticity,40,41 with paxilin appearing to play a central 
role. Among the focal adhesion genes that were downregulated, 
some were collagen isoforms. Overall, collagens had a strong dose-
dependent decrease in expression, which is of interest because 
several collagen isoforms have been identified as genetic risk fac-
tors for BD.42,43

The MAPK signalling pathway, which regulates many processes 
including cell proliferation, differentiation and migration, was also 
transcriptionally downregulated by trimetazidine. This pathway is 
well known to contribute to inflammation and neuroinflammation,44 
which is a key factor in BD pathophysiology.45–47 Indeed, the MAPK 
signalling pathway has been associated with BD in GWAS, transcrip-
tomic and methylation studies37,39 and MAPK signalling is increased 
in lymphocytes from patients with BD compared with healthy con-
trols.48,49 Furthermore, genetic predictors of treatment outcome in 
patients with BD were enriched for genes involved in the MAPK sig-
nalling pathway.50 Collectively, our data suggest that in addition to 
the predicted metabolic effects of trimetazidine, this drug may also 
have beneficial effects on BD symptoms by regulating the focal ad-
hesion and MAPK signalling pathways, and identify these pathways 
as new targets for the treatment of BD.

F I G U R E  2  Oxygen consumption rate in NT2-N cells after 
treatment with trimetazidine (*p = 0.041 compared to vehicle).
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From a psychotropic viewpoint, a recent animal study first 
demonstrated the anxiolytic properties of trimetazidine.16 The 
current study confirms and extends this, describing the broad 
psychotropic actions of trimetazidine, including anxiolytic, an-
tidepressant and hedonic actions, in validated animal models of 
depression. This study focused on bipolar depression, but given 
that the drug cocktail used included mood stabilisers and drugs 
used to treat mania, and the screen highlighted both antidepres-
sants and antipsychotics, future investigations should include test-
ing the effects of trimetazidine in models of mania. In both FSL 
rats and rats subjected to restraint stress trimetazidine exhibited 

anxiolytic effects, consistent with previously published work.16 
Trimetazidine also reduced anhedonia and tended to reduce im-
mobility in the forced swim test at the highest dose in FSL rats, 
which is suggestive of antidepressant-like properties. To investi-
gate the latter further, we treated socially isolated rats subjected 
to restraint stress using a higher dose of trimetazidine and found 
evidence of antidepressant activity (reduced immobility in the 
forced swim test). Collectively these data indicate that trimetazi-
dine has both anxiolytic and antidepressant-like activity in rodent 
models of depressive behaviour and supports the repurposing of 
trimetazidine for the treatment of BD depression.

F I G U R E  3  Effects of TMZ on body 
weight (A), depressive-like (B), anxiety (C) 
and anhedonia (D) behaviours in Flinders 
Sensitive Line rats. (A) Flinders Sensitive 
Line (FSL) rats gained weight (p < 0.05), 
independent of chronic treatment with 
vehicle, 10 or 20 mg/kg/d trimetazidine 
(p = 0.60). (B) Chronic treatment with 
10 or 20 mg/kg/d trimetazidine for 
28 days tended to reduce mean time 
spent immobile in Flinders Sensitive Line 
(FSL) rats in the 5 min forced swim test 
(p = 0.11). (C) In FSL rats, mean time spent 
in the open arms and closed arms in an 
elevated plus maze (*p < 0.05 significant 
different between arms). (D) In FSL rats, 
mean percentage sucrose preference 
compared to vehicle (*p = 0.021). 
(E) Maximal respiratory capacity in 
hippocampus after treatment with 
trimetazidine (n = 6; *p = 0.001 compared 
to vehicle).

F I G U R E  4  Effects of TMZ on body weight (A), anxiety (B) and depressive-like in isolation and physical restraint rats treated with 30 mg/
kg/d trimetazidine for 30 days. (A) Sprague–Dawley rats exposed to isolation and physical restraint significant gained weight (p < 0.0001) 
independent of treatment with 30 mg/kg/d trimetazidine or vehicle (Treatment: p = 0.34 and Treatment x Age interaction: p = 0.93). (B) 
Trimetazidine treatment had no effect on locomotion (p = 0.58). (C) Chronic treatment with 30 mg/kg/d trimetazidine for 14 days in isolation 
and physical restraint rats; mean time spent immobile in rats in the 5 min forced swim test (*p = 0.03).
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