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Abstract 

Background: Given the inherent challenges of conducting randomized phase III trials in older cancer patients, 
single‑arm phase II trials which assess the feasibility of a treatment that has already been shown to be effective in a 
younger population may provide a compelling alternative. Such an approach would need to evaluate treatment feasi‑
bility based on a composite endpoint that combines multiple clinical dimensions and to stratify older patients as fit or 
frail to account for the heterogeneity of the study population to recommend an appropriate treatment approach. In 
this context, stratified adaptive two‑stage designs for binary or composite endpoints, initially developed for biomarker 
studies, allow to include two subgroups whilst maintaining competitive statistical performances. In practice, hetero‑
geneity may indeed affect more than one dimension and incorporating co‑primary endpoints, which independently 
assess each individual clinical dimension, would therefore appear quite pertinent. The current paper presents a novel 
phase II design for co‑primary endpoints which takes into account the heterogeneity of a population. 

Methods: We developed a stratified adaptive Bryant & Day design based on the Jones et al. and Parashar et al. 
algorithm. This two‑stage design allows to jointly assess two dimensions (e.g. activity and toxicity) in two different 
subgroups. The operating characteristics of this new design were evaluated using examples and simulation compari‑
sons with the Bryant & Day design in the context where the study population is stratified according to a pre‑defined 
criterion.

Results: Simulation results demonstrated that the new design minimized the expected and maximum sample sizes 
as compared to parallel Bryant & Day designs (one in each subgroup), whilst controlling type I error rates and main‑
taining a competitive statistical power as well as a high probability of detecting heterogeneity.

Conclusions: In a heterogeneous population, this two‑stage stratified adaptive phase II design provides a useful 
alternative to classical one and allows to identify a subgroup of interest without dramatically increasing sample size. 
As heterogeneity is not limited to older populations, this new design may also be relevant to other study populations 
such as children or adolescents and young adults or the development of targeted therapies based on a biomarker.
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Background
The main objective of a phase II oncology trial is to 
assess the anti-tumoral activity of an experimental treat-
ment. If promising results are obtained, the phase II is 
followed by a phase III trial to evaluate the effectiveness 
of an experimental treatment compared to a standard 
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treatment. Older patients are vastly underrepresented 
in phase III clinical trials and the problem of recruiting 
older people has been largely documented in the litera-
ture. The most common barriers cited were: stringent eli-
gibility criteria, oncologists concerns for toxicity, patients 
and family refusal [1]. Given the challenges of conduct-
ing randomized phase III trials in older patients, several 
authors have previously suggested conducting single-arm 
phase II trials to assess the feasibility of a treatment that 
has been shown to be effective in a younger population 
[2, 3]. Indeed, perhaps more importantly than in any 
other population, cancer care should not compromise 
quality of life or autonomy [2, 3]. Treatment feasibility 
can be evaluated with a composite endpoint combining 
multiple clinical dimensions (e.g. activity, toxicity, qual-
ity of life, etc.). The treatment may be considered feasi-
ble if it fulfills some or all components of the composite 
endpoint. Another conundrum is to take into account 
the heterogeneity of this population and stratifying older 
patients as fit or frail is crucial to recommend an appro-
priate treatment approach [4]. Classical phase II designs 
for binary or composite endpoints [5–7] do not deal with 
this heterogeneity and can lead to erroneous conclu-
sions in an unselected population, while a specific sub-
group of less frail (or less fit) patients might benefit (or 
not) from the new therapeutic. Stratified adaptive two-
stage designs for binary or composite endpoints, which 
allow the inclusion of two subgroups and identify one of 
interest at the end of the first or the second stage, have 
recently been proposed [8–10]. Initially developed for 
biomarker studies, these types of approaches can also be 
applied to geriatric clinical oncology trials and allow to 
minimize the sample size whilst maintaining a competi-
tive statistical performance that is comparable to clas-
sical approaches [11]. These stratified adaptive designs 
have been developed for binary or composite endpoints 
and they take into account the heterogeneity of a popu-
lation when considering a single or combined clinical 
dimensions where each of them theoretically carries the 
same clinical importance. However, depending on the 
clinical context, the impact on autonomy or quality of life 
may take precedence over anti-tumoral activity in treat-
ment decision-making. Moreover, interpretation may 
be difficult if there are divergent results for each clinical 
dimension separate. Thus, the use of co-primary end-
points that assess each clinical dimension independently 
appears more relevant in this light [12]. Several designs 
that deal with these types of endpoints have been pro-
posed, but the most widely used is the one developed by 
Bryant and Day [13]. To the best of our knowledge the 
current literature does not include any reports of phase 
II designs for co-primary endpoints that account for het-
erogeneity. The current paper therefore details a stratified 

adaptive Bryant & Day (SABD) design based on the algo-
rithm developed by Jones et al. [8] and Parashar et al. [10] 
(Methods section). The operating characteristics of the 
novel design are then evaluated using examples and sim-
ulation comparisons with the Bryant & Day (BD) design 
(Results section).

Methods
Bryant & Day (BD) design
The BD design can be considered as a two-stage Simon 
optimal design [6] which considers two dimensions as 
co-primary endpoints, namely activity and toxicity. The 
BD design, where XR1 and XT1 represent the number of 
responses and non-toxicities observed at the end of the 
first stage and XR and XT the total number of responses 
and non-toxicities observed at the end of the second 
stage, is shown in Fig. 1.

After the inclusion of N1 patients, the study will be 
stopped for futility if an insufficient number of responses 
or non-toxicities are observed (i.e. XR1 < kR1 or XT1 < kT1). 
The experimental treatment will be considered as 
promising (i.e. «go-decision») if a sufficient number of 
responses and non-toxicities are observed in the interim 
(i.e. XR1 ≥ kR1 and XT1 ≥ kT1) and in the final (i.e. XR ≥ kR 
and XT ≥ kT) analysis.

Fig. 1 Bryant & Day (BD) design



Page 3 of 11Cabarrou et al. BMC Medical Research Methodology          (2022) 22:278  

Unacceptable and acceptable rates for each dimension 
are denoted as follows, with pR and pT respectively repre-
senting the response rate and the non-toxicity rate:

– pR0: unacceptable response rate
– pR1: acceptable response rate
– pT0: unacceptable non-toxicity rate
– pT1: acceptable non-toxicity rate

Given the two-dimensional nature of the endpoint, the 
null and alternative hypotheses are areas and defined by 
H0: {pR ≤ pR0 or pT ≤ pT0} and H1: {pR > pR0 and pT > pT0}, 
respectively. Four particular hypotheses corresponding to 
four possible states are considered:

– H00: {pR = pR0 and pT = pT0}
– H01: {pR = pR0 and pT = pT1}
– H10: {pR = pR1 and pT = pT0}
– H11: {pR = pR1 and pT = pT1}

There are four associated error rates:

– α: is the probability of considering the treatment as 
promising in the case where true response and non-
toxicity rates are considered as unacceptable (i.e. 
under H00),

– αR: is the probability of considering the treatment as 
promising in the case where true response and non-
toxicity rates are considered as unacceptable and 
acceptable, respectively (i.e. under H01),

– αT: is the probability of considering the treatment as 
promising in the case where true response and non-
toxicity rates are considered as acceptable and unac-
ceptable, respectively (i.e. under H10),

– β: is the probability of considering the treatment 
as insufficiently promising in the case where true 
response and non-toxicity rates are considered as 
acceptable (i.e. under H11).

Sample sizes of stage 1 and 2 (N1 and N2) and stop-
ping boundaries (kR1, kT1, kR and kT) are determined 
from the specified values for pR0, pT0, pR1 and pT1 and the 
type I (αR and αT) and type II (β) error rates. The opti-
mal design is defined as the one that minimizes the maxi-
mum expected sample size (ESS) under H10 or H01 (i.e. 
max{ESS under H10, ESS under H01}) whilst controlling 
for αR, αT and β.

Stratified Adaptive Bryant & Day (SABD) design
To take into account population heterogeneity, we devel-
oped a SABD design based on the Jones et  al. [8] and 
Parashar et  al. [10] algorithm. As compared to these 
designs that have been developed for binary or composite 

endpoints, this novel two-stage design allows to jointly 
assess two clinical dimensions (e.g. activity and toxic-
ity) through co-primary endpoints in two different sub-
groups and to identify one of interest at the end of the 
first or the second stage. In the context of a geriatric 
clinical oncology trial for example, this allows patients to 
be stratified, according to a geriatric criterion, into frail 
and fit subgroups. To simplify the notation, these two 
subgroups will be defined as negative (‹‹-››) and positive 
(‹‹ + ››) subgroups respectively. The two-stage algorithm 
proposed by Jones et al. and Parashar et al., presented in 
Fig. 2, relies on an assumption of hierarchy between the 
subgroups as the true response and non-toxicity rates 
will always be equal or higher in the positive subgroup 
than in the negative subgroup. This implies that, accord-
ing to the preliminary results observed at the end of the 
first stage, enrollment continues in an unselected popu-
lation if promising results are observed in the negative 
subgroup, or in the positive subgroup (i.e. enrichment) if 
promising results are observed in this subgroup only.

Based on this algorithm and adapted from the BD 
design to consider two co-primary endpoints, we pro-
posed the SABD design presented in Fig. 3.

The study begins with the inclusion of N1
− and N1

+ 
patients in the negative and positive subgroup, respec-
tively. According to the results observed at the end of 
the first stage, enrollment will be stopped for futility if 
an insufficient number of responses or non-toxicities 
are observed in the two subgroups (i.e. (XR1

− < kR1
− or 

XT1
− < kT1

−) and (XR1
+  < kR1

+ or XT1
+  < kT1

+)). Other-
wise, enrollment will continue in the unselected popula-
tion if a sufficient number of responses and non-toxicities 
are observed in the negative subgroup (i.e. XR1

− ≥ kR1
− 

and XT1
− ≥ kT1

−). If a sufficient number of responses and 
non-toxicities are only observed in the positive subgroup 
(i.e. (XR1

− < kR1
− or XT1

− < kT1
−) and (XR1

+  ≥ kR1
+ and 

XT1
+  ≥ kT1

+)) then enrollment will continue in this sub-
group only. At the end of the second stage, the experi-
mental treatment may be considered as promising (i.e. 
‹‹go-decision››) in the two subgroups (i.e. S1) or in the 
positive subgroup only (i.e. S2 or S3).

Hypotheses
Similarly to the BD design, our SABD design assumes 
that the co-primary endpoints are independent in the 
two subgroups. If pR−, pR+, pT− and pT+ respectively cor-
respond to the true response and non-toxicity rates in the 
negative and positive subgroups, the unacceptable and 
acceptable rates for each endpoint and subgroup may 
then be expressed as follows:

– pR0
− and pR0

+: unacceptable response rates in the 
negative and positive subgroups,
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Fig. 2 Jones et al. and Parashar et al. algorithm

Fig. 3 Stratified Adaptive Bryant & Day (SABD) design. e: ‹‹enrichment››. + : ‹‹inclusion of additional››. N1
− and N1

+: number of patients to be 
included at the first stage. N2

−, N2
+ and N2e

+: number of patients to be included at the second stage. N− = N1
− + N2

−, N+ = N1
+ + N2

+ and 
Ne

+ = N1
+ + N2e

+: total number of patients to be included. kR1
−, kT1

−, kR1
+ and kT1

+: first stage stopping boundaries. kR
−, kT

−, kR
+, kT

+, kRe
+ and 

kTe
+: second stage stopping boundaries. XR1

−, XT1
−, XR1

+ and XT1
+: number of responses and non‑toxicities observed during the first stage. XR2

−, 
XT2

− XR2
+, XT2

+, XR2e
+ and XT2e

+: number of responses and non‑toxicities observed during the second stage. XR
− = XR1

− + XR2
−, XT

− = XT1
− + XT2

−, 
XR

+ = XR1
+ + XR2

+, XT
+ = XT1

+ + XT2
+, XRe

+ = XR1
+ + XR2e

+ and XTe
+ = XT1

+ + XT2e
+: total number of responses and non‑toxicities observed
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– pR1
− and pR1

+: acceptable response rates in the nega-
tive and positive subgroups,

– pT0
− and pT0

+: unacceptable non-toxicity rates in the 
negative and positive subgroups,

– pT1
− and pT1

+: acceptable non-toxicity rates in the 
negative and positive subgroups.

It is assumed that the null hypothesis is identi-
cal between subgroups for the co-primary endpoints 
(i.e. pR0

− = pR0
+ and pT0

− = pT0
+). Null and alternative 

hypotheses in both subgroups are therefore defined as 
follows:

– H0
−(+): {pR−(+) ≤ pR0

−(+) or pT−(+) ≤ pT0
−(+)}

– H1
−(+): {pR−(+) > pR0

−(+) and pT−(+) > pT0
−(+)}

Four particular hypotheses in both subgroups are 
considered:

– H00
−(+): {pR−(+) = pR0

−(+) and pT−(+) = pT0
−(+)}

– H10
−(+): {pR−(+) = pR1

−(+) and pT−(+) = pT0
−(+)}

– H01
−(+): {pR−(+) = pR0

−(+) and pT−(+) = pT1
−(+)}

– H11
−(+): {pR−(+) = pR1

−(+) and pT−(+) = pT1
−(+)}

Probability of rejecting null hypotheses
There are three possible scenarios where the experimen-
tal treatment is considered as promising in the unse-
lected population or only in the positive subgroup (i.e. 
‹‹go-decision››). These scenarios correspond to S1, S2 
and S3 presented in Fig. 3.

The probability of considering the experimental treat-
ment as promising in the unselected population (i.e. 
reject H0

− and H0
+) according to S1 is defined as:

According to the hypothesis of hierarchy between sub-
groups, the probability of considering the experimental 
treatment as promising depends on the true response 
and non-toxicity rate in the negative subgroup only.

The probability of considering the experimental treat-
ment as promising in the positive subgroup only (i.e. 
reject H0

+) according to S2 is defined as:

P
(
S1|p−

R
, p−

T

)
= P(X−

R1
+ X−

R2
≥ k−

R
and X−

R1
≥ k−

R1
)

× P(X−

T1
+ X−

T2
≥ k−

T
and X−

T1
≥ k−

T1
)

P
(
S2

|||
p−
R
, p−

T
, p+

R
, p+

T

)
= P

(
X+

R
≥ k+

R

)
× P

(
X+

T
≥ k+

T

)
×
[
P
((
X−

R1
+ X−

R2
< k−

R
and X−

R1
≥ k−

R1
and X−

T1
≥ k−

T1

)
or

(
X−

T1
+ X−

T2
< k−

T
and X−

R1
≥ k−

R1
and X−

T1
≥ k−

T1

))]

The probability of considering the experimental treat-
ment as promising in the positive subgroup only (i.e. 
reject H0

+) according to S3 is defined as:

To compute probabilities of rejecting null hypotheses, 
it is assumed that the number of responses and non-tox-
icities follow a binomial distribution, B(N,p), with param-
eters N and p defined in Table 1.

Type I errors
Similarly to the BD design, three type I errors may be 
considered for the SABD design. The overall type I error 
rate α corresponds to the probability of considering the 
treatment as promising in the unselected population or 
in the positive subgroup in the case where true response 
and non-toxicity rates are considered as unacceptable 
in the two subgroups (i.e. under H00

− and H00
+). It is 

defined as:

Type I error rate αR corresponds to the probability of 
considering the treatment as promising in the unselected 
population or in the positive subgroup in the case where 
true response and non-toxicity rates are considered as 
unacceptable and acceptable, respectively, in the two sub-
groups (i.e. under H01

− and H01
+). It is defined as:

Type I error rate αT corresponds to the probability of 
considering the treatment as promising in the unselected 
population or in the positive subgroup in the case where 
true response and non-toxicity rates are considered as 
acceptable and unacceptable, respectively, in the two sub-
groups (i.e. under H10

− and H10
+). It is defined as:

Statistical power
The probability of considering the treatment as prom-
ising in the unselected population in the case where 

P
(
S3|p−

R
, p−

T
, p+

R
, p+

T

)
= P

(
X+

R1
+ X+

R2e
≥ k+

Re
and X+

R1
≥ k+

R1

)
× P

(
X+

T1
+ X+

T2e
≥ k+

Te
and X+

T1
≥ k+

T1

)
× P(X−

R1
< k−

R1
or X−

T1
< k−

T1
)

� = P
(
S1|p−

R0
, p−

T0

)
+ P

(
S2|p−

R0
, p−

T0
, p+

R0
, p+

T0

)

+ P
(
S3|p−

R0
, p−

T0
, p+

R0
, p+

T0

)

�R = P
(
S1|p−

R0
, p−
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+ P

(
S2|p−
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, p−
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, p+
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+ P
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�T = P
(
S1|p−

R1
, p−

T0

)
+ P

(
S2|p−

R1
, p−

T0
, p+

R1
, p+

T0

)

+ P
(
S3|p−

R1
, p−

T0
, p+

R1
, p+

T0

)
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true response and non-toxicity rates are considered as 
acceptable in the negative subgroup, and therefore in the 
positive subgroup by the assumption of hierarchy, corre-
sponds to P(S1|pR1−,pT1−). The probability of considering 
the treatment as promising in the positive subgroup in 
the case where true response and non-toxicity rates are 
considered as acceptable in the positive subgroup only 
corresponds to P(S2|pR0−,pT0−,pR1+,pT1+) + P(S3|pR0−,
pT0−,pR1+,pT1+). As proposed by Parashar et al. [10], the 
overall power is defined by the minimum of these two 
probabilities:

Expected sample size (ESS) and optimal design
A minimum of N1

− + N1
+ patients need to be included. 

According to the number of responses and non-toxicities 
observed in the interim analysis, three scenarios are con-
sidered: none or N2

− + N2
+ or N2e

+ additional patients 
will need to be included at the second stage. The ESS is 
determined as follows:

As proposed by Parashar et al. [10], the optimal design 
(kR1

−, kT1
−, kR1

+, kT1
+, N1

−, N1
+, kRe

+, kTe
+, Ne

+, kR
−, kT

−, 
kR

+, kT
+, N−, N+) is defined as the one that minimizes 

the maximum ESS under (H01
−,H01

+) or (H10
−,H10

+) 
(i.e. max{ESS

(
p−
R0
, p−

T1
, p+

R0
, p+

T1

)
,ESS

(
p−
R1
, p−

T0
, p+

R1
, p+

T0

)
} ) while con-

trolling type I (αR and αT) and type II (β) error rates. To 
determine the optimal design, 15 parameters need to be 
estimated. To reduce the computational burden, a similar 
approach to the one proposed by Jones et al. [8] is used. 
Parameters (N1

−, N−, kR1
−, kT1

−, kR
−, kT

−) and (N1
+, kR1

+, 
kT1

+) are derived from the BD design with (pR0−, pT0−, 
pR1−, pT1−, αR/2, αT/2, β) and (pR0+, pT0+, pR1+, pT1+, αR/2, 
αT/2, β), respectively (type I error rates are set at αR/2 and 

power = 1 − � = min{P
(
S1|p−

R1
, p−

T1

)
,P

(
S2|p−

R0
, p−

T0
, p+

R1
, p+

T1

)

+ P
(
S3|p−

R0
, p−

T0
, p+

R1
, p+

T1

)
}

ESS
(
p−
R
, p−

T
, p+

R
, p+

T

)
= N−

1
+ N+

1
+
(
N−

2
+ N+

2

)
× P

(
X−

R1
≥ k−

R1

)
× P

(
X−

T1
≥ k−

T1

)
+ N+

2e
× P

(
X+

R1
≥ k+

R1

)
× P

(
X+

T1
≥ k+

T1

)
× P

(
X−

R1
< k−

R1
or X−

T1
< k−

T1

)

αT/2 to adjust for multiplicity). To delineate the param-
eter search space, the maximum sample size is set at 
2 × N−.

Probability of Early termination (PET)
The study will stop for futility if an insufficient number of 
responses or non-toxicities are observed in both groups 
in the interim analysis. The PET is determined as follows:

Results
Examples of SABD design
Three examples of the SABD design are considered. In the 
first example, hypotheses are based on the GERICO10 
phase II trial which aimed to evaluate the feasibility of 
a chemotherapy treatment with docetaxel-prednisone 
in patients age 75 or older, classified as vulnerable or 
frail according to the International Society of Geriat-
ric Oncology criteria, with castration-resistant meta-
static prostate cancer [14]. Same hypotheses are defined 
for the two co-primary endpoints in the two subgroups 
(pR0

−(+) = pT0
−(+) = 0.70 and pR1

−(+) = pT1
−(+) = 0.90). 

In the second example, different hypotheses are defined 
between the two co-primary endpoints in the two sub-
groups (pR0

−(+) = 0.30, pT0
−(+) = 0.60, pR1

−(+) = 0.60 and 
pT1

−(+) = 0.90). In the third example, different hypoth-
eses are defined between the two co-primary endpoints 
and between the two subgroups for non-toxicity (pR0

−
(+) = 0.10, pT0

−(+) = 0.60, pR1
−(+) = 0.40, pT1

− = 0.80 and 
pT1

+  = 0.90). Type I error rates (αR and αT) and overall 
power (1-β) are set at 10% and 80%, respectively. The 

hypotheses, parameters and operating characteristics for 
the three examples are summarized in Table 2.

In the first example, a maximum of 67 patients need 
to be included and the interim analysis is performed 
after the enrollment of 10 patients into each subgroup. 
According to the number of responses and non-toxici-
ties observed at the end of the first stage, three scenarios 
are possible: the study is stopped for futility if at most 
7 responses or non-toxicities are observed in the nega-
tive and positive subgroups; enrollment continues in an 
unselected population with the recruitment of additional 
25 (N2

− = N−-N1
−) and 22 (N2

+  = N+-N1
+) patients in 

the negative and positive subgroups, respectively, if at 

PET p−R , p
−
T , p

+
R , p

+
T = P X−

R1 < k−R1 or X
−
T1

< k−T1
× P X+

R1 < k+R1 or X
+
T1

< k+T1

Table 1 Parameters of binomial distributions

Response Non-toxicity

Negative XR1-~B(N1-,pR‑) XT1
‑~B(N1

‑,pT
‑)

XR2
‑~B(N2

‑,pR
‑) XT2

‑~B(N2
‑,pT

‑)

Positive XR1
+~B(N1

+,pR
+) XT1

+~B(N1
+,pT

+)

XR
+~B(N+,pR

+) XT
+~B(N+,pT

+)

XR2e
+~B(N2e

+,pR
+) XT2e

+~B(N2e
+,pT

+)
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least 8 responses and non-toxicites are observed in the 
negative subgroup; enrollment continues in the posi-
tive subgroup only with the recruitment of additional 
25 patients (enrichment: N2e

+  = Ne
+-N1

+) if at most 7 
responses and non-toxicities are observed in the nega-
tive subgroup and at least 8 responses and non-toxicites 
are observed in the positive subgroup. At the end of the 
second stage after the enrollment of 35 and 32 patients 
in the negative and positive subgroups, respectively, a 
«go-decision» is declared in the unselected population 
or in the positive subgroup only if at least 29 responses 
and 27 non-toxicites are observed in the negative or in 
the positive subgroup only, respectively. After the enroll-
ment of 35 patients in the positive subgroup (enrich-
ment), a «go-decision» is declared in the positive 
subgroup only if at least 29 responses and 29 non-tox-
icites are observed. The ESS and the PET for insufficient 
activity and/or excessive toxicity equate to 42.5 patients 
and 41.5%, respectively.

In the second example, a maximum of 39 patients need 
to be included and the interim analysis is performed 
after the enrollment of 9 patients into each subgroup. 
According to the number of responses and non-toxicities 
observed at the end of the first stage, three scenarios are 
possible: the study is stopped for futility; enrollment con-
tinues in an unselected population with the recruitment 
of additional 14 (N2

− = N−-N1
−) and 7 (N2

+  = N+-N1
+) 

patients in the negative and positive subgroups, respec-
tively; enrollment continues in the positive subgroup only 
with the recruitment of additional 12 patients (enrich-
ment: N2e

+  = Ne
+-N1

+). The ESS and the PET for insuf-
ficient activity and/or excessive toxicity equate to 25.7 
patients and 55.4%, respectively.

In the third example, a maximum of 45 patients need 
to be included and the interim analysis is performed after 
the enrollment of 17 and 9 patients in the negative and 
positive subgroups, respectively. According to the num-
ber of responses and non-toxicities observed at the end 

of the first stage, three scenarios are possible: the study 
is stopped for futility; enrollment continues in an unse-
lected population with the recruitment of additional 18 
(N2

− = N−-N1
−) and 1 (N2

+  = N+-N1
+) patients in the 

negative and positive subgroups, respectively; enrollment 
continues in the positive subgroup only with the recruit-
ment of additional 7 patients (enrichment: N2e

+  = Ne
+-

N1
+). The ESS and the PET for insufficient activity and/

or excessive toxicity equate to 32.1 patients and 58.0%, 
respectively.

A selection of SABD designs with pre-specified hypoth-
eses are detailed in Supplementary Table 1.

An optimal SABD design requires a total of 15 param-
eters to be estimated. This involves a very large number 
of combinations and therefore necessitates an extensive 
computational effort when using standard software. For 
example, the computation time needed to determine an 
optimal SABD design can vary from a few minutes or 
hours to several weeks, depending on the hypotheses, 
using R software (https:// cran.r- proje ct. org/).

Simulation studies
Simulations were carried out to investigate the operating 
characteristics of the SABD design and to compare to a 
parallel BD design (i.e. two parallel studies with one BD 
design in each subgroup). Three case studies correspond-
ing to the three examples presented in previous section 
were considered. Type I error rate and power, for the 
SABD design, were set at 10% and 80%, respectively. In 
the parallel BD design, adjustment for multiplicity was 
performed to achieve an adequate overall type I error rate 
and sufficient statistical power to draw meaningful con-
clusions in the unselected population or only in the posi-
tive subgroup. Type I error rate and power were therefore 
set at 5% (i.e. αR/2 and αT/2) and 90% (i.e. 1—β/2) in each 
subgroup for parallel BD design, respectively. Four sce-
narios were considered:

Table 2 Examples of stratified adaptive Bryant & Day (SABD) design (ESSRiTj and  PETRiTj correspond to ESS (pRi
−,pTj

−,pRi
+,pTj

+) and PET 
(pRi

−,pTj
−,pRi

+,pTj
+), respectively)

Hypotheses Parameters Operating characteristics

pR0 pR1
−

pR1
+

pT0 pT1
−

pT1
+

kR1
−

kR1
+

kT1
−

kT1
+

N1
−

N1
+

kRe
+

kTe
+

Ne
+ kR

−

kR
+

kT
−

kT
+

N−

N+
Attained
αR / αT / 1- β

max
(ESSR0T1,ESSR1T0)

min
(PETR0T1,PETR1T0)

0.70 0.90
0.90

0.70 0.90
0.90

8
8

8
8

10
10

29
29

35 29
27

29
27

35
32

0.094 / 0.094 / 0.800 42.5 0.415

0.30 0.60
0.60

0.60 0.90
0.90

4
4

7
7

9
9

10
16

21 11
8

18
13

23
16

0.094 / 0.093 / 0.800 25.7 0.554

0.10 0.40
0.40

0.60 0.80
0.90

3
2

12
7

17
9

4
13

16 7
3

26
9

35
10

0.087 / 0.096 / 0.800 32.1 0.580

https://cran.r-project.org/
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– Scenario 1A: simulations were performed under H01
−

(+) (pR−(+) = pR0
−(+) and pT−(+) = pT1

−(+)) to assess 
type I error rate αR and PET.

– Scenario 1B: simulations were performed under H10
−

(+) (pR−(+) = pR1
−(+) and pT−(+) = pT0

−(+)) to assess 
type I error rate αT and PET.

– Scenario 2: simulations were performed under H00
− 

(pR− = pR0
− and pT− = pT0

−) and H11
+ (pR+  = pR1

+ 
and pT+  = pT1

+) to evaluate the probability of detect-
ing heterogeneity at the first stage (i.e. stop enroll-
ment for futility in the negative subgroup) and the 
probability of considering the treatment as promising 
in the positive subgroup (i.e. reject H0

+).
– Scenario 3: simulations were performed under H11

−
(+) (pR−(+) = pR1

−(+) and pT−(+) = pT1
−(+)) to evaluate 

the probability of considering the treatment as prom-
ising in the unselected population (i.e. reject H0

− and 
H0

+).

For each case study and scenario, 100  000 hypotheti-
cal trials were simulated. The number of responses and 
non-toxicities were randomly generated using binomial 
distributions B(N,p) with N corresponding to the num-
ber of patients presented in Table 2 (N1

−, N1
+, N−—N1

−, 
N+—N1

+ and Ne
+—N1

+) and p corresponding to the true 
response and non-toxicity rates defined above (pR−, pT−, 
pR+ and pT+).

The ESSs were also estimated for each case study and 
scenario. Simulation results are presented in Table 3.

In all three case studies, the maximum sample size was 
larger with the parallel BD design with respectively 88, 62 
and 79 patients compared with 67, 39 and 45 patients for 
the SABD.

Scenarios 1A and 1B, the SABD gave the smallest ESS 
with a maximum of 42.4, 25.7 and 32.0 patients com-
pared to the parallel BD with a maximum of 52.8, 35.1 
and 44.8 patients for the three case studies, respectively. 
The probability of rejecting H0

− or H0
+ (i.e. type I error 

rates αR and αT) was approximately 10% for each design 
and case study (except in scenarios 1A and 1B for case 
study 2 and 3 with the parallel BD, respectively). The 
PET varied between 41 and 46% for case study 1 and was 
higher when using the SABD with a minimum of 55.5% 
and 58.2% compared to the parallel BD with a mini-
mum of 40.8% and 49.3% for the case studies 2 and 3, 
respectively.

In scenario 2, for each case study, the probability 
of rejecting H0

+ is higher when using the parallel BD 
(approximately 90%) compared to the SABD (approxi-
mately 80%). The probability of detecting heterogeneity 
at the first stage was at least 80% for each design and case 
study, except for the SABD in case study 1 (73.9%). The 
SABD gave the smallest ESS with respectively 50.6, 31.0 

and 34.9 patients compared to the parallel BD with 63.4, 
42.4 and 45.7 patients for the three case studies.

In scenario 3, the probability of rejecting H0
− and 

H0
+ was approximately 80% for each design and case 

study. The ESS was lower for the three case studies when 
using the SABD, with 63.5, 37.4 and 43.5 patients com-
pared to 85.1, 59.2 and 75.8 patients for the parallel BD, 
respectively.

Discussion
The stratified adaptive phase II design developed and pre-
sented in this paper takes into account the heterogeneity 
of a population when considering co-primary endpoints. 
The SABD design based on the Jones et al. [8] and Parashar 
et al. [10] algorithm, allows to include two pre-defined sub-
groups and to identify whether the therapeutic benefits 
one of these subgroups at the end of the first or the sec-
ond stage. Different hypotheses can be defined between the 
subgroups and/or co-primary endpoints. We used three 
case studies to simulate different scenarios and investigate 
the operating characteristics of the SABD approach. The 
results demonstrate good statistical performances for the 
SABD when compared to the parallel BD (one BD for each 
subgroup). The SABD indeed allows to reduce the num-
ber of patients exposed to an insufficiently active or overly 
toxic treatment (scenarios 1A and 1B). The ESS required 
to reach an adequate statistical power to draw meaning-
ful conclusions in the unselected population is also lower 
compared to the parallel BD (scenario 3). The same trend 
is observed in scenario 2 but the parallel BD yields a higher 
statistical power to conclude to the feasibility of the treat-
ment in the positive subgroup only (i.e. «go-decision»). If 
there was heterogeneity between the two subgroups, the 
probability of detecting it at the first stage was generally at 
least 80%. To account for multiplicity and obtain an ade-
quate overall type I error rate of 10%, αT and αR were set at 
5% for each BD. In case study 2 and 3, optimal BD designs 
were determined using binomial probabilities with αT and 
αR less than 3.5%. This could explain the lower type I error 
rate observed in scenarios 1A and 1B for the parallel BD, 
compared to the SABD.

Given that the endpoint was two-dimensional, alterna-
tive case studies or scenarios may also be considered. It 
would, for instance, be interesting to investigate the statis-
tical performance of the SABD design when heterogeneity 
only affects one dimension.

Similarly to the BD design, the SABD design assumes 
that the co-primary endpoints are independent. An alter-
native to the BD design which pre-defines the association 
between co-primary endpoints has also been developed 
[15]. Such an extension of the SABD design to correlated 
endpoints implies, among other things, to consider a 
bivariate binomial distribution with a correlation between 
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the two co-primary endpoints but also between the two 
subgroups. This merits further investigation. A simulation 
study assessing the impact of an erroneous assumption of 
this pre-defined association however recommends using 
the BD design. Indeed, incorrectly assuming independ-
ence of endpoints only slightly increases the type I and II 
error rates. This is in contrast to wrongly defining the level 
of correlation between co-primary endpoints which results 

in a significant loss of statistical power and an increase in 
the type I error rate [16]. Future studies will be required to 
investigate the impact of wrongly assuming independence 
of co-primary endpoints on the performance of stratified 
design approaches.

The Jones et  al. [8] and Parashar et  al. [10] algorithm 
assumes that there is a hierarchy between subgroups, 
such that the true response and non-toxicity rate will 

Table 3 Simulation results

Parallel BD SABD

Case study 1
Maximum sample size 88 67

1A pR
− = 0.7/pT

− = 0.9
pR

+ = 0.7/pT
+ = 0.9

Expected sample size 52.8 42.4

Probability of early termination 0.458 0.416

Probability of rejecting H0
− or H0

+ 0.092 0.094

1B pR
− = 0.9/pT

− = 0.7
pR

+ = 0.9/pT
+ = 0.7

Expected sample size 52.8 42.4

Probability of early termination 0.457 0.416

Probability of rejecting H0
− or H0

+ 0.092 0.094

2 pR
− = 0.7/pT

− = 0.7
pR

+ = 0.9/pT
+ = 0.9

Expected sample size 63.4 50.6

Probability of rejecting H0
+ 0.906 0.801

Probability of detecting heterogeneity (1st stage) 0.840 0.739

3 pR
− = 0.9/pT

− = 0.9
pR

+ = 0.9/pT
+ = 0.9

Expected sample size 85.1 63.5

Probability of rejecting H0
− and H0

+ 0.826 0.800

Case study 2
Maximum sample size 62 39

1A pR
− = 0.3/pT

− = 0.9
pR

+ = 0.3/pT
+ = 0.9

Expected sample size 34.5 25.7

Probability of early termination 0.430 0.555

Probability of rejecting H0
− or H0

+ 0.083 0.093

1B pR
− = 0.6/pT

− = 0.6
pR

+ = 0.6/pT
+ = 0.6

Expected sample size 35.1 24.3

Probability of early termination 0.408 0.627

Probability of rejecting H0
− or H0

+ 0.054 0.092

2 pR
− = 0.3/pT

− = 0.6
pR

+ = 0.6/pT
+ = 0.9

Expected sample size 42.4 31.0

Probability of rejecting H0
+ 0.905 0.802

Probability of detecting heterogeneity (1st stage) 0.807 0.799

3 pR
− = 0.6/pT

− = 0.9
pR

+ = 0.6/pT
+ = 0.9

Expected sample size 59.2 37.4

Probability of rejecting H0
− and H0

+ 0.821 0.800

Case study 3
Maximum sample size 79 45

1A pR
− = 0.1/pT

− = 0.8
pR

+ = 0.1/pT
+ = 0.9

Expected sample size 43.7 31.2

Probability of early termination 0.511 0.620

Probability of rejecting H0
− or H0

+ 0.055 0.086

1B pR
− = 0.4/pT

− = 0.6
pR

+ = 0.4/pT
+ = 0.6

Expected sample size 44.8 32.0

Probability of early termination 0.493 0.582

Probability of rejecting H0
− or H0

+ 0.083 0.096

2 pR
− = 0.1/pT

− = 0.6
pR

+ = 0.4/pT
+ = 0.9

Expected sample size 45.7 34.9

Probability of rejecting H0
+ 0.904 0.802

Probability of detecting heterogeneity (1st stage) 0.864 0.825

3 pR
− = 0.4/pT

− = 0.8
pR

+ = 0.4/pT
+ = 0.9

Expected sample size 75.8 43.5

Probability of rejecting H0
− and H0

+ 0.821 0.801
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always be higher in the positive subgroup. This may 
lead to the results of the positive subgroup having no 
impact on the outcome of the study if promising results 
are observed in the negative subgroup in the interim 
and the final analysis. Indeed, if this hierarchy assump-
tion is incorrect, enrollment of an unselected population 
may be continued even though promising results are only 
observed in the negative subgroup at the interim analysis. 
In this scenario, an additional type I error may occur by 
declaring a «go-decision» in the unselected population 
in the case where true response and non-toxicity rates 
are considered as acceptable in the negative subgroup 
only (i.e. wrongly reject H0

+). Zang & Yuan proposed a 
reverse approach to address this shortfall [17]. The trial 
is initially only conducted in the positive subgroup and 
then in the negative subgroup if promising results are 
observed in the positive subgroup. An alternative two-
stage approach has also been published by Dutton & 
Holmes [18]. In this approach, futility is first tested in the 
unselected population and then in the negative or posi-
tive subgroup depending on whether or not promising 
results are observed. The impact of an assumption-based 
error in relation to hierarchy remains to be evaluated and 
deserves further investigation.

An optimal SABD design requires a total of 15 param-
eters to be estimated. A similar approach to the one pro-
posed by Jones et al. [8], which is described in «Expected 
sample size (ESS) and optimal design» section, was used to 
reduce the number of parameters that needed to be deter-
mined and thus also reduce the computational burden. 
Further work is required to provide technical solutions 
and to determine optimal designs over the 15-dimensional 
parameter space.

Conclusions
The SABD design allows to independently assess two 
dimensions through co-primary endpoints in a hetero-
geneous population without dramatically increasing the 
sample size. This is particularly useful for geriatric clini-
cal oncology trials as it allows to stratify the population 
according to a geriatric criterion and to identify a sub-
group of interest that has an acceptable and clinically 
relevant benefit-risk ratio at the end of the first or the 
second stage. As population heterogeneity is not lim-
ited to older populations, the SABD design may also be 
applicable to other study populations such as children 
or adolescents and young adults [19]. Children popu-
lations are heterogeneous particularly in terms of age, 
with tolerance of a treatment potentially dependent 
on these aspects [20]. Our novel SABD approach may 
also be envisaged for phase II trials of targeted thera-
pies based on a biomarker (positive versus negative) to 

select the appropriate study population for the subse-
quent phase III trial.
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