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Abstract: Introduction: Despite the implementation of control strategies at the national scale, the
malaria burden remains high in Mali, with more than 2.8 million cases reported in 2019. In this
context, a new approach is needed, which accounts for the spatio-temporal variability of malaria
transmission at the local scale. This study aimed to describe the spatio-temporal variability of malaria
incidence and the associated meteorological and environmental factors in the health district of Kati,
Mali. Methods: Daily malaria cases were collected from the consultation records of the 35 health areas
of Kati’s health district, for the period 2015–2019. Data on rainfall, relative humidity, temperature,
wind speed, the normalized difference vegetation index, air pressure, and land use–land cover were
extracted from open-access remote sensing sources, while data on the Niger River’s height and flow
were obtained from the National Department of Hydraulics. To reduce the dimension and account
for collinearity, strongly correlated meteorological and environmental variables were combined into
synthetic indicators (SI), using a principal component analysis. A generalized additive model was
built to determine the lag and the relationship between the main SIs and malaria incidence. The
transmission periods were determined using a change-point analysis. High-risk clusters (hotspots)
were detected using the SatScan method and were ranked according to risk level, using a classification
and regression tree analysis. Results: The peak of the malaria incidence generally occurred in October.
Peak incidence decreased from 60 cases per 1000 person–weeks in 2015, to 27 cases per 1000 person–
weeks in 2019. The relationship between the first SI (river flow and height, relative humidity, and
rainfall) and malaria incidence was positive and almost linear. A non-linear relationship was found
between the second SI (air pressure and temperature) and malaria incidence. Two transmission
periods were determined per year: a low transmission period from January to July—corresponding
to a persisting transmission during the dry season—and a high transmission period from July to
December. The spatial distribution of malaria hotspots varied according to the transmission period.
Discussion: Our study confirmed the important variability of malaria incidence and found malaria
transmission to be associated with several meteorological and environmental factors in the Kati
district. The persistence of malaria during the dry season and the spatio-temporal variability of
malaria hotspots reinforce the need for innovative and targeted strategies.
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1. Introduction

Malaria continues to be a serious threat to populations living in endemic or epidemic
areas. According to the World Health Organization (WHO), the global number of malaria
cases in 2019 was 229 million, with 94% of these occurring in sub-Saharan Africa [1]. Of
the 409,000 malaria deaths reported in 2019, 67% occurred in children under five years and
95% were recorded in sub-Saharan Africa [1]. Unfortunately, the global decrease in malaria
incidence over the 2015–2019 period was negligible, at 2% [1].

In Mali, 2.9 million cases of malaria were recorded in 2019, including 871,274 severe
cases and 1454 deaths [2]. That same year, malaria was one of the leading causes of mortal-
ity (27%), morbidity (23%), and consultations (34%) [2,3]. Malaria transmission is highly
heterogenous in Mali, showing (i) an endemic profile (hyperendemic or holoendemic)
in the Sudano–Sahelian zone (center and southern zone), where 50 to 80% of children
under five years are parasite carriers (i.e., plasmodium index); (ii) an epidemic profile in
the northern Saharian zone, with a plasmodium index below 5%; (iii) a hyperendemic
profile (bi- or pluri-modal) in irrigated/flood-prone areas (mainly bi-annual rice culture);
and (iv) a hypoendemic profile in urban areas [4]. While the spatio-temporal variability of
malaria transmission in Mali is largely related to environmental and meteorological fac-
tors [3], it is also increasingly linked to climate change, as in other regions of the world [3,5].

Over the last two decades, the National Malaria Control Program (NMCP) has been
implementing malaria control strategies in Mali, based on WHO recommendations. These
strategies consist of early diagnosis and case management, chemoprevention in pregnant
women and children aged 3 to 59 months, and vector control using long-lasting insecticide
nets (LLIN) and indoor residual spraying (IRS) [2].

In Mali, early diagnosis is currently performed using rapid diagnostic tests (RDTs)
and early case management through the administration of artemisinin-based combination
therapy (ACT). Both RDTs and ACT are free of charge in health facilities for children under
five years. According to the Malaria Indicator Survey, only 14% of febrile children in Mali
received an RDT and 51% failed to take ACT in 2015 [6]. In 2021, 23.3% of children received
an RDT, 19.4% of whom were positive for malaria [7].

Chemoprevention in pregnant women is based on intermittent preventive treatment
(IPT), which consists of the administration of three doses of sulfadoxine-pyrimethamine
(SP) during pregnancy. Coverage has considerably improved since IPT was first introduced
in Mali, in 2003 [8]. Thus, the rate of coverage increased from 35% in 2012 to 66% in
2015 for the first dose, and from 44% in 2015 to 56% in 2019, and to 57% in 2021 for
the second dose [2,6]. Despite this significant increase, Mali has not reached the goal of
universal coverage recommended by the WHO [3], nor has it even achieved the coverage
target of 80% set in the 2018–2022 National Malaria Control Strategic Plan [6]. The low
coverage rate is largely explained by poor adherence to treatment among pregnant women.

Since 2012, the WHO has recommended the administration of seasonal malaria chemo-
prevention (SMC) in children under five years to prevent malaria morbidity and mortality.
A maximum of four doses of antimalarial treatment, a combination of SP and amodiaquine
(AQ), should be administered at one-month intervals during the high transmission sea-
son [9]. According to the Malaria Indicator Survey, 36% of the targeted children in Mali
received at least one dose of antimalarial treatment during the high transmission season, in
2015 [6]. Between 2016 and 2019, this rate increased significantly to 106% of the targeted
children for the first and second doses, to 107% for the third dose, and to 105% for the fourth
dose [2]. In spite of these significant improvements, SMC coverage is likely to have been
hindered by the limited access to care among the Sahelian children and by low adherence
to treatment after the first dose.

Vector control consists in preventing human contact with the mosquito vector and
in limiting mosquito proliferation in the environment. This strategy specifically relies on
the appropriate use of LLINs and IRS. In Mali, LLINs are distributed free of charge, both
during prenatal consultations and during the distribution campaigns organized by the
NMCP and its partners. According to the Malaria Indicator Survey, 71% of children under
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five years, 78% of pregnant women, and 68% of the population who are at risk of malaria
used LLINs in Mali, in 2015 [6]. While these figures are encouraging, Mali has yet to reach
the goal of universal LLIN coverage, recommended by the WHO [10]. To date, IRS has
been applied in only four health districts of Mali, protecting 90% of the population at risk
in these areas [3].

In the health district of Kati, where malaria incidence was estimated at 68% in 2017 [11],
the same control strategies are implemented as in the rest of Mali. However, these strategies
have not been as successful as one would have hoped. While the RDT coverage rate in
Kati was high, at 81%, in 2016, it had significantly fallen to 68% in 2017 [11]. The drop in
antenatal visits from 37% in 2016, to 26% in 2017, and to 24% in 2018 suggests that the
IPT coverage rate in pregnant women also decreased [9]. As for the LLIN coverage rate in
pregnant women, it fell from 84.2% in 2017, to 51.68% in 2018 [11]. By contrast, SMC, which
was introduced in the Kati district in 2016, has shown encouraging results, with a coverage
rate of 109% of the targeted children in 2019 [11]. Note that no mass IRS campaign has been
implemented in Kati, to date.

Despite the implementation of control strategies at the national scale, the malaria
burden remains high in Mali. In this context, a new approach is needed, which accounts for
the spatio-temporal variability of malaria transmission at the local scale. To help achieve this
objective, the present study sought to answer the following question: “What meteorological
and environmental factors influence the spatio-temporal variability of malaria transmission
in the health district of Kati, in Mali?”

2. Methods
2.1. Study Site

The health district of Kati is located north-west of Bamako, in the Sudano–Sahelian
zone of Mali. In 2019, the population of Kati was estimated at 695,921, with a density of
66 inhabitants/km2, and a growth rate of 3.6%. The district has an area of 9636 km2 and
is subdivided into 23 communes and 35 health areas. It is crossed by various seasonal
streams and by the Niger River, in the south-east. The vegetation consists mainly of
grassy savannah, dotted with fruit trees and shrubs. The main economic activities are
market gardening and cereal cultivation, both of which are facilitated by the presence
of water reservoirs and seasonal streams, which constitute potential mosquito breeding
sites. Livestock breeding is another important economic activity, with the commune of Kati
hosting the country’s largest weekly livestock fair.

Annual rainfall in the Kati health district is 1000 mm. The rainy season runs from June
to October and peak rainfall occurs in August (304 mm). The temperature averages 20 ◦C
during the cold season and 30 ◦C during the hot season.

Malaria transmission in Kati is moderate [12] and seasonal, with the transmission
season running from June to December. In some areas, the entomological inoculation rate
can range from 137 to 167 infecting bites per person during the transmission season [13].

2.2. Data Collection

This study retrospectively analyzed daily malaria cases recorded in the health district
of Kati, over the period 2015–2019. Malaria data were collected from the consultation
records of the district’s 35 health areas. These records contained the following information
on patients visiting community health centers (CSCOM): date of consultation, name, age,
sex, place of residence, weight, clinical signs, diagnosis, and treatment prescribed. Only
cases confirmed by thick blood smear or RDT were considered for analysis.

Meteorological data were collected from different sources. Data generated through
remote sensing were extracted from the NASA Giovanni website [14], as follows: daily
number of rainfall events and cumulative rainfall (mm); minimum and maximum day and
night temperatures (◦C); and minimum and maximum day and night relative humidity
(%). Other data were extracted from the ERA5 database through Google Earth Engine [15]:
mean air pressure (hPa); normalized difference vegetation index; mean wind speed (km/h).
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The following hydrological data were obtained from the National Directorate of Hydraulics
of Mali: Niger River height (cm) and flow (m3).

The following land cover data were extracted from the Copernicus Global Land
Cover [16–20]: bare soil, cropland, grass vegetation, shrubland, forest, seasonal inland
water, and permanent inland water.

The geographic coordinates of the 35 health areas of Kati were extracted from the
Geographic Location System during the field survey. The perimeter of each health area was
delineated based on these geographic coordinates, using the Voronoi polygon method.

Malaria, meteorological, and environmental data were aggregated on a weekly basis.

2.3. Statistical Analysis
2.3.1. Temporal Analysis of Malaria Incidence and Associated Meteorological and
Environmental Factors

An additive decomposition of the malaria incidence time series was performed to
estimate trend, seasonality, and residual at the scale of the Kati health district.

Weekly malaria incidence was estimated and plotted. Rainfall, mean temperature, and
Niger River height and flow were also plotted at health-district level.

To reduce dimension and, thus, account for collinearity, a principal component anal-
ysis (PCA) of meteorological and environmental factors was performed. Components
were determined using the elbow method and the Kaiser criterion [21]. Each component
represented a synthetic indicator (SI).

A univariate generalized additive model (GAM), using minimum generalized cross
validation and maximum explained deviance, was performed to estimate the lags between
the main SIs and malaria incidence [21].

A multivariate GAM, with negative binomial distribution, was built to account for
overdispersion [22]. Spline function smoothing was performed to estimate non-linear
relationships, and standardized incidence ratios were estimated by modeling the log-
transformed population as the offset [23].

A change-point analysis of the malaria incidence time series was performed to deter-
mine transmission periods. The dates of significant changes in the mean and variance of
malaria incidence were determined using the pruned exact linear time algorithm [24], with
the AIC criterion [5,25,26].

2.3.2. Spatial Analysis of Malaria Incidence

The search for high-risk clusters or hotspots was carried out using Kulldorff’s SatScan
method, the precision of which increases with the size of the population at risk, the
incidence rate, and the relative risk (RR) [27,28]. This method was selected because it
circumvents the problem of test multiplicity by using the likelihood ratio test and the
Monte Carlo approach [26]. Health areas with significantly high malaria incidence were
grouped into high-risk clusters, in the form of a circular window of variable size [26],
a shape that helped to avoid the poor performance associated with edge effects [29]. The
characteristics of each hotspot were studied using supervised classification to identify the
main associated factors and their combinations.

A map showing the spatio-temporal distribution of malaria incidence and hotspots
was built for each year of the study.

2.3.3. Classification and Regression Tree Analysis

Health areas were ranked according to their level of malaria risk using classification
and regression tree analysis (CART), a non-parametric classification method that analyzes
historical data by means of a decision tree. The main variables associated with hotspot
status were identified by constructing a tree whose leaves (i.e., the terminal nodes) were
composed of health areas presenting the same level of malaria risk [30]. The CART method
presents two main advantages: it can treat both numerical and categorical variables and it
handles outliers more effectively than other statistical models (including PCA) [31].
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2.3.4. Software

Malaria data were entered on tablets using REDCap software version 11.1.1 (Vandrbilt
University, Nashville, TN, USA). Meteorological and environmental data extraction and
statistical analyses were performed using R software, version 4.1.0 (18 May 2021, Copy-
right © 2022, R Foundation for Statistical Computing). SatScan, version 9.7 (Information
management Services Inc, Calverton, MS, USA), was used to detect malaria hotspots. The
incidence map with malaria hotspots was built with QGIS, version 3.16.7 (Open Source
Geospatial Foundation Project, Beaverton, OR, USA). Figures and images were formatted
and treated using Microsoft Paint.

3. Results
3.1. General Description of the Malaria Incidence Time Series

A total of 293,001 confirmed malaria cases, which were collected from 190 consultation
records, were analyzed for the period 2015–2019.

The malaria incidence time series confirmed the seasonality of malaria transmission in
Kati. The peak of malaria incidence generally occurred in October. The peak of incidence
decreased over the study period, from 60 cases per 1000 person–weeks in 2015, to 27 cases
per 1000 person–weeks in 2019 (Figure 1).
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Figure 1. (A): Weekly malaria incidence (red curve) according to rainfall (blue), temperature (or-
ange), and transmission period (PrdTrans: white band—low transmission period; grey band—high
transmission period). (B): River height (orange curve), river flow (gray curve), and relative humidity
(blue curve).

The peak rainfall was observed in August in 2015, 2018, and 2019, and in July in 2016
and 2018. This peak also decreased over the study period, from 146 mm in 2015, to 105 mm
in 2019 (Figure 1).

The lag between the peak rainfall and the peak malaria incidence was 8 weeks in 2015,
2018, and 2019; 13 weeks in 2016; and 14 weeks in 2017.

Three SIs were determined using PCA, with the elbow method and the Keiser criterion.
These SIs explained 88.5% of the total inertia (Figure 2). The first SI (SI#1), which explained
49.3% of the inertia, consisted of river flow and height, relative humidity, and rainfall.
The second SI (SI#2), which explained 29.8% of the inertia, consisted of air pressure and
temperature (Table 1).
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Table 1. Correlation of the main synthetic indicators with malaria incidence.

Synthetic
Indicators Variables Percentage of

Inertia
Correlation
Coefficient r

Percentage of
Total Inertia

Synthetic Indicator #1

Mean river flow 7.05 0.87

49.3%

Maximum river flow 7.12 0.88

Mean river height 7.49 0.90

Maximum river height 7.50 0.90

Minimum river height 7.44 0.90

Mean night relative humidity 7.92 0.93

Minimum night relative humidity 7.55 0.90

Mean day relative humidity 7.89 0.93

Maximum day relative humidity 7.71 0.91

Minimum day relative humidity 7.69 0.91

Cumulative Rainfall 4.47 0.70

Wind speed 3.87 −0.65

Synthetic Indicator #2

Mean air pressure 7.61 0.71

29.8%

Mean night temperature 14.52 0.98

Minimum night temperature 13.21 0.93

Maximum night temperature 14.24 0.97

Mean day temperature 14.52 0.98

Minimum day temperature 13.21 0.93

Maximum day temperature 14.24 0.97

3.2. Temporal Analysis of Malaria Incidence and Associated Meteorological and
Environmental Factors

The univariate GAM showed a lag of 4 weeks between SI#1 (river flow and height,
relative humidity, and rainfall) and malaria incidence. A lag of 19 weeks was found between
SI#2 (air pressure and temperature) and malaria incidence.

The multivariate GAM highlighted a significant relationship between the first two SIs
(SI#1 and SI#2) and malaria incidence, with an explained deviance of 78.5%.

The relationship between SI#1 (river flow and height, relative humidity, and rainfall)
and malaria incidence (p < 0.001) was positive and almost linear (Figure 3A). The SI#1
variables that most correlated with malaria incidence were river flow and height, and
relative humidity (Table 1).

The relationship between SI#2 (air pressure and temperature) and malaria incidence
was significantly non-linear (p < 0.001). The SI#2 variable that most correlated with malaria
incidence was temperature (Table 1): the incidence of malaria increased significantly as the
temperature increased, but decreased significantly at higher temperatures (Figure 3B).

Two transmission periods were determined using a change-point analysis, as follows:
a low transmission period (LTP) and a high transmission period (HTP).

The mean duration of the LTP was 24 weeks. The LPT generally started in December
and ended in July; however, it lasted from December to June in 2016–2017 and from
November to July in 2017–2018.

The mean duration of the HTP was also 24 weeks. The HTP started in July and ended
in December during every year of the study.
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3.3. Spatial Analysis of Malaria Incidence

According to the SatScan analysis, 25 out of 35 health areas were a malaria hotspot at
least once during the study period. Specifically, three health areas were a malaria hotspot
in the first year of the study, two health areas were a malaria hotspot in two consecutive
years (2015–2016 or 2016–2017), 10 health areas were a malaria hotspot every year of the
study, and 10 health areas were a hotspot without temporal regularity (Table 2).

Table 2. Distribution of health areas according to hotspot status.

Never a
Hotspot

Hotspot in the First
Year of the Study

Hotspot in Two
Consecutive Years

Hotspot Every
Year of the Study

Hotspot without
Temporal Regularity

Number of
health areas 10 3 2 10 10

Malaria hotspots were detected during all LTPs.
A total of seven significant hotspots, covering nine health areas, were detected during

the 2015–2016 LTP. The hotspot with the highest malaria RR (7.23; p < 0.0001) had a malaria
incidence rate of 0.79 cases per 1000 person–weeks. This hotspot covered two health areas
with a population of 10,026 inhabitants, within a radius of 11.15 km.

A total of five significant hotspots, covering 16 health areas, were detected during the
2016 HTP. The largest hotspot had an RR of 3.87 (p < 0.0001) and covered nine health areas
with a population of 106,485, within a radius of 29.75 km.

A total of five significant hotspots, covering eight health areas, were detected during
the 2017–2018 LTP. The hotspot with the highest RR (13.45; p < 0.0001) covered two health
areas with a population of 8195 inhabitants, within a radius of 3.84 km.

Lastly, a total of seven significant hotspots, covering 13 health areas, were detected
during the 2018 HTP. The largest hotspot had an RR of 3.17 (p = 0.0001) and covered
six health areas with a population of 95,226 inhabitants, within a radius of 22.86 km.
The hotspot with the highest RR (18.84; p = 0.0001) covered only one health area, with
a population of 4423 inhabitants.

Table 3 describes the transmission periods according to the presence of hotspots and
according to selected meteorological variables. Table 4 describes the health areas according
to the number of times they were a hotspot and according to their land cover characteristics.
Maps showing the spatio-temporal distribution of malaria incidence and hotspots in the
Kati health district are presented in Figure 4.



Int. J. Environ. Res. Public Health 2022, 19, 14361 9 of 18

Table 3. Transmission periods according to the presence of hotspots and selected meteorological variables.

Malaria
Transmission

Periods

Duration
(Weeks)

Number of Health
Areas That Were

a Hotspot

Number
of

Hotspots

Incidence Rate (Cases per 1000
Person–Weeks) Rainfall (mm) Mean Temperature (◦C) Mean Wind (km/h) Mean NDVI

Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max.

Low transmission
period, 2015
(W1–W28)

28 10 5 0.003 0.737 7.210 203 260 305 29 29 31 2.06 2.24 2.34 0.218 0.274 0.344

High transmission
period, 2015
(W29–W50)

22 15 5 0.041 2.883 27.2 578 725 853 25 26 27 1.43 1.57 1.70 0.240 0.536 0.646

Low transmission
period, 2015

(W51)–2016 (W29)
31 9 7 0.001 0.994 8.742 321 408 455 28 29 30 2.21 2.31 2.39 0.240 0.348 0.440

High transmission
period, 2016
(W30–W49)

20 16 5 0.022 2.803 15.75 433 520 603 26 27 28 1.06 1.22 1.34 0.240 0.377 0.430

Low transmission
period, 2016

(W50)–2017 (W26)
29 14 6 0.004 1.140 12.02 200 257 307 28 29 30 1.96 2.14 2.25 0.240 0.337 0.451

High transmission
period, 2017
(W27–W47)

21 10 6 0.176 3.198 25.04 543 611 679 26 27 28 1.12 1.35 1.50 0.240 0.447 0.599

Low transmission
period, 2017

(W48)–2018 (W27)
32 8 5 0.019 1.206 21.34 211 278 326 28 29 30 1.91 2.03 2.15 0.240 0.340 0.400

High transmission
period, 2018
(W28–W49)

22 13 7 0.003 2.034 36.44 641 741 842 26 27 27 1.11 1.27 1.40 0.240 0.506 0.616

Low transmission
period, 2018

(W50)–2019 (W27)
30 13 7 0.023 0.381 11.72 166 213 242 28 29 30 1.99 2.12 2.19 0.204 0.266 0.301

High transmission
period, 2019
(W28–W46)

19 14 4 0.005 0.399 14.29 689 789 906 26 27 27 1.11 1.40 1.56 0.220 0.247 0.269
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Table 4. Health areas according to the number of times they were a hotspot and their land cover characteristics.

Health Areas
Number of Times
Health Area Was

a Hotspot

Bare Soil Cropland Grass Vegetation Shrubland Forest Seasonal Inland Water Permanent Inland Water

Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max.

BANCOUMANA 2 0 0.33 100 0 37.8 90 0 33.6 100 0 15.8 43 0 7.4 42 0 0 100 0 0 100

DABAN 4 0 0 23 0 29 87 0 40.6 81 0 20.8 47 0 7.6 54 0 0 81 0 0 0

DIAGO 4 0 0.67 30 0 31.6 87 0 39.4 76 0 17.8 44 0 7.4 39 0 0 6 0 0 0

DIALAKORODJI 0 0 0 34 0 15 78 0 39.4 74 0 16.4 43 0 6.4 38 0 0 0 0 0 0

DIO BA 4 0 0 20 0 15.4 85 0 42.2 79 0 24.8 47 0 9.8 42 0 0 5 0 0 0

DIO GARE 3 0 0.33 26 0 24.2 86 0 39.4 77 0 21.6 44 0 8.8 40 0 0 25 0 0 0

DJIGUIDALA 3 0 0 9 0 20.8 88 0 42 100 0 23.8 46 0 10.6 46 0 0 100 0 0 100

DJOLIBA 0 0 0 100 0 33.4 93 0 35 99 0 17.8 66 0 7.4 40 0 0 100 0 0 100

DOGODOUMA 2 0 0 24 0 6.8 39 0 43.8 73 0 24 40 0 15.6 48 0 0 0 0 0 0

DOMBILA 0 0 0 29 0 4.2 87 0 45.8 80 0 25.8 43 0 14 55 0 0 11 0 0 0

DOUBABOUGOU 0 0 0 16 0 10 82 0 44.2 78 0 25.4 43 0 11.8 46 0 0 2 0 0 0

FALADJE 4 0 0 26 0 21.6 86 0 42.8 84 0 23.8 45 0 8.8 53 0 0 70 0 0 0

FARABANA 5 0 0 69 0 6.4 82 0 41.2 99 0 24.4 46 0 13 62 0 0 100 0 0 100

FARADA 0 0 0.67 36 0 27.8 80 0 37.4 72 0 17.6 40 0 7.6 38 0 0 3 0 0 0

KABALABOUGOU 0 0 0 89 0 0 84 0 17.4 100 0 2.7 39 0 0 32 0 0 100 0 0 100

KALIFABOUGOU 5 0 0 22 0 23 86 0 42.2 79 0 23.2 46 0 8.8 45 0 0 7 0 0 0

KANADJIGUILA 0 0 0 28 0 3.8 79 0 45 75 0 25.4 41 0 13.2 43 0 0 0 0 0 0

KATICORO 3 0 0.33 16 0 18 79 0 40.4 74 0 15.2 36 0 5.8 33 0 0 0 0 0 0

KOKO 0 0 0 25 0 17.4 80 0 41.6 78 0 21.4 46 0 9.8 39 0 0 0 0 0 0

MALIBOUGOU 0 0 0.33 22 0 21.6 79 0 36.2 67 0 19 41 0 10 46 0 0 53 0 0 0

MORIBABOUGOU 4 0 0 94 0 4.4 72 0 42 100 0 22.2 45 0 8.6 41 0 0 100 0 0 63

NANA-KENIEBA 0 0 0 17 0 0 80 0 47.8 81 0 27.2 46 0 22.4 56 0 0 0 0 0 0

NEGUELA 0 0 30 0 5.4 87 0 42.2 80 0 27.2 50 0 11.8 64 0 0 17 0 0 0
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Table 4. Cont.

Health Areas
Number of Times
Health Area Was

a Hotspot

Bare Soil Cropland Grass Vegetation Shrubland Forest Seasonal Inland Water Permanent Inland Water

Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max. Min. Median Max.

NGABAKORO 3 0 0.33 59 0 23.2 85 0 39.8 100 0 18.4 66 0 7.6 43 0 0 100 0 0 100

NIAME 3 0 0 13 0 15.6 80 0 45.4 75 0 25.6 47 0 10.6 42 0 0 0 0 0 0

NIOUMA
MAKANA 1 0 0 22 0 0.8 80 0 49.8 81 0 26.4 45 0 19 61 0 0 0 0 0 0

OUEZZINDOUGOU 4 0 0 63 0 19.8 83 0 31.8 87 0 19.8 42 0 9.2 55 0 0 100 0 0 100

SAFO 1 0 0 19 0 25.6 81 0 44.2 78 0 20.6 49 0 7 38 0 0 5 0 0 0

SANANFARA 0 0 0 37 0 10.2 43 0 43 77 0 22 42 0 8.4 49 0 0 0 0 0 0

SANDAMA 0 0 0 24 0 0 80 0 48.4 81 0 27.2 45 0 20.8 60 0 0 0 0 0 0

SANGAREBOUGOU 0 0 0 98 0 3.4 69 0 31 97 0 8.2 46 0 4 36 0 0 100 0 0 15.6

SIBY 0 0 0 28 0 4.4 85 0 43.6 79 0 23.8 46 0 13.2 53 0 0 75 0 0 0

SONIKEGNY 5 0 0 19 0 29.8 66 0 40.6 78 0 19 39 0 7.6 34 0 0 47 0 0 0

TORODO 4 0 0 32 0 27 86 0 41 75 0 22.2 47 0 8.2 43 0 0 26 0 0 0

YELEKEBOUGOU 5 0 0 28 0 25.6 85 0 43 79 0 22.4 46 0 8.2 43 0 0 55 0 0 0
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3.4. Classification and Regression Tree Analysis

The CART method identified three classes of malaria risk: low, moderate, and high.
Two variables were significantly associated with the different classes of risk: cropland cover
and bare soil cover.

A total of 18 health areas were classified as having a low level of malaria risk (Class 1).
These health areas had a mean cropland cover ≤ 23.25. The number of times these health
areas were identified as a hotspot was less than one.

A high level of malaria risk (Class 2) was observed in nine health areas, which had
a mean cropland cover > 23.25 and a mean bare soil cover ≤ 0.98. The number of times
these health areas were identified as a hotspot was equal to four.

A total of eight health areas were classified as having a moderate level of malaria
risk (Class 3). These health areas had a mean cropland cover > 23.25 and a mean bare soil
cover > 0.98. The number of times these health areas were identified as a hotspot was equal
to two.

The different classes of malaria risk are described in Table 5.

Table 5. Classes of malaria risk according to the number of health areas and to meteorological and
environmental variables.

Class 1 2 3

Incidence (cases per 1000
persons–weeks) 288.62 425.89 262.80

Number of health areas 18 9 8
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Table 5. Cont.

Class 1 2 3

Total Population 112,979 56,851 83,618

Cumulative Rainfall (mm) 992 902 950

Mean Temperature (◦C) 27.78 28.24 27.95

Mean NDVI 0.37 0.35 0.33

Mean Cropland (SD) 17.68 (2.67) 29.83 (2.36) 29.88 (3.72)

Mean Shrubland (SD) 19.93 (2.13) 21.55 (0.81) 18.09 (1.40)

Mean Forest (SD) 12.82 (1.75) 10.07 (1.56) 9.22 (2.31)

Mean Permanent Inland Water (SD) 1.50 (9.67) 0.04 (1.77) 1.84 (9.56)

Mean Seasonal Inland Water (SD) 1.32 (8.82) 0.04 (1.14) 1.46 (7.84)

Mean Bare Soil (SD) 1.50 (2.45) 0.60 (0.43) 1.62 (1.35)

Mean Grass Vegetation (SD) 35.83 (3.57) 36.87 (0.89) 34.27 (2.31)
NDVI—normalized difference vegetation index; SD—standard deviation. Class 1 corresponds to a low level of
malaria risk, Class 2 to a high level of malaria risk, and Class 3 to a moderate level of malaria risk.

Figure 5 shows the CART classification of the health areas, according to the level of
malaria risk and to the cropland cover and bare soil cover. A map of the health areas,
classified according to the level of malaria risk, is presented in Figure 6.
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4. Discussion

This study aimed to describe the spatio-temporal variability of malaria incidence
and the associated meteorological and environmental factors, in the health district of
Kati, Mali, for the period 2015–2019. Our descriptive analysis of the incidence curve
confirmed the seasonality of malaria transmission in the Kati district. The spatio-temporal
variability of malaria incidence was high and was associated with several meteorological
and environmental factors. Malaria hotspots were detected during all LTPs.

For most of the study period, the onset of the HTP occurred in July in the Kati health
district—i.e., one month later than is usually observed in this, and other health districts
of the Sudano–Sahelian zone. This finding was similar to that reported by Dieng et al. in
Senegal [5], which can most likely be explained by the climatic similarities between the two
study sites. However, it differs from that reported by Cissoko et al. in northern Mali (Diré
health district) [21], who found that the HTP onset occurred in August.

Malaria incidence decreased gradually over the study period. This decrease may be
due to the following factors: (1) the impact of SMC, which was introduced in the Kati
district in 2016 [32], and that was likely to have helped to reinforce the malaria control
strategies already in place; (2) the observed decrease in rainfall over the study period; or
(3) a combination of the two. Note that a decrease in malaria incidence has been reported
in several other regions of sub-Saharan Africa and in other parts of the world in recent
years [15,25,26,33–35].

The lag between the peak rainfall and the peak malaria incidence in the Kati district
was 8 weeks in 2015, 2018, and 2019; 13 weeks in 2016; and 14 weeks in 2017. Similarly,
the studies by Ferrão et al. in Mozambique [36] and Diouf et al. in Senegal [37] reported
a lag of 8 weeks between the peak rainfall and the peak of malaria incidence, while that by
Teklehaimanot et al. in Ethiopia [38] found a lag of 12 weeks between the two events.
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A lag of 4 weeks was observed between SI#1 (river flow and height, relative humidity,
and rainfall) and malaria incidence. By contrast, Sissoko et al., in Mali [25], and Rouamba
et al., in Burkina Faso [33], reported a lag of 8 and 9 weeks, respectively, between relative
humidity and malaria incidence. Ouedraogo et al., in Burkina Faso [26], found a shorter
lag of 2 weeks between these two variables.

The relationship between SI#1 (river flow and height, relative humidity, and rainfall)
and malaria incidence was positive and almost linear. Interestingly, the relationship be-
tween relative humidity and malaria incidence was also positive and almost linear in the
studies by Segun et al., in Nigeria [39], and by Ouedraogo et al., in Burkina Faso [26]. More-
over, a positive and almost linear relationship between river height and malaria incidence
was found in the studies by Stefani et al., in French Guiana [34], and by Sissoko et al. [25]
and Cissoko et al. in Mali [21]. In our study, the correlation between rainfall and malaria
incidence was not as strong as that between the other SI#1 variables and malaria incidence.
This suggests that the impact of rainfall on malaria incidence in the Kati district is always
mediated by relative humidity and by river flow and height [5].

The relationship between SI#2 (air pressure and temperature) and malaria incidence
was non-linear, with a lag of 19 weeks. The incidence of malaria increased gradually as the
temperature increased but decreased significantly at higher temperatures—a phenomenon
explained by the fact that Anopheles gambiae (the principal vector for this area) larvae and
adults die at temperatures above 35 ◦C [40]. A non-linear relationship between temperature
and malaria incidence was also observed in the studies by Sissoko et al., in Mali [25], and
by Ouedraogo et al. [26] and Bationo et al., in Burkina Faso [15]. However, the lag between
temperature and malaria incidence in these studies was 13, 2, and 16 weeks, respectively.

The LTP and HTP were determined using a change-point analysis, and followed the
two climatic seasons of Mali: the dry season and the rainy season. Similar results were
reported by Sissoko et al. [25] and Coulibaly et al. in Mali [41], by Dieng et al. in Senegal [5],
and by Rouamba et al. [33] and Baragatti et al. in Burkina Faso [42].

The distribution of malaria hotspots varied significantly over the study period. Some
health areas, most of them in urban areas, remained non-hotspots throughout the study.
Others were hotspots in the first year of the study or in two consecutive years, and others
were hotspots during every year of the study (Table 2). The non-negligible incidence
observed during the LTPs reflected the persistence of malaria during the dry season. This
phenomenon, which was also observed in Senegal by Dieng et al. [5], suggests that malaria
control strategies need to be implemented earlier than is currently the case.

The CART analysis found a very low risk of malaria transmission in areas with little
cropland. This risk was four times higher in areas with large cropland areas and little
bare soil, and two times higher in areas with large cropland areas and large bare soil
areas (Figure 5). This finding suggests that market gardening, which is widespread in
the Kati district, increases the risk of malaria transmission—a phenomenon explained
by the fact that the water reservoirs needed to sustain this activity constitute potential
mosquito breeding sites. This finding is also in line with the studies conducted in other
parts of the world. Thus, Cissoko et al. [21] and Bhattarai et al. [43] found malaria incidence
to be associated with land use and the proximity of water sources in Mali and Nepal,
respectively. For their part, Mitchell et al. [44] and Paul et al. [45] observed an association
between greater cropland cover and increased malaria prevalence in Tanzania. Lastly,
Nicholas et al. [46] found a link between agricultural practices and the proliferation of
malaria vectors in Kenya.

The limitation of our study was the use of data from consultation records. Most of
these records were not properly maintained. In addition, information was missing in
some observations. As a corrective action, all incomplete observations were removed
from the database. Another limitation of this study was the absence of the consideration
of social and behavioral factors, which are important in the implementation of malaria
control interventions.
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5. Conclusions

Our study confirmed the important variability of malaria incidence in the health
district of Kati and confirmed that malaria’s variability was highly associated with a combi-
nation of meteorological and environmental factors, including land cover and land use. We
found that malaria incidence was low in areas with little cropland areas, but much higher
in areas with large cropland areas and little bare soil areas. The persistence of malaria cases
during the dry season and the spatio-temporal variability of malaria hotspots reinforce the
need for innovative and targeted strategies in Mali.
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RR Relative risk
CART Classification and regression tree analysis
LTP Low transmission period
HTP High transmission period
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