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Harriet Demintz‑King5, Natalie L. Marchant5, Denis Vivien1, Vincent de la Sayette2,4, Antoine Lutz6, 
Gaël Chételat1* and for the Medit-Ageing Research Group 

Abstract 

Background:  This study assesses the relationships between dynamic functional network connectivity (DFNC) and 
dementia risk.

Methods:  DFNC of the default mode (DMN), salience (SN), and executive control networks was assessed in 127 cog‑
nitively unimpaired older adults. Stepwise regressions were performed with dementia risk and protective factors and 
biomarkers as predictors of DFNC.

Results:  Associations were found between times spent in (i) a “weakly connected” state and lower self-reported 
engagement in early- and mid-life cognitive activity and higher LDL cholesterol; (ii) a “SN-negatively connected” state 
and higher blood pressure, higher depression score, and lower body mass index (BMI); (iii) a “strongly connected” state 
and higher self-reported engagement in early-life cognitive activity, Preclinical Alzheimer’s cognitive composite-5 
score, and BMI; and (iv) a “DMN-negatively connected” state and higher self-reported engagement in early- and mid-
life stimulating activities and lower LDL cholesterol and blood pressure. The lower number of state transitions was 
associated with lower brain perfusion.

Conclusion:  DFNC states are differentially associated with dementia risk and could underlie reserve.

Keywords:  Dynamic functional network connectivity, Sliding window analysis, Dementia risk, Cognition, Cognitive 
reserve, Lifestyle, Cardiovascular risk factors
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Introduction
There is increasing evidence that several modifiable 
risk and protective factors play a key role in the devel-
opment of dementia and they are the main target of 
prevention interventions [1, 2]. The main modifiable 
dementia risk factors include cardiovascular factors (such 

as hypertension, diabetes, hypercholesterolemia, obesity, 
alcohol consumption, smoking, and physical inactivity), 
lifestyle factors (such as social contact, cognitive and 
physical exercise), and psycho-affective factors (such as 
depression) [1, 2]. The impact of these factors is consider-
able as their modification could allow to prevent or delay 
up to 40% of dementias [2].

Those risk and protective factors are thought to modu-
late cognitive reserve, possibly through their impact on 
the integrity and efficiency of functional brain networks 
[3]. Previous functional connectivity studies still mostly 
rely on static resting-state functional connectivity, which 
is based on the assumption that functional connectivity 
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is temporally static throughout the measurement period. 
Dynamic functional network connectivity (DFNC) 
recently emerged as a powerful technique to assess 
changes in functional connectivity over a short period 
of time, allowing investigation of the fluctuation of brain 
network interactions [4, 5]. The assessment of DFNC can 
improve characterization and understanding of brain 
function by showing how the brain transits between 
different connectivity configurations (hereby named 
“states”), corresponding to distinct connectivity patterns 
reoccurring over short periods of time [4, 5]. However, it 
is currently unknown whether dementia risk and protec-
tive factors are associated with changes in DFNC.

Recent studies reported altered DFNC across the Alz-
heimer’s disease continuum, from subjective cognitive 
decline to dementia [6–9]. Notably, the default mode net-
work (DMN), salience network (SN), and executive con-
trol network (ECN) are three large-scale brain networks 
involved in cognitive functions [10] which are particu-
larly vulnerable to dementia of the Alzheimer type [11]. 
Investigating the relationships between DFNC of the 
DMN, SN, and ECN and dementia risk and protective 
factors is thus a promising way to assess whether inter-
individual variability in functional brain organization 
could be linked with the risk of developing dementia.

The main objective of this study was to investigate the 
relationships between DFNC of the DMN, SN, and ECN 
on the one hand and dementia risk and protective factors 
on the other hand in cognitively unimpaired older adults. 
As secondary objectives, we also assessed the links 
between DFNC of the DMN, SN, and ECN and Alzhei-
mer’s disease cognitive and neuroimaging markers (Pre-
clinical Alzheimer’s Cognitive Composite score, amyloid 
burden, brain perfusion, and hippocampal volume).

We hypothesize that the time spent in specific con-
nectivity states would be associated with a higher risk for 
dementia, while the time spent in other states would be 
associated with a lower risk for dementia.

Methods
Participants
We included baseline data from 127 cognitively unim-
paired older adults from the Age-Well randomized con-
trolled trial (RCT) of the Medit-Ageing European project, 
detailed in a previous publication [12] (Fig.  1). Partici-
pants were recruited from the general population, aged 
over 65 years old, native French speakers, retired for at 
least 1 year, had completed at least 7 years of education, 
and performed within the normal range on standardized 
cognitive tests. The main exclusion criteria were (i) any 
contraindication to MRI or PET scanning; (ii) evidence 
of a major neurological or psychiatric disorder, includ-
ing alcohol or drug abuse; (iii) history of cerebrovascular 
disease; (iv) presence of a chronic disease or acute unsta-
ble illness; and (v) current or recent medication that may 
interfere with cognitive functioning.

Neuropsychological assessment
The Preclinical Alzheimer’s Cognitive Composite 
(PACC5) [13] was computed for each participant. The 
PACC5 is a global cognitive composite score sensitive to 
detecting preclinical Alzheimer’s disease-related cogni-
tive decline, detailed in the Supplementary Methods.

Dementia risk and protective factors
Cardiovascular, psycho-affective, lifestyle, and genetic 
risk and protective factors for dementia were selected 
based on existing evidence from the literature [1, 2] 

Fig. 1  Flow chart
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and are described in Table  1. Variables were treated 
as risk factors if higher values equate to higher risk 
for dementia, and protective factors if higher values 
equate to lower risk for dementia. It should be noted 
that (i) hypertension has been consistently shown to 
be associated with dementia risk at mid-life but have 
an unclear association at late-life, as both hypertension 
and declining blood pressure have been associated with 
increased dementia risk [18, 19], and (ii) high BMI in 
late-life has been found to be associated with decreased 
dementia risk (as opposed to high BMI in mid-life) [20, 
21]. Among lifestyle factors, three questionnaires were 
used (available in the Supplementary data):

–	 The Lifetime of Experiences Questionnaire (LEQ) 
is a self-reported questionnaire measuring engage-
ment in stimulating activities (e.g., education, occu-
pation, leisure, social and physical activities) across 
different life periods: early-life (13–30 years), mid-
life (30–65 years), and late-life (from 65 years to 
present date) [15]. The “early-life LEQ” includes the 
level of education.

–	 The Cognitive Activity Questionnaire (CAQ) is 
a self-reported questionnaire assessing cognitive 
activities across different life periods: early-life (18 
years), mid-life (40 years), and current period (i.e., 
late-life) (note: it also comprises assessment for 
childhood which was not used for this study) [16].

–	 The Physical Activity Scale for the Elderly (PASE) 
is a self-reported questionnaire assessing leisure, 
household, and occupational activities during the 7 
past days, specifically designed for subjects over 65 
years old [17].

Neuroimaging acquisition
All participants were scanned at Cyceron Center (Caen, 
France) on the same MRI (Philips Achieva 3.0T) and PET 
(Discovery RX VCT 64 PET-CT, General Electric Health-
care) scanners. Neuroimaging acquisition has previously 
been published [22] and is detailed in the Supplementary 
Methods.

Neuroimaging data preprocessing
Preprocessing of resting‑state functional MRI
Resting-state functional MRI (fMRI) data were pro-
cessed with artifact detection with the TSDiffAna routine 
(detailed in the Supplementary Methods), slice timing 
correction, realignment to the first volume, and spatial 
normalization within the native space. Echo planar imag-
ing (EPI) volumes were then co-registered to the corre-
sponding T1-weighted MRI images, normalized to the 
MNI space by applying the normalization parameters 
derived from the T1-weighted MRI, and smoothed with a 
4-mm full-width at half-maximum Gaussian kernel.

Table 1  Dementia risk and protective factors assessed in this study

BMI body mass index, LDL low-density lipoprotein, APOE4 apolipoprotein e4

Risk or protective factor Measure Relation with dementia risk

Clinical factors
  Diabetes Fasting blood sugar (g/L) Higher value = higher risk

  Obesity BMI (kg/m2) Higher value = lower risk

  Hypertension Mean of 3 consecutive measures of systolic blood pres‑
sure (mmHg)

Higher value = higher risk

  Hypercholesterolemia LDL cholesterol (mmol/l) Higher value = higher risk

  Depressive symptoms Geriatric Depression Scale total score [14] Higher value = higher risk

Lifestyle factors
  Engagement in stimulating activities across the lifespan 
(educational, occupational, leisure, social, and physical 
activities)

Lifetime of Experiences Questionnaire sub-scores in early-
life, mid-life, and late-life [15]

Higher value = lower risk

  Cognitive activity across the lifespan Cognitive Activity Questionnaire sub-scores in early-life, 
mid-life, and late-life [16]

Higher value = lower risk

  Physical activity in the past 7 days Physical Activity Scale for the Elderly total score [17] Higher value = lower risk

  Smoking Number of pack year Higher value = higher risk

  Excessive alcohol consumption Averaged number of unit per week Higher value = higher risk

Genetic factors
  APOE4 genotype Number of APOE4 alleles ≥ 1 APOE4 allele = higher risk
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PET preprocessing
Partial volume effects (PVE)-corrected and normal-
ized early and late florbetapir-PET images were used to 
extract the cerebral blood flow standardized uptake value 
ratio (SUVr), reflecting global cortical amyloid and brain 
perfusion, respectively (as detailed in the Supplementary 
Methods).

MRI preprocessing
The hippocampus was automatically segmented on T1 
images using the ASHS-T1 pipeline (https://​sites.​google.​
com/​view/​ashs-​dox/​home) to measure the hippocampal 
volume [23] (Supplementary Methods).

Identification of intrinsic connectivity network
Resting-state data of all participants were analyzed 
using fully automated spatially constrained independ-
ent component analysis (ICA) [24] as implemented in 
the GIFT software [25] (http://​trend​scent​er.​org/​softw​
are/​gift). Spatially constrained ICA was performed 
using an ICA template from an independent cohort 
[26] to decompose the data into 30 components, con-
taining 14 intrinsic connectivity networks. These net-
works are available to download at https://​findl​ab.​
stanf​ord.​edu/​funct​ional_​ROIs.​html (note that they 
are referred as “90 fMRI ROI” as the 14 networks have 
also been further parceled to generate 90 functional 
ROI). The advantage of using a spatially constrained 
ICA approach is to enhance robustness to artifacts 

and noise compared to single-subject ICA denoising 
and regression-based back-reconstruction [27] and 
also facilitated automated component labeling and 
sorting. Images were masked with a gray matter mask 
(described in the Supplementary Methods). Among 
the 30 components, we selected 7 ICA components 
recapitulating the three intrinsic functional networks 
most involved in Alzheimer’s disease-related cogni-
tive decline: the DMN, SN, and ECN [11], which are 
represented in Fig. 2. Following ICA, each time course 
was normalized using z-scaling. Time courses were 
detrended, despiked using 3Ddespike, and filtered by 
a fifth-order Butterworth low-pass filter with a high-
frequency cut-off of 0.15 Hz [28].

Dynamic functional network connectivity
DFNC was estimated using the sliding window 
approach implemented in the GIFT toolbox [28, 29], as 
described in previous publications [4, 5]. Resting-state 
data were divided into 182 windows of 18 repetition 
times (43 s) size, in steps of one repetition time (2.4 
s). These time windows were convolved with a Gauss-
ian of 7.2 s (r = 3 repetition times), given that a win-
dow length between 30 and 60 s is suitable to estimate 
DFNC [30]. Within each of these windows, we imposed 
a L1 norm of the precision matrix to promote spar-
sity. As dynamic functional connectivity analyses are 
sensitive to movement artifacts, we regressed out the 

Fig. 2  Intrinsic connectivity networks. Representation of the seven independent component spatial maps obtained from the fully automated 
spatially constrained ICA and categorized according to their anatomical and functional properties in three distinct functional networks: the default 
mode network (in red), salience network (in blue), and executive control network (in yellow)

https://sites.google.com/view/ashs-dox/home
https://sites.google.com/view/ashs-dox/home
http://trendscenter.org/software/gift
http://trendscenter.org/software/gift
https://findlab.stanford.edu/functional_ROIs.html
https://findlab.stanford.edu/functional_ROIs.html
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covariates mean framewise translation and rotation. 
Finally, functional connectivity matrices were trans-
formed into z-scores using Fisher’s Z-transformation to 
stabilize variance prior to further analyses.

Clustering analysis
A k-means clustering was applied [31] on window func-
tional connectivity matrices to compute reoccurring 
functional connectivity patterns across time and sub-
ject space [4, 5]. Briefly, the optimal number of clusters 
(referred to as “states”) was determined as equal to four 
(k=4), using the elbow criterion. Each window of each 
subject was then categorized to one of these connectivity 
states based on the similarity with the cluster centroid.

The following temporal DFNC parameters were then 
extracted for each subject:

–	 The mean dwell time for each state (i.e., the mean 
time the subject spent in each state without switch-
ing to another one).

–	 The total time for each state (i.e., the total fraction of 
time the subject spent in each state)

–	 The number of transitions (i.e., the number of times 
the subject changed states)

Statistical analysis
Statistical analyses were performed with R studio (ver-
sion 4.0.3). Our goal was to assess the association 
between temporal DFNC parameters and dementia risk 
and protective factors as well as Azheimer’s disease cog-
nitive and neuroimaging markers. To this aim, forward 
stepwise regression models were performed using the 
temporal DFNC parameters as the dependent variables:

–	 In the first model (model 1), for each DFNC parameter 
(i.e., the mean dwell time and total time spend in each 
state and the number of transitions between states), 
the 15 factors associated with increased or decreased 
dementia risk (listed in Table  1) were entered in the 
same model as predictive variables: systolic blood pres-
sure; fasting blood sugar; BMI; low-density lipopro-
tein (LDL) cholesterol; smoking; alcohol consumption; 
GDS; early-life, mid-life, and late-life CAQ; early-life, 
mid-life, and late-life LEQ; PASE; and the APOE4 gen-
otype. All variables were treated as continuous varia-
bles (except for the APOE genotype which was dichot-
omous: e4 carriers versus noncarriers). The model was 
controlled for age and sex (forced into the model). We 
did not include the level of education in the model to 
avoid redundancy as this measure is already included 
within the early-life LEQ.

–	 In the second model (model 2), for each DFNC 
parameter (i.e., the mean dwell time and total time 
spend in each state and the number of transitions 
between states), the 4 measures of Alzheimer’s dis-
ease cognitive and neuroimaging markers were 
entered in the same model as predictive variables: 
PACC5, amyloid burden, brain perfusion, and hip-
pocampal volume, also controlling for age, sex, and 
education (forced into the model). All variables were 
treated as continuous variables.

For each model, the α for entry was set at 0.05 and sta-
tistical significance was defined as P less than 0.05. All 
analyses were performed on the entire sample of par-
ticipants (n=127), considering the time spent in the state 
as zero if the participant did not visit the state at all. We 
replicated all analyses only including the participants 
who visited the state to ensure that the results remained 
consistent (Supplementary Results).

Replication analyses
To assess whether DFNC/dementia risk factor associa-
tions were stronger than with static functional connec-
tivity, we replicated models 1 and 2 with the mean static 
functional connectivity within the 3 networks (DMN, SN, 
and ECN) as the dependent variable.

To check the reproducibility of the current findings, we 
replicated the analyses using another network template, 
the Neuromark atlas [32].

Results
Participant characteristics
Participants had a mean age of 68.9 ± 3.82 years old and 
were composed of 63.8% of women. Participant charac-
teristics are summarized in Table 2.

Dynamic connectivity states
Four states were identified from the DFNC k-mean clus-
tering analysis. The connectivity matrix of each state and 
its overall frequency (i.e., the total proportion of this state 
across subjects and acquisition time) are represented in 
Fig. 3. State 1 (“weakly connected state”), had a frequency 
of 51% and was characterized by low (positive or nega-
tive) or neutral (zero) connectivity between and within 
the three networks (DMN, SN, and ECN). This state was 
visited by 126/127 participants. State 2 (“SN-negatively 
connected” state) had a frequency of 18% and was charac-
terized by high negative connectivity between the SN and 
the other networks (DMN and ECN) and a strong positive 
connectivity between the DMN and ECN and within each 
network. This state was visited by 105/127 participants. 
State 3 (“strongly connected state”) had a frequency of 
16% and was characterized by high positive connectivity 
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between and within the DMN, the SN, and the ECN. This 
state was visited by 94/127 participants. Finally, state 4 
(“DMN-negatively connected” state) had a frequency of 
15% and was characterized by high negative connectivity 
between the DMN and the other networks (SN and ECN) 
together with a strong positive connectivity between and 
within the SN and ECN. This state was visited by 78/127 
participants.

For each state, we found a strong correlation between 
the mean dwell time and the total time (P < 10−16). 
Moreover, the mean and total times spent in states 
3 and 4 were positively correlated (all P < 0.003). The 
mean and total times spent in state 1 were negatively 
correlated with the mean and total times spent in each 

other state (all P < 0.001). The average number of tran-
sitions between states across subjects was 9 ± 4.

Association of DFNC parameters with dementia risk 
and protective factors
Results from the stepwise regression showing the 
dementia risk and protective factors associated with 
the mean and total times spent in each state are pro-
vided in Table  3, model 1. A scatterplot of the main 
results of model 1 is represented in Fig. 4.

Longer times spent in both states 1 and 2 were asso-
ciated with increased dementia risk (lower early-life 
and mid-life CAQ and a higher level of LDL choles-
terol for state 1; higher systolic blood pressure, higher 
GDS score, and lower BMI for state 2). In contrast, 

Table 2  Demographic, clinical, lifestyle, cognitive, neuroimaging, and genetic characteristics

PACC5 Preclinical Alzheimer’s Cognitive Composite, LEQ Lifetime of Experience Questionnaire, CAQ Cognitive Activity Questionnaire, PASE Physical Activity Scale for 
the Elderly, SUVR standardized uptake value, APOE4 apolipoproteine ε4, sd standard deviation, min minimum value, max maximum value

N = 127

Mean sd min max

Demographic
  Age (years) 68.9 3.82 65.0 83.0

  Sex (% of women) 63.8 % - - -

  Education (years) 13.1 3.14 7.0 22.0

Clinical characteristics
  Fasting blood sugar (g/L) 1.0 0.2 0.7 2.1

  Body mass index (kg/m2) 26.1 4.3 18.1 44.2

  Systolic blood pressure (mmHg) 135 20.4 87.7 198

  LDL cholesterol (g/L) 1.6 0.4 0.7 2.8

  Depressive symptoms (GDS) 1.3 1.8 0 11

Lifestyle characteristics
  Smoking (pack years) 7.13 12.8 0 75.0

  Alcohol consumption (unit per week) 4.7 5.0 0 24.5

  Engagement in stimulating activities

    Early-life LEQ 31.2 9.3 10.0 52.8

    Mid-life LEQ 38.3 8.5 19.8 65.7

    Late-life LEQ 28.1 4.55 17.4 38.4

  Cognitive activity

    Early-life CAQ 17.4 3.2 8.0 27.0

    Mid-life CAQ 16.9 3.5 5.0 25.0

    Late-life CAQ 17.4 3.2 8.0 24.0

  Physical activity (PASE) 129.0 60.8 21.5 330.0

Cognition
  PACC5 (z-score) 0.004 0.65 -1.86 1.76

Neuroimaging
  Amyloid load (late florbetapir-PET amyloid SUVR) 1.25 0.16 0.99 1.82

  Brain perfusion (early florbetapir-PET SUVR) 1.01 0.06 0.87 1.20

  Hippocampal volume (mm3) 2460 249 1740 3150

Genetics
  APOE4 status (% ≥ 1 allele E4 ) 26% - - -
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longer times spent in states 3 and 4 were associated 
with reduced dementia risk (higher early-life CAQ and 
higher BMI for state 3; higher mid-life LEQ and lower 
LDL cholesterol for state 4). The number of transitions 
was not significantly associated with any dementia risk 
or protective factor.

Association of DFNC parameters with Alzheimer’s disease 
cognitive and neuroimaging markers
Results of the stepwise regression showing the Alzheimer’s 
disease cognitive and neuroimaging markers associated with 
the mean and total times spent in each state are provided in 
Table 3, model 2. Longer time spent in state 3 was associated 
with higher Preclinical Alzheimer’s Cognitive Composite 
score-5. Times spent in states 1, 2, and 4 were not associ-
ated with any Alzheimer’s disease cognitive or neuroimaging 
markers. Finally, the lower number of transitions between 
states was associated with lower brain perfusion (β = 25.4 
[CI 95% 12.7−38.1], P = 0.0001). A scatterplot of the main 
results of model 2 is represented in  Fig. 5.

Replication analysis results
We found no significant association between the mean func-
tional connectivity within the three networks and dementia 
risk factors or AD cognitive and neuroimaging markers.

The results of the replication analyses with the Neuro-
mark atlas are in line with these main results, showing links 
with risk factors for states similar to states 1 and 2 and with 
protective factors for states 3 and 4, with yet subtle differ-
ences (see Supplementary data).

Discussion
In this study, we assessed the relationships between 
dynamic functional connectivity states of the DMN, 
SN, and ECN and dementia risk and protective factors 

in cognitively unimpaired older adults. We found that 
two states, characterized by weak DMN/SN/ECN con-
nectivity or negative SN-DMN/ECN connectivity, 
were associated with higher dementia risk, while two 
states, characterized by strong DMN/SN/ECN con-
nectivity or negative DMN-SN/ECN connectivity, were 
associated with lower dementia risk. These results 
provide the first evidence that modifiable dementia 
risk factors are associated with inter-individual vari-
ability in dynamic functional brain organization in 
healthy elderly subjects. This association was specific 
to dynamic parameters as there was no association 
between static functional connectivity and dementia 
risk factors and biomarkers. In addition, our results 
were overall replicated when using another atlas, sug-
gesting that they do not depend on one specific net-
work template.

DFNC states associated with higher dementia risk
In line with previous studies [4], our analyses dem-
onstrated a dominant state (state 1), characterized 
by weak intra- and inter-network connections. Simi-
lar weakly connected states have been found to be 
increased in Alzheimer’s disease [32] and in other 
neurodegenerative diseases [33]. The time spent in 
this weakly connected state was associated with a 
lower score in mid- and early-life cognitive activi-
ties, which is consistent with studies reporting an 
association between cognitive reserve and global 
network efficiency [34, 35]. This suggests that longer 
time spent in a weakly connected state is associated 
with poor cognitive reserve, possibly reflecting a lack 
of network efficiency. Alternatively, subjects spend-
ing more time in state 1 could have a lower amplitude 
global signal resulting in weaker global functional 

Fig. 3  Dynamic connectivity states. The four states identified from the DFNC analysis are represented. The color scale indicates positive (red), 
neutral (green), and negative (blue) connectivity between the ICA components of the DMN, SN, and ECN. Numbers 1 to 7 refer to the ICA 
components represented in Fig. 2. DFNC dynamic functional network connectivity, DMN default mode network, SN salience network, ECN 
executive control network
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Table 3  Dementia risk/protective factors and Alzheimer’s disease cognitive and neuroimaging markers associated with the times 
spent in each state

Results of the forward stepwise regression models performed using the temporal DFNC parameters as the dependent variable (mean dwell time and total time) for 
each state (from state 1 to state 4). Model 1 corresponds to the model with dementia risk and protective factors as predictive variables adjusted for age and sex. Model 
2 corresponds to the model with Alzheimer’s disease cognitive and neuroimaging markers as predictive variables, adjusted for age, sex, and education. Adj adjusted, 
CAQ Cognitive Activity Questionnaire, LEQ Lifetime of Experiences Questionnaire, PACC5 Preclinical Alzheimer’s Cognitive Composite score-5, LDL low-density 
lipoprotein, SBP systolic blood pressure

Mean dwell time in the state Total time in the state

Standardized (95% CI) P Adj R2 Standardized (95% CI) P Adj R2

State 1 Model 1 Model 1

Step 1 Step 1

Mid-life CAQ −1.93
−2.01
(−3.64 to −0.22)

0.03 0.02 Early-life CAQ −0.24
(−0.03 to −0.004)

0.007 0.03

Step 2

Early-life CAQ −0.22
(−0.02 to −0.003)

0.01 –

LDL cholesterol 0.20
(0.003 to 0.11)

0.04 0.06

Model 2 Model 2

– – – – – – –

State 2 Model 1 Model 1

Step 1 Step 1

SBP 0.21
(0.02 to 0.26)

0.02 0.02 SBP 0.23
(0.0005 to 0.004)

0.01 0.03

Step 2 Step 2

SBP 0.26
(0.04 to 0.29)

0.007 – SBP 0.21
(0.0003 to 0.004)

0.02

BMI −0.19
(−1.14 to −0.03)

0.04 0.05 GDS 0.19
(0.002 to 0.04)

0.03 0.06

Step 3

SBP 0.26
(0.0008 to 0.005)

0.006 –

GDS 0.19
(0.002 to 0.04)

0.03 –

BMI −0.19
(−0.02 to −0.0007)

0.02 0.08

Model 2 Model 2

– – – – – –

State 3 Model 1 Model 1

Step 1 Step 1

BMI 0.23
(0.14 to 1.06)

0.01 0.04 Early-life CAQ 0.24
(0.003 to 0.02)

0.007 0.4

Step 2 Step 2

BMI 0.23
(0.16 to 1.06)

0.008 – Early-life CAQ 0.24
(0.003 to 0.02)

0.006 –

Early-life CAQ 0.24
(0.18 to 1.06)

0.006 0.09 BMI 0.20
(0.001 to 0.02)

0.02 0.08

Model 2 Model 2

Step 1 Step 1

PACC5 1.80
(0.64 to 7.77)

0.02 0.03 PACC5 0.22
(0.006 to 0.12)

0.03 0.05

State 4 Model 1 Model 1

Step 1 Step 1

Mid-life LEQ 0.23
(0.06 to 0.48)

0.01 0.04 Mid-life LEQ 0.25
(0.002 to 0.01)

0.006 0.04

Step 2 Step 2

Mid-life LEQ 0.19
(0.01 to 0.43)

0.04 – Mid-life LEQ 0.24
(0.002 to 0.01)

0.008 –

SBP −0.21
(−0.20 to −0.02)

0.02 0.07 LDL cholesterol −0.21
(−0.08 to −0.005)

0.03 0.07

–– Model 2 - – – Model 2 - – –
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connectivity. The lower amplitude of the global sig-
nal could be related to degeneration of the basal fore-
brain which has been shown to be involved in global 
resting-state fMRI fluctuations [36] and is altered in 
Alzheimer’s disease [37].

Longer time spent in the SN-negatively connected 
state (state 2) was related to a high subclinical depres-
sion score, itself known to be associated with increased 
dementia risk [2]. This link is in line with previous stud-
ies showing the key role of SN regions in depressive 

Fig. 4  Scatterplots represent linear regression between dementia risk factors and mean/total time spent in each state. CAQ=Cognitive Activity 
Questionnaire; LEQ=Lifetime of Experiences Questionnaire

Fig. 5  Scatterplots represent linear regressions between the PACC5 and the mean and total time spent in state 3 (model 2). PACC5 = Preclinical 
Alzheimer’s Cognitive Composite score-5
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disorders, including subclinical depressive symptoms 
[38, 39]. The time spent in state 2 was also associated 
with lower late-life BMI, which has also been associated 
with increased dementia risk, although it is still unclear 
whether it is a prodromal symptom for dementia or a risk 
factor per se [20, 21].

In addition, states 1 and 2 were both associated with 
higher cardiovascular risk factors (either higher levels of 
LDL cholesterol or systolic blood pressure). Those fac-
tors increase dementia risk [2] and they have both been 
shown to disrupt cognitive brain networks in healthy 
elderly subjects [40–42]. Our results highlight for the 
first time that cardiovascular risk factors are associated 
with the modification of dynamic connectivity states. To 
ensure that the BOLD signal amplitude was not related 
to the blood pressure, we performed a complementary 
analysis which showed no association between these two 
measures (Supplementary Fig. 1).

DFNC states associated with lower dementia risk
Longer time spent in the strongly connected state (state 
3) was associated with a higher PACC5 score, a cognitive 
composite score sensitive to cognitive decline, and par-
ticularly relevant in preclinical Alzheimer’s disease [13]. 
More particularly, the strongly connected state was char-
acterized by a positive connectivity between the DMN, 
SN, and ECN, which all support cognitive functions [10]. 
Alteration of the static functional connectivity of those 
three networks has been linked with longitudinal PACC5 
decline in cognitively unimpaired older adults [11]. Here, 
we expend this association to dynamic connectivity of 
the DMN, SN, and ECN. The time spent in the strongly 
connected state was also associated with early-life cog-
nitive activities. This is in line with the previous findings 
and with studies showing that greater engagement in 
cognitive activities in early life is associated with better 
cognitive functioning in late-life and reduced the risk of 
dementia [43–45]. Additionally, a higher prevalence of 
the strongly connected state was associated with higher 
BMI. Contrary to mid-life BMI, higher late-life BMI has 
been found to be associated with a lower risk of demen-
tia, described as the “obesity paradox” [20, 21]. Thus, this 
result does not appear to be contradictory with the pre-
vious findings. However, it is important to keep in mind 
that, due to the possible reverse causation effect [46, 47], 
this association does not necessarily mean that a high 
BMI has a protective effect and remains thus more diffi-
cult to interpret in regard to dynamic functional connec-
tivity change.

Longer time spent in the DMN-negatively connected 
state (state 4) was associated with higher early- and mid-
life LEQ, a proxy of cognitive reserve including educa-
tional, occupational, leisure, social, and physical activities 

[15]. Similar DMN-negatively connected patterns have 
been linked with sustained attention tasks in both static 
and dynamic functional connectivity studies [48, 49]. 
This suggests that increased time in DMN-negatively 
connected is one of the mechanisms underlying atten-
tion-related cognitive reserve processes [50, 51]. Longer 
time spent in the DMN-negatively connected state was 
also associated with lower late-life cardiovascular risk 
factors including lower LDL cholesterol and systolic 
blood pressure. This last result is more difficult to inter-
pret as it is unclear whether lower blood pressure is pro-
tective against dementia when assessed at late-life, since 
opposite results have also been reported [18, 19].

Finally, the times spent in states 3 and 4 were both 
negatively correlated with the times spent in states 1 and 
2, strengthening the hypothesis that they have opposite 
relationships with dementia risk factors.

Interestingly, the times spent in the different states 
were not associated with Alzheimer’s disease neuroim-
aging biomarkers. This might indicate that, while being 
associated with dementia risk/protective factors, they are 
not directly associated with Alzheimer’s disease-specific 
pathological processes per se. More precisely, modifica-
tion of DFNC could be a mechanism underlying cognitive 
reserve (i.e., modulating the effect of Alzheimer’s disease 
pathology on cognitive functions), but not a mechanism 
underlying brain reserve (i.e., preventing Alzheimer’s dis-
ease lesions to occur) [3, 52, 53].

Lower number of transitions between states is associated 
with higher AD risk
The lower number of transitions between states (i.e., less 
state changes) was strongly associated with lower brain 
perfusion in Alzheimer’s disease-sensitive regions. This 
suggests that our ability to transition from one stage to 
another is reduced as a consequence of, or resulting in, 
decreased perfusion in the posterior cingulate and tem-
poro-parietal regions known to characterize early Alzhei-
mer’s disease changes. Interestingly, the lower number of 
transitions was associated with poorer cognitive perfor-
mance in cognitively unimpaired older adults in a pre-
vious study [54]. Thus, the lower number of transitions 
could be a preclinical biomarker of hypoperfusion in 
brain regions typically impaired in Alzheimer’s disease.

Limits and future directions
There are limitations to this study. First, its cross-sectional 
and observational design does not allow for the assess-
ment of the causal associations between risk factors and 
DFNC changes. Second, although we found some con-
sistency across our results (i.e., risk and protective fac-
tors were associated with different states), caution in 
interpreting the results is warranted due to the number of 
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models conducted, which could lead to spurious findings. 
Third, our analyses focused on cognitive networks, while 
other networks could also be altered in the dementia pre-
clinical stage, which could be investigated in future stud-
ies. Fourth, the findings of this study would need to be 
replicated in an external fMRI dataset to test for its repro-
ducibility. Finally, other dementia risk factors, such as air 
pollution and hearing impairment, were not available in 
this study but could also be of interest for further studies.

Conclusion
This is the first study assessing the link between dynamic 
functional connectivity states and dementia risk and pro-
tective factors in cognitively unimpaired older adults. We 
highlighted two connectivity states associated with poorer 
cognitive reserve, higher depression score, and/or higher 
cardiovascular risk factors and two connectivity states 
associated with higher cognitive reserve, higher cognitive 
functions, and/or lower cardiovascular risk factors.   In 
addition, lower number of transitions between connec-
tivity  states  couldbe a preclinical biomarker of hypoper-
fusion in brain regions typicallyimpaired in Alzheimer’s 
disease.
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