

A type 2 ryanodine receptor variant associated with reduced Ca2+ release and short-coupled torsades de pointes ventricular arrhythmia

Yusuke Fujii, Hideki Itoh, Seiko Ohno, Takashi Murayama, Nagomi Kurebayashi, Hisaaki Aoki, Malorie Blancard, Yoshihisa Nakagawa, Satoshi Yamamoto, Yumie Matsui, et al.

► To cite this version:

Yusuke Fujii, Hideki Itoh, Seiko Ohno, Takashi Murayama, Nagomi Kurebayashi, et al.. A type 2 ryanodine receptor variant associated with reduced Ca2+ release and short-coupled torsades de pointes ventricular arrhythmia. Heart Rhythm, 2017, 14, pp.98 - 107. 10.1016/j.hrthm.2016.10.015 . inserm-04021350

HAL Id: inserm-04021350 https://inserm.hal.science/inserm-04021350

Submitted on 9 Mar 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A type 2 ryanodine receptor variant associated with reduced Ca²⁺ release and short-coupled torsades de pointes ventricular arrhythmia @ **O**

Yusuke Fujii, MD,^{*} Hideki Itoh, MD, PhD,^{*} Seiko Ohno, MD, PhD,^{*} Takashi Murayama, PhD,[†] Nagomi Kurebayashi, PhD,[†] Hisaaki Aoki, MD, PhD,[‡] Malorie Blancard, MS,[§] Yoshihisa Nakagawa, MD, PhD,[¶] Satoshi Yamamoto, MD, PhD,[#] Yumie Matsui, MD, PhD,[#] Mari Ichikawa, MD,^{*} Keiko Sonoda, MD,^{*} Tomoya Ozawa, MD, PhD,^{*} Kimie Ohkubo, MD,^{**} Ichiro Watanabe, MD,^{**} Pascale Guicheney, PhD,[§] Minoru Horie, MD, PhD^{*}

From the ^{*}Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan, [†]Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan, [‡]Department of Pediatric Cardiology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan, [§]INSERM, UMR U1166, ICAN, Paris, France, [§]Sorbonne Universites, UPMC Univ Paris 06, UMR S1166, Paris, France, [¶]Department of Cardiovascular Medicine, Tenriyorozu Hospital, Nara, Japan, [#]Department of Cardiovascular Medicine, Saiseikai Izumio Hospital, Osaka, Japan, and ^{**}Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.

BACKGROUND Ventricular fibrillation may be caused by premature ventricular contractions (PVCs) whose coupling intervals are <300 ms, a characteristic of the short-coupled variant of torsades de pointes (scTdP).

OBJECTIVE The purpose of this study was to analyze the underlying cardiac ryanodine receptor (*RyR2*) variants in patients with scTdP.

METHODS Seven patients with scTdP (mean age 34 ± 12 years; 4 men and 3 women) were enrolled in this study. The *RyR2* gene was screened by targeted gene sequencing methods; variant minor allele frequency was confirmed in 3 databases; and the pathogenicity was investigated in silico analysis using multiple tools. The activity of wild-type and mutant *RyR2* channels was evaluated by monitoring Ca²⁺ signals of HEK293 cells with a [³H]ryanodine binding assay.

RESULTS The mean coupling interval of PVCs was 282 ± 13 ms. The 12-lead electrocardiogram had no specific findings except PVCs with an extremely short-coupling interval. Genetic analysis revealed 3

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant nos. 25460406, to Dr Itoh; 15K09689, to Dr Ohno; 16K08507, to Dr Murayama; and 15K08243, to Dr Kurebayashi); Japan Ministry of Health, Labour and Welfare (grant nos. H24-033, H26-040, and H27-032, to Dr Horie); Funds for Translational Research from the Japan Circulation Society (to Dr Horie); Ministry of Education, Culture, Sports, Science and Technology (grant nos. 25136705, to Dr Horie, and 25136718, to Dr Kurebayashi); Vehicle Racing Commemorative Foundation (to Dr Kurebayashi); and the Institute of Seizon and Life Sciences (to Dr Murayama). Address reprint requests and correspondence: Dr Minoru Horie, Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan. E-mail address: horie@belle.shiga-med.ac.jp. novel *RyR2* variants and 1 polymorphism, all located in the cytoplasmic region. p.Ser4938Phe was not detected in 3 databases, and in silico analysis indicated its pathogenicity. In functional analysis, p.Ser4938Phe demonstrated loss of function and impaired RyR2 channel Ca²⁺ release, while 2 other variants, p.Val1024Ile and p.Ala2673Val, had mild gain-of-function effects but were similar to the polymorphism p.Asn1551Ser.

CONCLUSION We identified an *RyR2* variant associated with reduced Ca^{2+} release and short-coupled torsades de pointes ventricular arrhythmia. The mechanisms of arrhythmogenesis remain unclear.

KEYWORDS Torsades de pointes; Catecholaminergic polymorphic ventricular tachycardia; Idiopathic ventricular fibrillation; *RyR2*; Long QT

(Heart Rhythm 2017;14:98–107) $^{\odot}$ 2016 The Authors. Published by Elsevier Inc. on behalf of Heart Rhythm Society. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/). All rights reserved.

Background

During the eighties and nineties, several case reports described a different form of polymorphic ventricular tachycardia (VT) triggered by premature ventricular contractions (PVCs) with an extremely short-coupling interval.^{1–3} This specific form of ventricular arrhythmia was named the *short-coupled variant of torsades de pointes* (scTdP) and now constitutes another type of idiopathic ventricular fibrillation (IVF) without structural heart disease.⁴

 1547-5271/\$-see front matter © 2016 The Authors. Published by Elsevier Inc. on behalf of Heart Rhythm Society. This is an open access article under the CC

 BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 All rights reserved.

The underlying molecular pathogenesis defining the arrhythmogenicity of this disorder has been partially elucidated. In 2011, we reported a case with a heterozygous KCNE5 Y81H variant (case 5 in Table 1)⁵ after the diagnosis of scTdP 2 years after receiving an implantable cardioverter-defibrillator (ICD) because it recorded the initiation of fatal arrhythmias. Functional assays revealed that the variant caused a gain-of-function effect on reconstituted transient outward currents when coexpressed with Kv4.3 and Kv channel interacting protein (KChIP2).⁵ After treatment with oral verapamil, the patient remained free from ventricular fibrillation (VF) recurrence. Then 2 years later, Wilde's group⁶ reported a mutation of *DPP6* in an IVF family with extremely short-coupling interval PVCs and demonstrated that DPP6 plays an important role in IVF arrhythmogenicity by affecting transient outward currents in Purkinje fibers. These studies suggest that scTdP may be associated with Purkinje network and intracellular Ca²⁺ handling.

scTdP is electrocardiographically defined by (1) PVCs with a short-coupling interval, (2) relatively narrow QRS durations, and (3) normal corrected QT intervals.⁷ One protein that helps maintain healthy intracellular Ca^{2+} dynamics is the cardiac ryanodine receptor (*RyR2*), encoded by the *RyR2* gene, which is Ca^{2+} -releasing channel expressed at sarcoplasmic reticulum membranes.⁸ Therefore, *RyR2* malfunction may be related to scTdP-type arrhythmias. *RyR2* mutations are generally known to cause catecholaminergic polymorphic ventricular tachycardia (CPVT),⁹ which is also related to abnormal intracellular Ca^{2+} handling but recently an *RyR2* mutation (p.His29Asp) was reported to be associated with scTdP.¹⁰

In the present study, we extensively examined the fashion of TdP or short-coupled PVC initiation in our IVF cohort and identified 7 cases that fulfilled the scTdP criteria (as listed in the Methods section) and then sequenced *RyR2*. We then conducted the functional analysis of wild-type (WT) or patient *RyR2* variants in the HEK293 cells to determine whether the intracellular Ca²⁺ dynamics of mutant *RyR2* channels were associated with scTdP arrhythmogenicity.

Methods Patients

Seven patients demonstrating PVCs with a short-coupling interval (\leq 300 ms) were enrolled in this study (Table 1). Case 7 presented multiple VF episodes induced by PVCs with a short-coupling interval (230 ms) after ICD implantation while PVCs were not recorded on a regular 12-lead electrocardiogram (ECG). All patients displayed arrhythmic syncope, documented VF, or TdP, where *TdP* was defined as a polymorphic VT of \geq 3 beats with a QRS axis that revolved around the baseline (the latter definition was not applied when only intracardiac tachycardia ECGs were available).

Clinical scTdP data and genetic analysis

Detailed methods are available in the Online Supplemental Material. Genetic analysis was performed after obtaining written informed consent in accordance with the study protocol approved by the Shiga University of Medical Science Review Board. Genomic DNA was extracted from peripheral blood lymphocytes. The RyR2 gene underwent targeted gene sequencing method using the TruSeq Custom Amplicon kit (Illumina, San Diego, CA) and the MiSeq System (Illumina). Detected variants were confirmed using Sanger methods. We verified minor allele frequency (MAF) of the variants in 3 databases including Japanese Human Genetic Variation Database (http://www.genome.med.kyoto-u.ac.jp/SnpDB/index.html), ExAC Database (http://exac.broadinstitute.org/), and 1000 Genomes Project (http://browser.1000genomes.org/index. html), and we considered variants to be mutations when MAF is <0.005.

RyR2 functional analysis

RyR2 complementary D NA was obtained from mouse ventricles, and then stable inducible HEK293 cells were generated using the Flp-In T-REx system (Invitrogen, Carlsbad, CA). Cytoplasmic and endoplasmic reticulum (ER) luminal Ca²⁺ signals were monitored with fluo-4 and R-CEPIA1er, respectively. [³H]Ryanodine binding assays were carried out with microsomes isolated from HEK293 cells. Detailed methods are available in the Online Supplemental Material.

Statistical analysis

Data are expressed as means \pm SD or SEM with a specific comment. Statistical analysis was performed using the unpaired Student *t* test, and the *P* value of <.05 was considered significant.

Results

Clinical characteristics of scTdP

Table 1 summarizes the clinical characteristics of 7 cases (mean age of 34 ± 12 years; 4 men and 3 women). None of the patients had a family history of sudden cardiac death. Figure 1 shows representative ECGs recorded from the first 6 cases. PVC coupling intervals were short with a mean of 282 ± 13 ms. QRS intervals were prolonged, and their average width was 138 ± 16 ms. PVC morphology indicated left bundle blanch block with left axis deviation in 5 cases. In the remaining 1 case, this could not be determined because a 12-lead ECG was not available at the time of appearance of PVCs. The average corrected QT interval was normal (422 ± 21 ms), and Brugada-like ST-segment or J-point elevations were not observed at the onset of TdP. Echocardiography revealed no structural heart disease, and the cardiac function was judged to be normal (ejection fraction >50%; mean 62%

Table 1 Cliffical Characteristics of Scrup Case	Table 1	racteristics of scTdP cases	Clinical
--	---------	-----------------------------	----------

Characteristic	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
Age at onset (y)	30	48	24	38	47	41	13
Sex	Μ	F	F	Μ	F	Μ	Μ
Family history of SCD	No	No	No	No	No	No	No
Symptoms	VF, syncope	VF, syncope	VF, syncope	VF, syncope	VF, syncope	VF, syncope	VF, syncope
Conditions at the first onset	During talking at night	After waking in the morning	After lunch	During dinner	During working in the daytime	In the room at night	After exercise
PVC morphology		5			5		
PVC origin	LBBB, LAD	LBBB, LAD	LBBB, LAD	LBBB, LAD	NA	LBBB, LAD	NA
PVC coupling (ms)	300	290	280	280	260	280	NA
PVC duration (ms)	130	130	130	130	140	170	NA
ECG findings							
RR interval (ms)	857	800	800	909	811	937	720
PR interval (ms)	162	146	160	170	164	170	160
QRS interval (ms)	94	94	72	98	90	106	80
QRS axis	Normal	Normal	Normal	Normal	Normal	Normal	Normal
QTc duration (ms)	440	431	425	397	455	408	401
J wave	No	No	No	No	No	Yes [*]	No
Pilsicainide test	Negative	Negative	Negative	Negative	Negative	Negative	Negative
Electrophysiology study	5	5	5	5	5	5	5
VF induced by ventricular	Induced VF by 2	Not induced	Not induced	Not induced	Induced VF by 2	Induced VF by 2 extra	Not induced
stimuli	extrastimuli from the apex of the right ventricle				extrastimuli from the apex of the right ventricle	stimuli from the apex of the right ventricle	
Documented Purkinje origin	Yes	NA	Yes	Yes	NA	NA	NA
Ablation	Yes	No	Yes	Yes	No	No	No
Ejection fraction (%)	61	57	54	64	63	75	Normal
Treadmill exercise test	NA	NA	Not induced VT	NA	NA	NA	Not induced VTs
Coronary angiography Follow-up after the onset	NA	No CAD	No CAD	NA	No CAD	No CAD	No CAD
Follow-up period (mo)	69	90	25	37	80	68	7
Implanted ICD	Yes	Yes	Yes	Yes	Yes	Yes	Yes
ICD therapy	Appropriate shock	No	No	No	Appropriate shock	Appropriate shock	Appropriate shock
Present medication	No drug	No drug	Verapamil, 120 mg	No drug	Verapamil, 120 mg	Bepridil, 100 mg	Verapamil, 120 mg

CAD = coronary artery disease; ECG = electrocardiographic; F = female; ICD = implantable cardioverter-defibrillator; LAD = left axis deviation; LBBB = left bundle branch block; M = male; NA = not available; PVC = premature ventricular contraction; QTc = corrected QT; SCD = sudden cardiac death; scTdP = short-coupled variant of torsades de pointes; VF = ventricular fibrillation; VT = ventricular tachycardia. *J wave appeared regardless the onset of ventricular arrhythmias.

Figure 1 PVC in 12-lead ECG for each scTdP case. PVCs with left bundle branch block and left axis deviation were representative in 5 cases. Case 5 had ECG monitoring during a TdP episode on admission. ECG = electrocardiogram; PVC = premature ventricular contraction; TdP = torsades de pointes.

 \pm 6%) with normal left ventricular size. Two cases (cases 3 and 7) did not have VT during exercise. Pilsicainide tests failed to provoke a typical Brugada ECG (coved type) in all cases displaying negative late potentials. T-wave alternans was positive in case 1, but not in case 5. Coronary angiography failed to reveal coronary disease in 5 cases. Electrophysiological investigations with the programmed ventricular stimulation (up to 3 stimuli) at the apex and outflow tract of the right ventricle were performed in all patients. Nonsustained VT was induced in 2 patients, and sustained VT was induced in 1 patient. VT was not induced in the remaining 4 cases. Frequent PVCs were present in cases 1, 3, and 4, and catheter ablation was performed.

Novel RyR2 mutations in scTdP

As shown in Figure 2A, genetic analysis revealed missense variants in 3 cases (cases 3, 6, and 7) and a polymorphism in 1 case (case 1). The p.Val1024Ile (V1024I, case 3) and p.Ala2673Val (A2673V, case 6) variants were located in the N-terminal cytoplasmic region and involved a guanine to adenine substitution in exon 27 (c.3070G>A) and a cytosine to thymine in exon 53 (c.8018C>T). p.Ser4938Phe (S4938F, case 7) was located in the C-terminal cytoplasmic region where a cysteine was changed to thymine in the last exon, exon 105 (c.14813C>T). Clinical information including familial analysis is shown in Figures 2B–E and identified 1 asymptomatic carrier and 3 noncarriers. Although A2673V and S4938F were not detected in 3 databases listed in the Methods section, V1024I was reported in

the Human Genetic Variation Browser with an MAF of 0.0035. As shown in Table 2, in silico analysis using multiple tools suggested S4938F pathogenicity, while pathogenicity predictions were nonconclusive for V1024I and A2673V. The p.Asn1551Ser (c.4652A>G, N1551S) variant was a common variant in East Asians and listed as a polymorphism detected in >1% Japanese controls.

Ca²⁺ homeostasis in HEK cells expressing WT and mutant RyR2s

To determine the Ca²⁺ releasing properties of scTdP-related RyR2 variants, we generated stable inducible HEK293 cell lines expressing WT and mutant murine RyR2s and monitored cytoplasmic Ca^{2+} signals with fluo-4 (Figure 3). When WT RyR2 was expressed in HEK293 cells, they showed spontaneous Ca²⁺ oscillations as reported¹¹ (Online Supplemental Movie 1). Among scTdP-related variants, N1551S, V1024I, and A2673V demonstrated similar profiles and exhibited only slightly modified Ca²⁺ oscillations compared with WT. The oscillation frequency was slightly but significantly higher in V1024I cells (~1.5 fold) than in WT cells (Online Supplemental Movie 2), whereas oscillation amplitudes were moderately and significantly decreased in N1551S and A2673V cells (Figures 3A and B). These results suggest that the 3 variants may have slightly increased Ca²⁺ releasing activity. In contrast, S4938F cells exhibited only occasional tiny fluctuations without oscillations (Online Supplemental Movie 3). The addition of caffeine-a known RyR enhancer—caused massive Ca²⁺ release so that S4938F channels appeared functional but with low activity.

Figure 2 Topology of *RyR2* variants (panel A) and clinical features in patients with p.Ser4938Phe (panels B–E). **A:** The topology of cardiac ryanodine receptor and locations of *RyR2* mutations. **B and C:** H29D is a reported mutation by Cheung et al.¹⁰ Ventricular tachycardia failed to appear not only at rest but also during exercise. **D:** Ventricular tachycardia initiated by premature ventricular contraction with an extremely short-coupling interval (230 ms) was recorded in the implantable cardioverter-defibrillator. **E:** Family history and genetic analysis. scTdP = short-coupled variant of torsades de pointes; SR = sinus rhythm; WT = wild type.

We next measured intra-ER Ca^{2+} levels using R-CEPIA1er, a genetically encoded ER Ca^{2+} sensor protein^{12,13} in the absence and presence of tetracaine. As indicated in Figure 4A, HEK cells expressing WT *RyR2* showed periodic decreases in R-CEPIA1er signals in normal Krebs solution, reflecting ER Ca^{2+} release. Before each Ca^{2+} release, the R-CEPIA1er signal reached at a maximum (upper threshold) and then rapidly decreased to reach a minimum (nadir), and gradually increased again toward the maximal. The upper threshold and nadir ER

levels attained correspond to the Ca^{2+} release initiation and termination levels, respectively. Both upper threshold and nadir levels were slightly reduced in N1551S, V1024I, and A2673V cells compared with WT cells. In contrast, S4938F cells showed significantly higher ER Ca^{2+} signals without any oscillations. These results indicate that S4938F channel activity is substantially lowered compared with WT channel activity, while N1551S, V1024I, and A2673V channel activity may be slightly increased. These results were supported with the addition of 1 mM tetracaine, a

Table 2 Characteristics of RyR2 mutations

Characteristic	Case 1	Case 3	Case 6	Case 7
Nucleotide change	c.4652A>G	c.3070G > A	c.8018C>T	c.14813C>T
Amino acid change	p.Asn1551Ser	p.Val1024Ile	p.Ala2673Val	p.Ser4938Phe
Location	Cytosol	Cytosol	Cytosol	Cytosol
Allele frequency in normal controls	-		5	·
1000 Genomes Project*	None	None	None	None
ExAC Browser [†]	0.0003	None	None	None
Human Genetic Variation Browser [‡]	0.005	0.0035	None	None
In silico data				
MutationAssessor [§]	Low	Neutral	Medium	Medium
SIFT	Tolerated	Tolerated	Damaging	Damaging
SNPs&G0 [¶]	Disease	Disease	Neutral	Disease
MutationTaster [#]	Disease causing	Disease causing	Disease causing	Disease causing
PolyPhen-2 ^{**}	Possibly damaging	Probably damaging	Probably damaging	Possibly damaging
PROVEAN ^{††}	Neutral	Neutral	Deleterious	Deleterious
CADD ^{‡‡}	23.9	15.75	34	24.7

*http://browser.1000genomes.org.

[†]http://exac.broadinstitute.org/.

*http://www.genome.med.kyoto-u.ac.jp/SnpDB/.

[§]http://mutationassessor.org.

http://sift.jcvi.org.

¶http://snps-and-go.biocomp.unibo.it/snps-and-go.

#http://www.mutationtaster.org.

**http://genetics.bwh.harvard.edu/pph2.

tf http://provean.jcvi.org/index.php.

##http://cadd.gs.washington.edu.

Figure 3 Cytoplasmic Ca²⁺ signals in HEK293 cells expressing WT and mutant *RyR2s*. **A:** Representative fluo-4 signals obtained in normal Krebs solution after the addition of 30 mM caffeine. Fluorescence signal values are normalized to F_{max} (see Online Supplemental Methods). The vertical bar in the S4938F inset indicates $0.02F/F_{max}$. **B:** Average oscillation frequency in WT and mutant cells. **C:** Average oscillation amplitude ($\Delta F/F_{max}$) in WT and mutant cells. Data are presented as mean \pm SEM. n = 31–69. ****P* < .001 vs WT. WT = wild type.

Figure 4 ER Ca²⁺ signals in HEK293 cells expressing WT and mutant *RyR2s*. A: Representative R-CEPIA1er signals obtained in normal Krebs solution followed by sequential treatment with 1 mM tetracaine, 30 mM caffeine, and high Ca²⁺ Krebs solution with ionomycin. ER Ca²⁺ signals were expressed as normalized values, $(F - F_{min})/(F_{max} - F_{min})$ (see Online Supplemental Methods). B: ER upper threshold and nadir Ca²⁺ levels in normal Krebs solution. Data are presented as mean \pm SEM. n = 57–112. ****P* < .001 vs WT upper threshold. ###*P* < .001 vs WT nadir level. C: ER Ca²⁺ levels in the presence of 1 mM tetracaine. **P* < .05 vs WT. ER = endoplasmic reticulum; WT = wild type.

potent *RyR2* inhibitor. R-CEPIA1er ER signals clearly increased in WT, N1551S, V1024I, and A2673V cells after treatment, whereas S4938F cell ER Ca level remained unaffected (Figures 4A and B).

Ca²⁺-dependent [³H]ryanodine binding activity

The properties of Ca^{2+} -induced Ca^{2+} release (CICR) activity were evaluated by Ca^{2+} -dependent [³H]ryanodine binding.¹² WT channels exhibited biphasic Ca^{2+} dependence (Figure 5A). Three variants (V1024I, N1551S, and A2673V) showed slight increases in [³H]ryanodine binding, whereas it was greatly reduced by S4938F. The biphasic properties of CICR activity are explained by 3 parameters, that is, gain constant (A_{max}) and dissociation constants for activating Ca^{2+} (K_A) and inactivating Ca^{2+} (K_I) (Figure 5B).¹² The [³H]ryanodine binding data for the mutant channels were fitted to Equations (1)–(3) (see Online Supplemental Methods) to obtain the 3 parameters (Figures 5C–E). Three

variants (V1024I, N1551S, and A2673V) slightly but significantly increased A_{max} with no alterations in K_A or K_I . In contrast, S4938F halved A_{max} and doubled K_A compared with WT. S4938F exhibited no apparent Ca²⁺dependent inactivation, resulting in a large K_I value. Taken altogether, these results suggest that the S4938F variant greatly decreases the CICR activity, whereas the other 3 variants slightly increase it.

Discussion

In the present study, we examined representative scTdP cases in our patient cohort and their underlying genetics. We confirmed existing knowledge and provided novel insights via the functional analysis of an scTdP variant causing the loss of ER Ca^{2+} release.

TdPs often observed in long QT syndrome are initiated by PVCs occurring on the downslope of T waves (R-on-

Figure 5 A: Ca^{2+} -dependent [³H]ryanodine binding to microsomes from HEK293 cells expressing WT and mutant *RyR2* channels. B: Three parameters for CICR (A_{max} , K_A , and K_I). CICR are expressed as $A = A_{max} \times f_A \times (1-f_I)$ (see Online Supplemental Methods). C–E: Calculated parameters for each mutant. Although 3 variants (V1024I, N1551S, and A2673V) exhibited a slight increase in gain, S4938F showed decreased gain with reduced sensitivities to activating and inactivating $Ca^{2+.*}P < .05$ (n = 3–5). CICR = Ca^{2+} -induced Ca^{2+} release; WT = wild type.

T).¹⁴ In patients without QT interval prolongation, Leenhardt et al⁴ reported 14 cases with TdP caused by PVCs whose coupling intervals were extremely short. Their ECGs displayed typical TdP, with an unusually short-coupling interval during the first TdP beat (always <300 ms). Most cycle lengths just before the start of episodes did not show short-long-short–coupling patterns, and episodes occurred during regular sinus rhythm. Only 1 patient with scTdP (case 6) presented J waves in the inferior leads, which were of the slurred type and were transiently observed in leads III and aVF throughout the clinical course. J waves appeared despite the presence of VT or short-coupled PVCs and disappeared with the onset of VF. J waves in this case may not be a critical finding, but rather a sign of clinical or genetic heterogeneity.

Thus, the ECG and clinical characteristics of scTdP are normal except for the presence of PVCs with a shortcoupling interval. It is therefore often difficult for us to diagnose patients with scTdP after PVCs have disappeared. Although the mechanisms underlying scTdP remain unclear, the syndrome may have a genetic background in some cases, since ~30% of cases have a family history of sudden death of unknown etiology.⁴ A recent study¹⁰ revealed an *RyR2* missense mutation in an scTdP case without any CPVT phenotypes.

The occurrence of PVCs during ventricular refractory periods may be linked to abnormalities of action potential duration during transmural repolarization. Although there are no unique ECG findings in scTdP other than the characteristics of PVCs, ion channel dysfunction may contribute to their occurrence or altered Purkinje network activity.6,7,15,16 According to our experimental data, the intracellular Ca²⁺ dynamics can be associated with scTdP arrhythmogenicity. A mutation in the cytoplasmic C terminus, S4938F, produced RyR2 channels with severe loss of function. Candidate RyR2 mutations in CPVT causing gainof-function $R_{V}R_{2}$ abnormalities^{17–20} have been reported, while *RyR2* p.Ala4860Gly reported by Priori et al²¹ demonstrated loss of function similar to S4938F in our patient.^{22,23} Although it remains unknown how loss-of-function type of *RyR2* variants cause 2 phenotypes (CPVT and scTdP),²⁴ as schematically shown in Figure 6, the abnormal Ca^{2+} dynamics in the cytosol and ER lumen may induce triggered activity afterdepolarizations, especially via ER Ca overload, ¹⁶ and nonfunctioning RyR2 mutant channels with loss of function may cause early afterdepolarization but not

Figure 6 Mechanism of short-coupled variant of torsades de pointes with a loss-of-function RyR2 variant. RyR2 mutant channels with loss of function may cause early afterdepolarization but not delayed afterdepolarization through the inhibition of Ca²⁺-dependent Ca channel inactivation. Modified from Zhao et al.²⁴ ATP = adenosine triphosphate; NCX = Na+/Ca²⁺ exchanger; PLB = phospholamban; SR = sarcoplasmic reticulum.

delayed after depolarization, inhibiting Ca^{2+} -dependent Ca channel inactivation.²⁴

Study limitations

Our scTdP cohort was limited in size and therefore results require confirmation in a larger number of cases. We would emphasize that 3 RyR2 variants with mild gain of function are not pathogenic but "genetic noise" and are unlikely to play a disease-causing role as their functional changes were too mild to explain clinical phenotypes. Unlike CPVT, bidirectional VT or frequent PVCs failed to appear during exercise in this patient with scTdP with RyR2 loss of function. The typical pattern of CPVT-associated arrhythmias is a bidirectional VT with long PVC coupling interval with mean values of 418 ms reported by Sy et al²⁵ and 476 ms by Blich et al.²⁶ Thus, there may be distinct clinical features that distinguish between typical CPVT and scTdP even among RyR2 mutation carriers. The potential dysfunction by respective mutation may be associated with the phenotype of *RyR2* mutation carriers.¹⁰

Conclusion

scTdP should be considered as a diagnosis when the etiology of aborted sudden cardiac death is unknown. Despite unique ECG features at the onset of TdP, other ECG findings specific to Brugada, long QT, or short QT syndrome are all lacking. The diagnosis of scTdP is of clinical and therapeutic importance, since some drugs or even catheter ablation may be effective in reducing or suppressing arrhythmic episodes.^{27,28} Among patients initially diagnosed as IVF and implanted with ICD, some may have scTdP; therefore, an in-depth analysis of arrhythmic events (especially their initiation) monitored by ICD may allow further clarification of this specific IVF

form and improve treatment. *RyR2* loss-of-function mutations may thus cause scTdP.

Acknowledgments

We thank Rachel Peat, PhD, for her careful reading the manuscript and linguistic assistance. We thank Prof. Masamitsu lino for providing us a plasmid of R-CEPIA1er.

Appendix

Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.hrthm. 2016.10.015.

References

- Lemery R, Brugada P, Della Bella P, Dugernier T, Wellens HJ. Ventricular fibrillation in six adults without overt heart disease. J Am Coll Cardiol 1989;13: 911–916.
- Viskin S, Belhassen B. Idiopathic ventricular fibrillation. Am Heart J 1990;120: 661–671.
- Viskin S, Lesh MD, Eldar M, Fish R, Setbon I, Laniado S, Belhassen B. Mode of onset of malignant ventricular arrhythmias in idiopathic ventricular fibrillation. J Cardiovasc Electrophysiol 1997;8:1115–1120.
- Leenhardt A, Glaser E, Burguera M, Nürnberg M, Maison-Blanche P, Cournel P. Short-coupled variant of torsade de pointes: a new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation 1994;89: 206–215.
- Ohno S, Zankov DP, Ding WG, et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circ Arrhythm Electrophysiol 2011;4:352–361.
- Xiao L, Koopmann TT, Ördög B, et al. Unique cardiac Purkinje fiber transient outward current β-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res 2013;112:1310–1322.
- Haïssaguerre M, Shoda M, Jaïs P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation 2002;106:962–967.
- George CH, Higgs GV, Lai FA. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ Res 2003;93:531–540.
- Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie

catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103: 196–200.

- Cheung JW, Meli AC, Xie W, et al. Short-coupled polymorphic ventricular tachycardia at rest linked to a novel ryanodine receptor (RyR2) mutation: leaky RyR2 channels under non-stress conditions. Int J Cardiol 2015;180:228–236.
- Jiang D, Xiao B, Yang D, Wang R, Choi P, Zhang L, Cheng H, Chen SR. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca²⁺ release (SOICR). Proc Natl Acad Sci U S A 2004;101:13062–13067.
- Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent activity profiles of type 1 ryanodine receptor channels carrying malignant hyperthermia and central core disease mutations in the amino-terminal region. PLoS One 2015;10:e0130606.
- Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M. Imaging intraorganellar Ca²⁺ at subcellular resolution using CEPIA. Nat Commun 2014;5:4153.
- Han J, Garcia de Jalon PD, Moe GK. Fibrillation threshold of premature ventricular responses. Circ Res 1966;18:18–25.
- Haïssaguerre M, Shah DC, Jaïs P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet 2002;359:677–678.
- Yeh DD, Lu JT, Kim A, Yeh RW, Scheinman MM. Calcium-triggered shortcoupled polymorphous ventricular tachycardia. Pacing Clin Electrophysiol 2010;33:117–122.
- Paavola J, Viitasalo M, Laitinen-Forsblom PJ, Pasternack M, Swan H, Tikkanen I, Toivonen L, Kontula K, Laine M. Mutant ryanodine receptors in catecholaminergic polymorphic ventricular tachycardia generate delayed afterdepolarizations due to increased propensity to Ca²⁺ waves. Eur Heart J 2007;28:1135–1142.
- Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 2007;4:733–739.
- Marjamaa A, Laitinen-Forsblom P, Wronska A, Toivonen L, Kontula K, Swan H. Ryanodine receptor (RyR2) mutations in sudden cardiac death: studies in extended pedigrees and phenotypic characterization in vitro. Int J Cardiol 2011;147:246–252.

- Zhabyeyev P, Hiess F, Wang R, Liu Y, Wayne Chen SR, Oudit GY. S4153R is a gain-of-function mutation in the cardiac Ca(2+) release channel ryanodine receptor associated with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation. Can J Cardiol 2013 993–996.
- Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69–74.
- Jiang D, Chen W, Wang R, Zhang L, Chen SR. Loss of luminal Ca²⁺ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc Natl Acad Sci U S A 2007;104: 18309–18314.
- Zhao YT, Valdivia CR, Gurrola GB, Powers PP, Willis BC, Moss RL, Jalife J, Valdivia HH. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc Natl Acad Sci U S A 2015;112:E1669–E1677.
- Zhao YT, Valdivia CR, Gurrola GB, Hernández JJ, Valdivia HH. Arrhythmogenic mechanisms in ryanodine receptor channelopathies. Sci China Life Sci 2015;58: 54–58.
- Sy RW, Gollob MH, Klein GJ, Yee R, Skanes AC, Gula LJ, Leong-Sit P, Gow RM, Green MS, Birnie DH, Krahn AD. Arrhythmia characterization and longterm outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2011;8:864–871.
- Blich M, Marai I, Suleiman M, Lorber A, Gepstein L, Boulous M, Khoury A. Electrocardiographic comparison of ventricular premature complexes during exercise test in patients with CPVT and healthy subjects. Pacing Clin Electrophysiol 2015;38:398–402.
- 27. Bogaard K, van der Steen MS, Tan HL, Tukkie R. Short-coupled variant of torsade de pointes. Neth Heart J 2008;16:246–249.
- Kondo H, Shinohara T, Takahashi N. A case of short-coupled premature ventricular beat-induced ventricular fibrillation with early repolarization in the inferolateral leads. J Arrhythm 2015;31:60–63.