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A photoswitchable inhibitor of TREK chan-
nels controls pain in wild-type intact freely
moving animals

Arnaud Landra-Willm1,2,3, Ameya Karapurkar4, Alexia Duveau5,
Anne Amandine Chassot1,2,3, Lucille Esnault 6, Gerard Callejo7,8,
Marion Bied1,2,3, Stephanie Häfner1,2,3, Florian Lesage 2,3,9,
BrigitteWdziekonski1,2,3, AnneBaron2,3,9, Pascal Fossat 5, LaurentMarsollier 6,
Xavier Gasull 7,8, Eric Boué-Grabot 5, Michael A. Kienzler 10,11 &
Guillaume Sandoz 1,2,3

By endowing light control of neuronal activity, optogenetics and photo-
pharmacology are powerful methods notably used to probe the transmission
of pain signals. However, costs, animal handling and ethical issues have
reduced their dissemination and routine use. Here we report LAKI (Light
Activated K+ channel Inhibitor), a specific photoswitchable inhibitor of the
pain-related two-pore-domain potassium TREK and TRESK channels. In the
dark or ambient light, LAKI is inactive. However, alternating transdermal illu-
mination at 365 nm and 480 nm reversibly blocks and unblocks TREK/TRESK
current in nociceptors, enabling rapid control of pain and nociception in intact
and freelymovingmice and nematode. These results demonstrate, in vivo, the
subcellular localization of TREK/TRESK at the nociceptor free nerve endings in
which their acute inhibition is sufficient to induce pain, showing LAKI potential
as a valuable tool for TREK/TRESK channel studies. More importantly, LAKI
gives the ability to reversibly remote-control pain in a non-invasive and phy-
siological manner in naive animals, which has utility in basic and translational
pain research but also in in vivo analgesic drug screening and validation,
without the need of genetic manipulations or viral infection.

Pain is an unpleasant sensory and emotional experience caused by
noxious and/or potentially damaging stimuli1 sensed by small-
diameter primary sensory neurons called nociceptors. Because of
the low spatiotemporal resolution of the existing electrical, pharma-
cological, and genetic tools, the in vivo dissection of pain pathways has
been limited2. Furthermore, the stimuli used are invasive, which is
inherent to the study of nociception, and the effects are variable.
Optogenetic and photopharmacological tools enable the control of
action potential firing, in vitro and in vivo, through either the expres-
sion of exogenous opsin-proteins3,4 or the action of photo-
pharmacological compounds, respectively5,6. Activation of these tools

allows remote control of sensory neuron excitability non-invasively by
transdermal illumination7–9 to modulate pain behavior, enabling con-
trol and test evaluations on the same animal with high spatiotemporal
resolution. Although strongly facilitating the determination of cell and
circuit function while reducing variability3, these approaches are nei-
ther widely nor routinely used due to various burdensome require-
ments for their use. The ideal tool would specifically modulate the
nociceptor’s activity by controlling endogenous pain-related ion
channels10,11 without the need for (i) genetic manipulation, (ii) viral
infection, (iii) surgery, and (iv) extensive animal housing. In addition,
this compound (i) would be in its inactivated state in the dark, enabling
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long-term experiments, (ii) would be ethically relevant by being non-
invasive, (iii) would allow rapid, reproducible, and reversible control of
pain in a physiological and pathological manner, and (iv) would be
amenable to be used in different species. To obtain such a compound,
we first need to identify a family of ion channels expressed in noci-
ceptors that regulate their activity. Secondly, the photoswitch has to
be designed and to be characterized for its properties and specificity.
Ultimately, it needs to be tested in vivo on routinely used pain assays.

In this work, we develop a light-activated antagonist of pain-
related potassium channels (LAKI). By controlling the Two-Pore-
Domain Potassium (K2P) channels TREK1, TREK2, and TRESK, LAKI
endows non-invasively a reversible and reproducible light-control of
nociception in different freely moving animal models with a spatio-
temporal resolution, for several days, without the need for transfec-
tion, infection, genetic manipulation or surgery procedures.

Results
Choice of target
The two-pore-domain potassium (K2P) channels TREK1, TREK2 and
TRESK are highly expressed in nociceptors from the dorsal root
ganglia (DRG) and trigeminal ganglia (TG)12,13. By being active at rest,
TREK1, TREK2, and TRESK regulate nociceptor excitability by main-
taining the membrane potential. Dysfunctional mutations inhibiting
these channels in humans14 generate hyperexcitability of TG and DRG
neurons underlying allodynia and migraine15, indicating their impor-
tance in pain induction. These properties make TREK1, TREK2 and
TRESK channels suitable targets to regulate nociception.

Design of the photoswitch
To design a photochromic ligand targeting K2P channels in nocicep-
tors, we first sought to identify a pharmacological K2P modulator that
could be modified to become light-sensitive with a minimal structural
change16. We looked for small K2P antagonists that present motifs
resembling azobenzene, the most commonly used molecular
photoswitch16. We found a likely candidate in the compound ML365
(Fig. 1a), which has an aryl-benzamide moiety and was reported to
inhibit the K2P channels TASK1 and TASK317. Additionally, we showed
that ML365 inhibits TREK1, TREK2, and TRESK, but not TRAAK (Sup-
plementary Fig. 1). By substitution of the benzamide moiety with a
diazene (-N=N-) to introduce an azobenzene within the structure
(Supplementary Data synthesis), we obtained LAKI (light-activated K+

channel inhibitor) (Fig. 1a). The initial photochemical characterization
of LAKI showed that 95% of LAKI is in trans-state at 460nm while
irradiation at 365 nm yields a photostationary state (PSS) that is ~70%
cis-LAKI. The thermal half-life of the cis-LAKI is 0.7 h at 21.5 °C and did
not show photodegradation over ten cycles (Supplementary Fig. 2).

LAKI endows light sensitivity to TREK1, TREK2 and TRESK
K2P channels
To determine the pharmacological properties of LAKI on K2P channels,
we tested whether it endows light sensitivity to TREK1, TREK2 and
TRESK currents by expressing these channels in HEK293T cells. When
we applied LAKI intracellularly, we did not observe any photo-
modulation of TREK and TRESK currents (Supplementary Fig. 3).
Likewise, we did not observe any effect when LAKI was applied
externally in the dark. However, alternating illumination at 365 and
480 nm efficiently blocked and unblocked ~80% of persistent TREK1,
TREK2 and TRESK currents at −60mV, a surrogate of the physiological
membrane potential in primary sensory neurons18 (Fig. 1b, c). LAKI
photoblock is conserved among species since TRESK and TRAAK
channel inhibitions are similar in mouse and human (Supplementary
Fig. 4). This light-gated block and unblock happened on average in less
than 170 and 310ms, respectively (Supplementary Fig. 5). This light-
dependent block seems to be specific since no or a negligible inhibi-
tion was observed for TRAAK, TASK1 and TASK3 (Fig. 1b, c and

Supplementary Fig. 6) or the distantly related potassium channel
KCNQ1 (Supplementary Fig. 7).

Interestingly, LAKI is bi-stable, persisting without illumination in
the higher energy cis-LAKI blocking state but being still available for a
rapid return to inactive trans-LAKI upon illuminationwith 480 nm light
(Fig. 1e). This long bi-stability relies on the effective concentration of
cis-LAKI. Indeed, we observed a decrease of the block of the TRESK
channel over time with a time constant of ~3min when UV light
intensity was decreased to mimic in vivo UV light illumination (Sup-
plementary Fig. 8a, b). Finally, we performed an in-depth character-
ization, beginningwith assessing the concentration dependency of the
photoblock on TREK1, TREK2, and TRESK. We found an IC50 of 2.45,
1.79, and 1.75 µM for TREK1, TREK2, and TRESK respectively (Supple-
mentary Fig. 9). We next investigated the voltage dependency of the
light-blocked current and found that the photocurrent amplitude
depended on the holding membrane potential and reached almost
zero at −80mV (i.e., the expected reversal potential for potassium
ions) (Fig. 1f, g), indicating that the photocurrent is exclusively linked
to light-blocked potassium current inhibition.

LAKI enables optical control of potassium currents in native
nociceptors through an endogenous TREK1, TREK2 and
TRESK photoblock
As observed inHEK293T cells (Fig. 1b, f), in smallwild-typeTGneurons,
LAKI induced a fast, stable, and reversible photoblock of a constant
current (Fig. 2a) that, again, was proportionally reduced when
decreasing themembrane potential, reaching zero at −80mV (Fig. 2b).
This demonstrates that in a native system, LAKI specifically targets a
time- and voltage-independent potassium current which represents
~26%of the neuronal leak current observed at −60mV (Supplementary
Fig. 10) and which is similar to the leak potassium current carried by
K2P channels. As shown in Fig. 2c, genetic invalidation of Trek1 and
Trek2 induced an ~80% decrease of the native light-blocked current
(Fig. 2d). The 20% remaining current was significantly further reduced
by the expression of the specific TRESK dominant negative form
TRESK-MT115 (Fig. 2c, d). Therefore, in nociceptors, LAKI regulates the
background K+ current carried by endogenous TREK1, TREK2 and
TRESK channels.

Together, these results show that LAKI fulfills all the criteria for a
valuable tool to study TREK1, TREK2, and TRESK channel functions: (i)
it is inactive in the dark or ambient light, (ii) a brief pulse of light at
365 nm induces an efficient photoblock, (iii) the block is stable for long
periods in the dark or ambient light, and (iv) a brief pulse of light at
480 nm rapidly removes the photoblock.

LAKI-induced acute TREK-TRESK closing regulates nociceptor
excitability
Wenext addressed the functional effect on neuronal excitability of the
light-dependent block and showed that alternating illumination
between 365 and 480nm increased and decreased the firing rate
properties of nociceptors (Fig. 2e, f). This result validates that not only
chronic15 but also acute TREK closing is sufficient to generate noci-
ceptor hyperexcitability. Furthermore, as primary nociceptors are the
first neurons involved in the complex processing system that evokes
normal and pathological pain, LAKI represents an attractive tool to
remote-control pain signaling with high spatiotemporal precision but
without delay or the need for genetic, viral, or surgical manipulations.

Acute closing of TREK1, TREK2, and TRESK in freely moving
animals induces pain behavior
We examined the capacity of LAKI to induce nocifensive behaviors
when topically applied to the eye. The cornea is a transparent tissue
highly innervated by nociceptive sensory terminals19, making this
system suitable for photopharmacological experiments on pain6,20.
Topical application of vehicle solution or LAKI to the corneal surfaceof
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the mouse eye (Fig. 3a, b) followed by a 20 s near-UV light pulse to
activate LAKI, produced a ~3-fold increase of the number of nocifen-
sive behaviors (3.83 ± 1.28 vs 11.00 ± 1.31) (Fig. 3c), specifically both
scratching and wiping (considered to be itch and pain-related beha-
viors, respectively21) (Fig. 3d). Furthermore, we found that LAKI acti-
vation potentiates a painful behavior provoked by capsaicin
(16.38 ± 2.45 vs 28.10 ± 2.34), a chemical stimulus that activates noci-
ceptors (Supplementary Fig. 11), validating cis-LAKI activation of these

neurons. Therefore, LAKI controls both ocular acute pain and itch by
inducing nociceptor activation.

Using LAKI in well-established, classical behavioral assays:
Hargreaves and Von Frey tests
As TREK-TRESK acute closing in the sensory terminals triggers spon-
taneous pain, we wondered if we could use LAKI to specifically target
TREK-TRESK in the most commonly used stimulus-evoked pain tests,
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Fig. 1 | LAKI selectively photo-controls TREK1, TREK2 and TRESK channels in a
heterologous system. a Design of LAKI from ML365 and photoisomerization of
LAKI upon alternating illumination at 480 nm (blue) and 365 nm (magenta).
b Normalized whole-cell current recording elicited at −60mV from HEK293T cells
expressing TREK1, TREK2, TRESK and TRAAK in the presence of LAKI (5 µM) upon
alternating illumination at 480nm (blue) and 365 nm (magenta). c Bar graph
summarizing the current inhibition (%) of TREK1, TREK2, TRESK, TASK1, TASK3 and
TRAAK at −60mV. For each channel, n was obtained from one experiment. Sta-
tistical significance was determined by QuasiBinomial GLM followed by Dunnett’s
post-test versus TASK1 (***p <0.001). d Normalized whole-cell current recordings
elicited at −60mV fromHEK293T cells expressing TRESK in the presence of several

concentrations of LAKI upon alternating illumination at 480 nm (blue) and 365 nm
(magenta). e Representative whole-cell current recording elicited at 0mV from
HEK293T expressing TRESK in the presence of LAKI (5 µM) upon illumination at
480 nm (blue) and 365 nm (magenta) or in the dark. fWhole-cell current recordings
elicited at different holding potentials fromHEK293T cells expressing TRESK in the
presence of LAKI (5 µM) upon alternating illumination at 480 nm (blue) and 365 nm
(magenta). g IV relationship of the photocurrent density induced by alternating
illumination (I480nm – I365 nm) at different holding potentials in HEK293T cells
expressing TRESK in the presence of LAKI (5 µM). n was obtained from one
experiment. Data were represented asmean ± SEM. The numbers of tested cells are
indicated in parentheses on the graph.
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which mimic studies of enhanced pain in humans. Notably, we looked
at the ability of LAKI to trigger an enhanced response to noxious sti-
muli (hyperalgesia) or a nociceptive response to innocuous stimuli
(allodynia).

TheHargreaves test consists ofmeasuring thehindpawwithdrawal
latency following a thermal painful stimulus22. After LAKI injection,mice
were allowed to freely explore a chamberwith a transparentfloor. In the
absence of light, LAKI did not modify the paw withdrawal latency

compared to mice having received saline solution (P >0.39), showing
that LAKI is not active at rest and does not disrupt the normal phy-
siology of mouse thermal perception (Fig. 3e). By contrast, we found
that LAKI activation upon a 20 s 365 nm light pulse (<1mW/mm2) before
the thermal stimulus induced a decrease of the paw withdrawal latency
(Fig. 3e). This UV light-induced thermal hypersensitivity was prevented
by co-application of LAKI with ML67.33, a specific TREK channel
agonist23,24, supporting TREK channel involvement (P>0.21) (Fig. 3g).
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A good model for physiological studies must show quick rever-
sibility and reproducibility of the effect. As shown in Fig. 3f, we found
that the thermal hypersensitivity was fully reversed after ~5min fol-
lowing the light pulse (1.06 ± 0.16 vs 1.00 ± 0.11, P > 0.74) due to the
relaxationof LAKI to the trans-state in thedark. LAKI canbe reactivated
for further cycles following a new pulse of light at 365 nm without any
loss of effect (Fig. 3f). Finally, we assessed how long LAKI remained
functional in the tissue. The UV-induced hyperalgesia could be
observed more than seven days post-LAKI injection (Fig. 3h), which
points to a high stability of LAKI in vivo. This is supported by our

in vitro results, where no loss of efficiency has been observed for LAKI
after eight days at room temperature (P >0.98) (Supplemen-
tary Fig. 12).

Next, we adapted this procedure to test mechanical pain
perception using the Von Frey assay, the most routinely used test
in rodents and humans to evaluate clinical mechanical
allodynia25,26. This assay consists of measuring the required
pressure to be applied to induce a paw withdrawal of the rodent
(Fig. 3a, b). As expected after injection, LAKI did not modify
the mechanical sensitivity at rest (P > 0.99) but following a
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transdermal 20 s UV light pulse, we observed a ~6-fold decrease of
the paw withdrawal threshold (Fig. 4a). Again, this hypersensi-
tivity was reversed after ~4 min following the UV light pulse
(P > 0.098) (Fig. 4b). Similarly, LAKI could be used for several

cycles without showing any reduction of its potency over time
(Fig. 4b). This UV light-induced allodynia was prevented by Trek1/
Trek2 genetic invalidation (P > 0.99), further supporting TREK
channel involvement (Supplementary Fig. 13). We then addressed

Fig. 3 | LAKI controls pain behavior in freely moving mice. a Representation of
the experimental procedures (created with BioRender.com). b Schematic of
experimental behavioral assays. Black arrows represent the injection or topical
application of saline solution or LAKI. Magenta arrows represent the pulse of light
at 365 nm. Green arrows represent the measurement of nocifensive behavior or
thermal and mechanical sensitivity. The red arrow represents extracellular in vivo
recording. c Bar graph summarizing the average of nocifensive behavior elicited by
mice after ocular application of either saline or LAKI (100 µM, 5 µL) solution pre-
ceded or not by a 20 s illumination pulse (<1mW/mm2) at 365 nm (magenta). nwas
obtained from three independent experiments. Statistical significance was deter-
mined by Poisson GLM followed by Bonferroni’s post-test (***p <0.001). d Bar
graph showing the average of nocifensive behavior, making the distinction
between scratching and wiping behavior, elicited by mice after topical application
of either saline or LAKI (100 µM, 5 µL) solution preceded or not by a 20 s illumi-
nation at 365 nm (magenta). n was obtained from three independent experiments.
Statistical significance was determined by Poisson GLM followed by Bonferroni’s
post-test (**p =0.00564 for scratching, **p =0.0035 for wiping). e Bar graph sum-
marizing the average of the thermal pawwithdrawal latency of mice injected either
with saline solutionorwith LAKI (100 µM, 15 µL) before and after 20 s illumination at

365 nm (magenta). n was obtained from one experiment. Statistical significance
was determined by two-way ANOVA with repeated measures followed by
Holm–Sidak’s post-test (***p =0.0002). f Graph summarizing the average of the
relative paw withdrawal latency of mice injected with LAKI (100 µM, 15 µL) relative
to mice injected with saline solution. n was obtained from one experiment. Sta-
tistical significance was determined by a mixed-effects model with repeated mea-
sures followed byHolm–Sidak’s post-test (**p =0.0074 and p =0.0017 respectively
for first and second illumination at 365 nm). g Bar graph summarizing the average
of the thermal paw withdrawal latency of mice injected either with LAKI (100 µM,
15 µL) or with LAKI plus ML67.33 (100 µM) after 20 s illumination at 365 nm. n was
obtained from one experiment. Statistical significance was determined by amixed-
effects model with repeated measures followed by Holm–Sidak’s post-test
(**p =0.0062).hBar graph summarizing the average of the relative pawwithdrawal
latency at 0, 3, 5, and 7 days post-injection after 20 s illumination at 365 nm
(magenta). n was obtained from one experiment. Statistical significance was
determined by a mixed-effects model with repeated measures followed by
Holm–Sidak’s post-test (*p =0.0233, p =0.0104, p =0.0469, and p =0.0469
respectively for Days 0, 3, 5, and 7). Data were represented as mean ± SEM. The
numbers of mice are indicated in parentheses on the graph.
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whether this modulation was linked to the sensitization of noci-
ceptors, similar to what we observed in vitro.

LAKI regulates C-fiber excitability in vivo
Sensory neurons are pseudo-unipolar, with a peripheral branch that
terminates in the skin and a centralbranch that terminates in thedorsal
horn of the spinal cord. Nociceptive signals are sent to the spinal cord
and brain to be integrated and felt as pain sensation27. To determine
their activity at the single fiber level in vivo, we used the same injected
mice used for the Von Frey test to investigate the effect of LAKI acti-
vation on the response of the spinal dorsal horn neurons following
electrical stimulation of their receptive field. The evoked response, i.e.
the number of delayed C-spikes induced by the stimulation, was
increased by LAKI when activated by transdermal illumination before
stimulation (Fig. 4c, d), demonstrating that the LAKI-induced hyper-
algesia/allodynia is related to an increaseof nociceptor excitability due
to TREK/TRESK acute closing.

These results have two implications. First, as the majority of the
UV-A light cannot penetrate deeper than the epidermis28 which
exclusively contains free nerve endings29, the sensitization induced by
near-UV light is therefore due to a local channel blocking. This indi-
cates that TREK-TRESK channels are localized and functional at rest in
nociceptor nerve endings and that their acute closing is sufficient to
activate peripheral fibers and induce pain sensitization. Second, these
results demonstrate that LAKI, by controlling endogenous channel
activity regulating nociceptor excitability in physiological conditions,

is suitable to study pain processes with many advantages. Notably,
immediately after injection, LAKI allows a highly reproducible photo-
control of pain, non-invasively in freely moving animals with a high
spatiotemporal resolution and without the need of constant
illumination.

LAKI-induced optical control of C. elegans behavior
Despite the relative simplicity of their nervous system, invertebrates
share with vertebrates common genetic mechanisms regulating acute
and chronic nociception30. We therefore wondered if LAKI-induced
pain is conserved among different animal classes. C. elegans is a sui-
table animal model for photopharmacological studies of K2P channels
and nociception since it is transparent and its genome contains more
than 40 K2P channel orthologs (notably TREK1/2 and TRESK orthologs,
respectively SUP-9, twk-28, twk-39, and twk-48)31.

We focused on a stereotypical movement named “Omega turn”,
which is part of the escape behavior response to stressful stimuli such
as UV light32 (Fig. 5a, b). After 30min incubation, we found that LAKI
does not alter the normal behavior ofC. elegans. Second,we found that
LAKI activation by a 365 nm light illumination (<1mWmm−2) induced
an approximately four fold increase in the Omega turn numbers
compared to control C. elegans (29.79 ± 4.35 vs 7.50 ± 1.32) (Fig. 5c).
Third, we applied 480 nm light to turn off LAKI, inducing a total
reversion of the behavior (1.27 ± 0.60 vs 0.35 ± 0.19, P >0.12) (Fig. 5c).
This behavior could be partially prevented by co-applying ML67.33
with LAKI (4.32 ± 0.38 vs 1.94 ± 0.36) (Fig. 5d), supporting the
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involvement of the TREK orthologs in this hypersensitivity. Further-
more, the co-application of Ibuprofen, an analgesic drug, drastically
reduced the number of Omega turns (4.32 ± 0.38 vs 1.38 ±0.36), sup-
porting the relevance of themodel for pain functional studies (Fig. 5d).
This simplemodelmaybe used to develop an in vivoHigh Throughput
Screening (HTS) method in which the read-out is the C. elegans beha-
vior, tofindTREKagonists ormore general analgesic drugs. To validate
this hypothesis, we tested several compounds.Whereas co-application
ofCapsaicinwith LAKI didnotmodify the escape behavior of theworm
(Supplementary Fig. 14), Nefopam, Paracetamol, and Anandamide
drastically reduced the number of Omega turns compared to
C. elegans incubated with LAKI (Fig. 5d). This analgesic-reversed effect
is related to LAKI since it is not observed in its absence (Supplemen-
tary Fig. 15).

Taken together, these results demonstrate that TREK/TRESK
channel orthologs may be involved in the escape behavior of
C. elegans. This behavior can be considered nociception-related
because UV light is deadly for worms and the response is reduced by
analgesics. This demonstrates the conservation of the function of K2P

channels in pain signaling within the animal kingdom as observed for
other ionchannels suchasTRP channels33.More importantly,we found
that the LAKI sensitization of worms to UV light-induced Omega turns
can be used as an easy read-out for the development of a fast, inex-
pensive, and robust in vivo HTS method for analgesic drug discovery.

Discussion
To summarize, we synthesized LAKI, an easy, stable, and specific
light-activated inhibitor of TREK1, TREK2 and TRESK channels. This
photopharmacological tool enabled us to functionally map TREK/
TRESK channels at the free nerve endings of both TG and DRG
nociceptors. Importantly, we found that local acute channel closing
in nerve endings generates instantaneous pain as well as hyper-
algesia or allodynia, demonstrating the key role of TREK/TRESK in
pain. Furthermore, LAKI enabled us to demonstrate that TREK/
TRESK orthologs present in other species such as C. elegans are
transducers in conserved pain perception pathways. More impor-
tantly, thanks to the localization and function of TREK-TRESK and
LAKI light sensitivity, LAKI can be used to remotely control pain
with many advantages. With only a simple injection or incubation,
LAKI endows a reversible and reproducible light-control of noci-
ception in different freely moving animal models, for several days,
without the need for transfection, infection, genetic manipulation,
or surgery procedures, and is adaptable to several species. More-
over, being inert in the dark and stable LAKI is not invasive, making
it, with its stability in vivo for at least one week and bi-stability upon
UV light illumination, compatible with long-term experiments34,35.
These features make LAKI an appropriate tool in accordance with
animal welfare rules by reducing animal housing and distress
caused by existing methods for pain induction, and by improving
the repeatability and reducing variability (the same animal being
the control and the test).

Finally, LAKI is ideal for basic and translational pain research,
providing straightforward and reproducible control of pain with spa-
tiotemporal resolution in freely moving animals, and for in vivo
analgesic high throughput drug screening in worms before validation
in mammals.

Methods
General experimental details for chemical synthesis
Synthesis. Reactions were performed using chemicals obtained
from Alfa Aesar, Sigma-Aldrich, VWR, and Thermo Scientific. All dry
reactions were performed in Extra Dry Solvents obtained from
Acros Organics under a nitrogen atmosphere and in oven-dried
glassware. Reactions were monitored using thin-layer chromato-
graphy on silica plates 60Å (250 μm) from Silicycle and were

observed under a UV lamp and stained with Iodine. All reactions
were washed and/or quenched, followed by multiple extractions
with ethyl acetate or methylene chloride in a separatory funnel. The
combined extracted organic layers were dried over anhydrous
sodium sulfate, filtered, and then concentrated under a vacuumon a
rotary evaporator. Unless otherwise noted, all reactions were pur-
ified by flash chromatography following Still’s procedure with 60Å
(40–63 um) Silica Gel obtained from Silicycle. All NMR spectra were
measured in deuterated chloroform (CDCl3) and acetonitrile
(CD3CN) with Varian (Innova) or Bruker (Neo) spectrometers, at
400 or 500MHz for 1H spectra and 101 or 151MHz for 13C spectra.
Spectra were calibrated to residual solvent peaks as reported by
Fulmer et al.36. UV-Visible absorption spectroscopy was performed
using a Vernier UV-VIS Spectrophotometer and the spectra were
analyzed using Logger Lite 1.9.4. HR-MS was obtained in ESI mode
from the Mass Spectrometry Lab operated by the School of Che-
mical Science at the University of Illinois Urbana-Champaign.

Synthesis of 2. About 500mg (6.62mmol) of 3-nitroaniline 1 was
dissolved in 22ml of dichloromethane (DCM), and to that, a solution of
4.45 g (7.24mmol) of Oxone® (monopersulfate compound) in 20ml of
water was slowly added under continuous stirring. The reaction mix-
ture was stirred at room temperature for 12 h until completion, at
which point it was diluted with 50ml of DCM and washed with sodium
bicarbonate (50ml × 3), brine (50ml × 2), dried over sodium sulfate,
and concentrated under vacuum to yield a green nitroso product (2).
The concentrated product was used directly without further
purification.

Synthesis of 4. About 602mg (3.96mmol) of nitroso 2 was dissolved
in 30ml of ethyl acetate with 10ml of glacial acetic acid and stirred at
room temperature for 10min under anN2 atmosphere. To this 0.44ml
(3.96mmol) of m-toluidine 3 was added dropwise over 5min. The
reaction was stirred at room temperature for 22 h till reaction com-
pletion. The reaction was diluted with 30ml of ethyl acetate and
quenched with 25ml of 1M NaOH, followed by washing with sodium
bicarbonate (50ml × 3), brine (50ml × 2), and dried over sodium sul-
fate. The product was purified via column chromatography using
hexanes: ethyl acetate = 5:0.1 to yield 601.3mg (71.9%) of a red solid 4.

Rf =0.47 (hexanes: ethyl acetate = 5:0.1)
HR-MS (ESI): m/z calculated [MH]+ for C13 H12 N3 O2 is 242.0930,

found [MH]+ as 242.0925.
1H NMR (DMSO, 400MHz): δ = 8.46 (t, J = 1.9 Hz, 1H), 8.34 (ddd,

J = 8.2, 2.3, 1.0 Hz, 1H), 8.27 (qd, J = 7.9, 3.2, 1.0 Hz, 1H), 7.83 (t, J = 8.2 Hz,
1H), 7.71 (s, 2H), 7.47 (d, J = 7.4Hz, 1H), 7.41 (d, J = 7.6Hz, 1H),
2.39 (s, 3H).
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13C NMR (DMSO, 101MHz): δ = 152.1, 151.6, 148.6, 139.1, 133.1, 131.1,
129.8, 129.3, 125.3, 122.9, 120.7, 115.4, 20.8.

Synthesis of 5. About 539mg (2.55mmol) of 4 and 1.84 g (7.66mmol)
of Na2S were added to the reaction vessel and flushed with N2. To
this, 8ml of Dioxane was added under constant stirring and then
heated to 90 °C for 4 h followed by 12 h at rt. The reaction did not go
to completion, so another 1.84 g of Na2S was added and the reaction
was reheated for 4 h at 90 °C, followed by stirring at room tem-
perature for another 12 h. The reaction was diluted with 30ml of
ethyl acetate followed by washing with Brine (50ml × 4) and drying
over sodium sulfate. The product was purified via column chroma-
tography using hexanes: ethyl acetate: DCM= 3:1:1 to yield 449.8mg
(83%) of red oil 5.

Rf =0.69 (hexanes: ethyl acetate: DCM= 3:1:1)
HR-MS (ESI):m/z calculated [MH]+ for C13 H14 N3 is 212.1188, found

[MH]+ as 212.1185.
1H NMR (CDCl3, 400MHz): δ = 8.72 (t, J = 1.9 Hz, 1H), 8.30 (dd,

J = 7.6, 3.1Hz, 1H), 8.23 (dd, J = 7.9, 2.5Hz, 1H), 7.78 (s, 2H), 7.70 (t,
J = 8.4Hz, 1H), 7.44 (t, J = 8.1 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 2.48 (s, 3H).

13C NMR (CDCl3, 101MHz): δ = 153.1, 152.3, 149.1, 139.3, 133.1,
130.0, 129.3, 129.2, 124.9, 123.5, 121.0, 117.1, 21.4.

Synthesis of LAKI. About 283mg (1.34mmol) of 5 was dissolved in
12ml of THF under an N2 atmosphere and cooled to 0 °C. To this
0.7ml (4.02mmol) of diisopropylethylamine was added and stirred
at 0 °C for 5min. 0.24ml (1.60mmol) of o-anisoyl chloride 6 was
added dropwise over 10min. The reaction was stirred at 0 °C for 4 h
until reaction completion, at which point the reaction was diluted
with 50ml of ethyl acetate followed by washing with sodium bicar-
bonate (40ml × 5), brine (50ml × 2), and dried over sodium sulfate.
The product was purified via column chromatography using hexanes:
ethyl acetate = 6:1 to yield 405.2mg (86.3%) of red solid LAKI.

Rf =0.37 (hexanes: ethyl acetate = 3:0.5)
HR-MS (ESI): m/z calculated [MH]+ for C21 H20 N3 O2 is 346.1556,

found [MH]+ as 346.1554.
1H NMR (CD3CN, 500MHz): δ = 9.90 (s, 1H), 8.35 (s, 1H), 8.10 (d,

J = 7.4, 1.8Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.75 (s, 1H), 7.71 (d, J = 8.1 Hz,
1H), 7.66 (d, J = 8.3Hz, 1H), 7.56 (q, J = 8.3, 7.6Hz, 2H), 7.46 (t, J = 7.6 Hz,
1H), 7.38 (d, J = 7.4Hz, 1H), 7.19 (d, J = 8.4Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H),
4.05 (s, 3H), 2.46 (s, 3H).

13C NMR (CD3CN, 151MHz): δ = 164.7, 158.5, 154.0, 153.6, 140.7,
140.4, 134.4, 133.0, 132.5, 130.6, 130.1, 124.0, 123.8, 123.0, 122.1, 120.9,
119.7, 114.7, 113.0, 57.0, 21.3.

Photoswitching procedure in NMR
A solution of LAKI (440 µM) was prepared in a quartz NMR tube with
Chloroform (CDCl3) and sealed. The prepared sample was kept in the
dark to relax for 5 days. A 1H-NMR was taken in the dark in a Bruker
(Neo) 500MHz NMR to record the thermally relaxed photostationary
state. Alternating NMRs were taken after irradiation with LED lamps of
UV365nm (8.7mW/m2) andBlue460nm (12.6mW/m2) light fromadistance
of 1 cm for 15min each.

Photoswitching procedure in UV-Vis
A solution of LAKI (5 µM)wasprepared in a quartz cuvette by diluting a
5mM solution in DMSO with HEPES (10mM) and sealed. The sample
was irradiated alternatively with LED lamps of UV365nm (8.7mW/m2)
and Blue460nm (12.6mW/m2) light for 5min each from a distance of
1 cm. UV-Visible absorbance was measured with a Vernier UV-Vis
spectrophotometer.

Procedure for calculating thermal half-life t1/2
To measure the thermal relaxation (cis to trans isomerization) of a
solution of LAKI (5 µM in HEPES solution containing 0.1% DMSO), the
solution was irradiated with UV365nm light to achieve the PSS365. LAKI
was allowed to thermally relax at 21.5 °C and wasmonitored at 330 nm
for 20 h. Absorbance was plotted vs time and thermal half-life was
calculated using t1=2 =0:693=k. The Solver add-on in Microsoft Excel
was used to find a line fit using the GRG nonlinear engine using the
equation Abs tð Þ=AbsBI + Abs365nm � AbsBI

� �
*exp �ktð Þ, where k is the

rate constant (h−1), t is time (h), AbsBI is absorbancebefore illumination,
and Abs365 nm is the absorbance at PSS365. The variables AbsBI,
Abs365nm, and k were used as free parameters in the fit.

HEK cell culture
HEK (human embryonic kidney) 293 T cells were purchased from
ATCC (CRL-11268) and maintained at 37 °C in 5% CO2 in high glucose

DMEM containing 10% fetal bovine serum and used frompassage 10 to
40. One passage per week was made on 35mm diameter dishes.

DNA encoding K2Ps and Kv channels was cloned in the pIRES2EGFP
vector. HEK293T cellsweremaintained inDMEMwith 10%FBSonplastic
dishes. Cells were transiently transfected using calcium phosphate with
3.6 µgofDNA.When twogeneswere co-expressed, a ratio of 1:1 DNAwas
used. TG neurons were transfected with 0.75 µg of DNA using JetPRIME.

Primary culture of mouse TG neurons
Trigeminal ganglion tissueswere collected frompostnatal day 1–10mice
of either sex and treated with a mix of 1mg/ml collagenase type II
(Gibco) and BSA for ~45min, followed by 5mg/ml trypsin for 10min.
Neurons were dissociated by triturating with fire-polished glass pipettes
and seeded on poly-lysine and Laminin coated coverslips. The DMEM/
F12-basedculturemediumcontained2mML-glutamine, 10% fetal bovine
serum, 100ng/ml neural growth factor, and penicillin/streptomycin.

Electrophysiology
HEK293T cells were recorded 24–48h after phosphate calcium trans-
fection (with 3.6 µg DNA). For co-expression of KCNQ1 and KCNE1 a
DNA ratio of 1:1 was used. Glass pipettes were pulled with a resistance
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<5MΩ andfilledwith intracellular solution containing (inmM): 155KCl,
5 EGTA, 3MgCl2, 10HEPES, pH 7.3with KOH. Cells werepatch clamped
using a MultiClamp 700B (Molecular Devices) amplifier, recorded
using pCLAMP 11, in an extracellular solution containing (in mM): 150
NaCl, 5 KCl, 2 CaCl2, 10HEPES, pH 7.4 with NaOH. Currents were eli-
cited in voltage-clamp mode with voltage-ramps (from −100 to
100mV, 500ms in duration). Photocurrents were elicited in voltage-
clamp mode either with voltage steps (from −80 to 80mV, 8 s in
duration) or in gap-free at several holding potentials upon alternating
illumination at 480 nm (blue) and 365 nm (magenta) (both illumina-
tions 2 or 4 s in duration, respectively).

Photomodulation of neuronal excitability and photocurrent were
studied in small-diameter TG neurons. Trek1−/−;Trek2−/− TG neurons were
transfectedwith0.75 µgof thepIRES2EGFPvector containing theTRESK-
MT1 insert, in which there is no N-terminal tag on the insert and EGFP is
co-translated as a transfection marker, or the pIRES2EGFP control plas-
mid with JetPRIME. The extracellular solution contained (in mM):
140NaCl, 5 KCl, 1MgCl2, 2 CaCl2, 10HEPES, 10 glucose, pH 7.4 with
NaOH. The intracellular solution used was the same used for
HEK293T cells. Recording pipettes had <5MΩ resistance. Series resis-
tance (<20MΩ) was not compensated. Signals were filtered at 10 kHz
and digitized at 20 kHz. After establishing whole-cell access, membrane
capacitance was determined with amplifier circuitry. The amplifier was
then switched to current-clamp mode to measure resting membrane
potential (Vrest). Neurons were excluded from analysis if the Vrest was
higher than −40mV. To assess photoswitched neuronal excitability, the
depolarizing current was injected to reach the threshold for triggering
actionpotentials thenneuronal excitabilitywas studieduponalternating
illumination at 480nm (blue) and 365 nm (magenta). The amplifier was
then switched to voltage-clamp mode to assess neuronal photocurrent
at several holding potentials upon the same alternating illuminations.

Concentrations of LAKI and all compounds used are indicated in
the respective figure legends.

Mouse strains
Mice lackingTrek1 andTrek2were generated asdescribed in ref. 37. Null
mutations were backcrossed against the C57BL/6 J inbred strain for
10+ generations prior to establishing the breeding cages to generate
subjects for this study. Age- and sex-matchedC57BL/6 JWTmice, aged
9–12 weeks, were obtained from Charles River Laboratories
(Wilmington, MA).

Allmouse experimentswere conducted according to national and
international guidelines and have been approved by the ethical com-
mittees (Ministère français de la Recherche, de l’Enseignement et de
l’Innovation; University of Barcelona, CEEA, Generalitat de Catalunya,
#129/21). The C57BL/6 J breeders were maintained on a 12 h light/dark
cycle with constant temperature (21–23 °C), humidity (45–50%), and
food and water ad libitum at the animal facility of Valrose or the
Medical School of the University of Barcelona.

Thermal sensitivity measurements
Two groups of mice were injected subcutaneously into the plantar
surface of the hind paws either with 15 µl of LAKI (100 µM) or the
vehicle (1% DMSO). Mice were placed individually in compartments of
Plantar test Hargreaves Apparatus (Ugo Basile, 37370) for 10min for
habituation. Mice were trained for 7 days before the experiments. The
thermal withdrawal latency of mice was determined by exposition to
an infrared source (intensity of 50%) before and after UV exposition.
The hind pawswere exposed to UV by illuminationwith a 365 nm lamp
for 20 s. Recovery of the thermal sensitivity was also evaluated 5min
after UV exposition.

Mechanical sensitivity measurements
Mice were injected subcutaneously in the plantar surface of the hind
paws with 15 µl of LAKI (100 µM) or the vehicle (1% DMSO) for the

contralateral side.Micewere placed in the testing cage (UgoBasile) for
15min for habituation. The withdrawal threshold was determined with
von Frey filaments (in g: 0.07, 0.16, 0.4, 0.6, 1, 1.4, and 2) using the
ascending method (Abboud et al., 2021) before and after UV exposi-
tion. The hind paws were exposed to UV by illumination with a 365 nm
laser for 20 s and the mechanical assessment was performed after a
delay of 20 s. The animals were re-exposed to UV every 2min until the
end of the test. Recovery of the mechanical sensitivity was also eval-
uated 4min after UV exposition. Each Von Frey filament was applied
five successive times (with a delay of 30 s) on the plantar surface of the
hind paw of the mouse standing on its four paws. The withdrawal
threshold was considered when the mouse responded positively to
three out of five applications.

In vivo extracellular recordings
In vivo recordings were performed on mice injected with LAKI in the
hind paw following the Von Frey test. Mice were anesthetized with
urethane 20% (1.5 g/kg) and placed on a stereotaxic frame (Unim-
écanique, Asnières, France). A laminectomy was performed on lumbar
vertebrae L1–L3 and segments L4–L5 of the spinal cord were exposed.
Extracellular recordings of wide dynamic range dorsal horn neurons
(Aby et al., 2018) were made with borosilicate glass capillaries (2MΩ,
filled with NaCl 684mM) (Harvard Apparatus, Cambridge, MA, USA).
The signal was amplified and high pass filtered using a DAM80
amplifier (WPI, FL, USA) connected to CED1401 (CED, UK). The acqui-
sition was performed using spike 2 software (CED, UK). The criterion
for the selection of a neuron was the presence of an A fiber-evoked
response (0-80ms) followed by a C fiber-evoked response (80 to
300ms) to electrical stimulation of the corresponding receptive field
of the ipsilateral paw with subcutaneously implanted bipolar electro-
des connected to a stimulator (AMPI, Israel). LAKI-injected hind paw
was exposed to a UV laser for 20 s every 2min until the end of the
recording. In the same experiment, a period of at least 15min without
UV was respected for recovery between two neuronal recordings.

Ocular nocifensive behavior measurements
To assess mice nocifensive ocular responses, 5μL of vehicle (DMSO
0.1%) or LAKI (100μM) in saline solution, with or without Capsaicin
(100 µM), were topically applied to the anterior ocular surface of the
eye. Mice were lightly restrained (by grasping the scruff between the
thumb and forefinger) so that the solution remained on the corneal
surface. With the animal restrained, 20 s of UV light stimulation to the
ocular surface was applied to activate LAKI. The number of nocifensive
behaviors such as wipes (forepaw; indicative of pain) and scratches
(hind paw; indicative of itch) directed to the treated eye were counted
over a 5-min period. In control experiments with no UV light stimula-
tion, theprocedurewas the samebutwithout applying the light source.

C. elegans strain and maintenance
Our analysis included the C. elegans N2 wild-type reference strain.
C. elegans were maintained on NGM agar plates (55mm Petri dishes,
1.7% agar) carrying a lawn of E. coli OP5038,39. Animals were grown at
20 °C unless indicated otherwise and wild-type strain was freshly
thawed prior to experiments.

Omega turn quantification in C. elegans
Hermaphrodite C. elegans were included in the analysis at the adult
stage. C. elegans were transferred on 35mm diameter dishes con-
taining M9 buffer supplemented either with LAKI or equivalent
DMSO for 30-min incubation in the dark. C. elegans were recorded
while exposed to ambient light, UV light (365 nm, SV005, Alonefire,
China), and blue light (480 nm, SV004, Alonefire, China) for 15 s
each in duration. The movies of C. elegans were acquired using
Micro-Manager 1.4 and analyzed using Fiji software. Omega turns
were counted manually and were included in the analysis when
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C. elegans fully circled. Concentrations of LAKI used are indicated in
the respective figure legends.

Quantification and statistical analysis
Analysis of obtained currents in whole-cell recordings was performed
using ClampFit. Data were treated and analyzed using Excel, SigmaPlot
11.0, GraphPad Prism 8, and R according to their probability distribu-
tions. QuasiBinomial GLM was used for current inhibitions while
Poisson and QuasiPoisson GLMs were used for Omega turn and noci-
fensive behavior counting. Neuronal excitability-, photocurrent-, cur-
rent density-, paw withdrawal latency, and paw withdrawal threshold-
relateddatawere assessed to verify the assumptionofNormality either
with the Shapiro test or with a Q-Q plot. Data verifying Normality were
analyzed using either paired t-test when comparing two paired con-
ditions or two-way ANOVA RM and mixed-effects model RM when
comparing more than two paired conditions; otherwise, data were
analyzed using Wilcoxon signed-rank test. When more than two con-
ditions were analyzed, the tests described above were followed by
Bonferroni’s, Holm–Sidak’s, or Tukey’s post hoc test for all pairwise
comparisons or byDunnett’s post hoc test formultiple comparisons to
a control group.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Themain data generated in this study are provided in the Source Data
file. Source data are provided with this paper.
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