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Anne‑Claire Lukaszewicz1,3, Laurence Quemeneur4, Christophe Vedrine5, Lionel K. Tan6, Fabienne Venet7,8, 
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Abstract 

Background:  Although multiple individual immune parameters have been demonstrated to predict the occurrence 
of secondary infection after critical illness, significant questions remain with regards to the selection, timing and clini‑
cal utility of such immune monitoring tests.

Research question:  As a sub-study of the REALISM study, the REALIST score was developed as a pragmatic approach 
to help clinicians better identify and stratify patients at high risk for secondary infection, using a simple set of relatively 
available and technically robust biomarkers.

Study design and methods:  This is a sub-study of a single-centre prospective cohort study of immune profil‑
ing in critically ill adults admitted after severe trauma, major surgery or sepsis/septic shock. For the REALIST score, 
five immune parameters were pre-emptively selected based on their clinical applicability and technical robustness. 
Predictive power of different parameters and combinations of parameters was assessed. The main outcome of interest 
was the occurrence of secondary infection within 30 days.

Results:  After excluding statistically redundant and poorly predictive parameters, three parameters remained in the 
REALIST score: mHLA-DR, percentage of immature (CD10− CD16−) neutrophils and serum IL-10 level. In the cohort of 
interest (n = 189), incidence of secondary infection at day 30 increased from 8% for patients with REALIST score of 0 
to 46% in patients with a score of 3 abnormal parameters, measured ad D5–7. When adjusted for a priori identified 
clinical risk factors for secondary infection (SOFA score and invasive mechanical ventilation at D5–7), a higher REALIST 
score was independently associated with increased risk of secondary infection (42 events (22.2%), adjusted HR 3.22 
(1.09–9.50), p = 0.034) and mortality (10 events (5.3%), p = 0.001).

Interpretation:  We derived and presented the REALIST score, a simple and pragmatic stratification strategy which 
provides clinicians with a clear assessment of the immune status of their patients. This new tool could help optimize 
care of these individuals and could contribute in designing future trials of immune stimulation strategies.
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Introduction
For patients with critical illness, occurrence of second-
ary infection is a major and frequent complication, 
affecting between 15 and 40% of patients after an Inten-
sive Care Unit (ICU) admission [1–6]. Such infections 
are associated with increased morbidity and mortality 
and represent a high burden of care with longer ICU 
length of stay and overall greater healthcare costs [2, 7]. 
In addition, they contribute to higher rates of microbial 
resistance through extensive use of antibiotic and anti-
fungal agents, a pressing and worldwide issue [8–10] 
which has recently been further highlighted amidst the 
COVID-19 pandemic [11].

Among factors leading to acquisition of secondary 
infection in the ICU, the contribution of critical illness-
induced immune dysfunction is now well recognized. 
Although this phenomenon, which affects both innate 
and adaptive immune responses, has been mainly 
described in sepsis [12, 13], similar immune alterations 
have been described in various aetiologies of critical ill-
ness [14–16], suggesting a somewhat common immune 
pathway. The REALISM study [17] (REAnimation Low 
Immune Status Marker) was performed to describe 
deep immune profiling of injury-induced immune 

response in a variety of critical illnesses, and among 
other findings has further reinforced the concept of a 
common global immune response to various types of 
severe injury.

Although multiple immune parameters have been 
shown to have some degree of predictive power for 
occurrence of secondary infection, significant heteroge-
neity exists regarding which test to use, with which cut-
off values, at which timepoint and in which population 
[14, 18]. As such, there is a need for clinically relevant 
stratification tools to assess the occult immune status of 
critically ill patients to better tailor care of such fragile 
individuals. Of note, in REALISM, the occurrence of sec-
ondary infection was somehow late (median day 9 [6–15] 
after ICU admission) and predominantly occurred in 
patients who were still in the ICU.

As a sub-study of REALISM, the REALIST score was 
thus developed as a pragmatic approach to help clinicians 
better identify and stratify patients at high risk for sec-
ondary infection after the initial phase of resuscitation, 
using a simple set of relatively commonly available and 
technically robust biomarkers. The main objective of this 
study is to explore the predictive power of the REALIST 
score regarding subsequent secondary infection.

Graphical Abstract
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Methods
This is a sub study of REALISM [17], for which a detailed 
protocol has been previously published [19]. In summary, 
REALISM is a prospective, observational cohort study of 
critically ill patients admitted with sepsis, severe trauma 
or planned surgery, which was performed from 2015 to 
2018 at the Edouard Herriot Hospital (Hospices Civils de 
Lyon, France). The study protocol was approved by insti-
tutional review board (Comité de Protection des Person-
nes Sud-Est II) under number 2015-42-2.

Inclusion criteria for REALISM were: adult patients 
admitted to the ICU with a clinical diagnosis of sepsis 
as defined by 2016 SEPSIS-3 consensus guidelines [20]; 
or severe trauma with injury severity score (ISS) > 15; 
or surgical patients undergoing major surgeries, such 
as eso-gastrectomy, bladder resection with Brickers’ 
reconstruction, cephalic pancreaticoduodenectomy 
and abdominal aortic aneurysm surgery by laparotomy. 
Exclusion criteria were any of the following: presence of 
a pre-existent condition or under treatment that could 
influence patients’ immune status, pregnancy, institu-
tionalized patients and inability to obtain informed con-
sent. Written informed consent was obtained from every 
patient or their representative upon inclusion in this pro-
tocol. In the event that only the informed consent of a 
third party has been sought at the time of inclusion, the 
patients were informed as soon as possible of their par-
ticipation in this study and asked to give their own con-
sent to continue the study.

Sampling and clinical data collection
Regarding the present sub-study, samples were col-
lected three times during the first week after enroll-
ment: at day 1 or 2 (D1–2), D3–4 and D5–7, with the 
latter pre-emptively selected as the timepoint of interest. 
Peripheral whole blood was collected in one ethylen-
ediaminetetraacetic acid (EDTA) tube at each timepoint 
for each patient. Tubes were immediately transferred to 
the lab and processed within 3  h after blood sampling 
for flow cytometry immune phenotyping and plasma 
cytokine level measurements.

The main cohort consisted of all patients initially 
enrolled in the REALISM study. As most second-
ary infections in the ICU occur more than 1 week after 
admission (median 9 [6–15] days in the REALISM study) 
and in an effort to select patients with persistently high 
risk of events, a predefined cohort of interest was formed, 
consisting of all patients who were still alive and in the 
ICU at D5–7. Patients who developed a secondary infec-
tion prior to their sampling day were excluded.

Patients’ demographics, comorbidities, diagnosis, 
severity and clinical outcomes were prospectively col-
lected and longitudinal follow-up was performed for 

90 days. The following data were recorded: demographic 
information (age, gender, body mass index (BMI)), dis-
ease severity measured by the Simplified Acute Physi-
ological Score (SAPS) II at ICU admission [21] and the 
Sequential Organ Failure Assessment (SOFA) score [22] 
measured at D1, D3–4 and D5–7. ISS was collected for 
trauma patients [23]. Hospital and ICU lengths of stay 
and survival were measured until day 90 after admission. 
Follow-up location after ICU discharge was recorded. 
During hospital stay, patients were screened daily for 
exposure to invasive mechanical ventilation and for sec-
ondary infection occurrence. The main outcome of inter-
est was the occurrence of secondary infection within day 
30 after ICU admission and prespecified secondary out-
comes were mortality at day 30, days free from ICU at 
30 days and days free from hospital at 30 days.

Definition of secondary infections
Information related to infections were collected by 
research nurses and reviewed and validated by a dedi-
cated adjudication committee composed of 3 clinicians 
not involved in patients’ recruitment or care and scruti-
nizing data simultaneously. Confirmation of secondary 
infection occurrence by this committee was based on 
guidelines defined by the European Center for Disease 
Prevention and Control [24] and Infectious Diseases 
Society of America [25]. “Definite” and “likely” infections 
were included and only the first secondary infection epi-
sode was considered in the analyses. Adjudication com-
mittee was blinded for results of immune parameters. 
Patients who died without being identified as having a 
“definite” or “likely” secondary infection were not cen-
sored from analysis.

Score derivation
Five biological parameters were initially selected for 
analysis, based on their established association with 
critical illness immune perturbations, availability and 
cost in the clinical setting and technical robustness and 
reproducibility outside expert centers. These 5 param-
eters were: monocyte HLA-DR by flow cytometry, per-
centage of immature neutrophils by flow cytometry 
(CD10−CD16low) [26], IL-6 and IL-10 concentration by 
enzyme-linked immunosorbent assay (ELISA) and total 
lymphocytes count by hemocytometer. Technical details 
may be found in the main study protocol [19].

Determination of cutoff points
Receiver operating characteristic (ROC) curves were con-
structed for each of the 5 parameters at each timepoint, 
with the relevant clinical endpoint defined as secondary 
infection at day 30. Parameters with poor predictive abil-
ity (area under the curve (AUC) < 0.6 at each timepoint) 
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were removed from the model and excluded from further 
analysis. For remaining parameters, optimal cutoff points 
were derived using the top left index (minimal distance to 
top left corner) and each parameter was further binarized 
into “low risk” and “high risk” at each timepoint.

Finally, pairwise Cox association models were per-
formed, “adjusting” parameters with each other, thus 
giving a model for each pair of parameters to identify 
complementary or redundant ones. Redundant param-
eters were excluded from the model and from further 
analysis, to ensure that each parameter independently 
brought information to the model (excluding the redun-
dant parameter with the lowest individual HR). A score 
was thus constructed as the combined sum of the bina-
rized remaining parameters (with 1 point for “high risk”, 
and 0 point for “low risk” markers).

Score
The predictive power of the resulting combination (score) 
was evaluated at the prespecified timepoint of interest 
D5–7 in patients still in ICU at that timepoint (cohort of 
interest), with absolute risk of secondary infection pre-
sented in each category. Univariate and adjusted Cox 
proportional hazards models were performed to adjust 
for a priori identified clinical risk factors for secondary 
infection, i.e. the physiological severity of illness (SOFA 

score at timepoint of interest), and disruption of normal 
barriers by invasive mechanical ventilation at timepoint 
of interest. Unadjusted and adjusted hazard ratios were 
computed.

Data are presented as numbers and percentages (quali-
tative variables) and medians and 25th/75th percentiles 
(quantitative variables). Chi square or Fisher’s exact test 
were used for qualitative variables assessment. Quan-
titative variables were compared with Mann–Whitney 
U test. The level of significance was set at 5%. Statistical 
analyses were computed with R software v3.6.2.

Results
Out of 1079 screened patients, 353 (33%) were included 
in the main REALISM study [17]. The overall study popu-
lation consisted primarily of males (65.4%) with a median 
age of 60 [47–71] years and an admission SAPS 2 score 
of 29 [20–43]. Of these, 278 patients (78.8%), 261 (73.9%) 
and 191 (54.1%) were still alive and in the ICU at time-
point D1–2, D3–4 and D5–7, respectively.

The cohort of interest (patients alive and still in ICU 
at D5–7) consisted of 189 patients after excluding indi-
viduals with missing data. From this cohort of interest, 
42 (22.0%) developed subsequent secondary infections at 
D30 (Additional file 1: Table S1). The detailed description 
of patients’ characteristics is presented in Table 1.

Table 1  Patient characteristics

Data are presented as absolute numbers (percentage) or as median [Q1–Q3].

*See Additional file 1: Table S2 for detailed infection characteristics for patients admitted with sepsis.

Preadmission characteristics Whole REALISM cohort
n = 353

Cohort of interest 
(ICU at D5–7)
n = 189

Age (year) 60 [47–71] 59 [45–72]

Female gender 122 (34.6%) 52 (27.5%)

BMI (kg/m2) 25.0 [22.3–28.4] 25.2 [22.6–28.5]

Admission reason

 Sepsis* 107 (30.3%) 72 (38.1%)

 Trauma 137 (38.8%) 95 (50.3%)

 Surgery 109 (30.8%) 22 (11.6%)

Clinical characteristics

 Admission SAPS2 29 [20–43] 35 [23–47]

 SOFA at admission 5 [1–8] 6 [2–9]

 SOFA at D5–7 1 [0–2] 1 [0–4]

 Mechanical ventilation at D5–7 33 (9.3%) 33 (18.2%)

 Renal Replacement Therapy at D5–7 17 (4.8%) 16 (8.5%)

Outcomes

 Secondary infection at D 30 74 (21.0%) 42 (22.2%)

 Secondary infection onset (days) 9 [6–15] 11 [9–17]

 D30 ICU free days 23 [18–26] 22 [15.5–24]

 D30 hosp. free days 15 [2–21] 9 [0–17.5]

 D30 mortality 18 (5.1%) 10 (5.3%)



Page 5 of 10Tremblay et al. Annals of Intensive Care           (2022) 12:76 	

Predictive power of individual parameters
ROC curves were computed for each prespecified 
immune parameter (mHLA-DR, percentage of imma-
ture neutrophils, IL-6 and IL-10 concentration and total 
lymphocytes count, see e-Table 1). All parameters had an 
AUC above 0.6 at least at one timepoint except for lym-
phocyte count (AUC 0.46, 0.56 and 0.52, respectively), 
which was thus excluded from further analysis. Cutoffs 
values were computed for the four remaining parameters 
(mHLA-DR, percentage of immature neutrophils, IL-6 
and IL-10). For consistency, we only used the cutoff val-
ues computed at D5–7 from the cohort of interest. Val-
ues were dichotomized (“high-risk” vs “low-risk”). When 
adjusted for each other through pairwise association, 
every parameter brought complementary information to 
the models except for IL-6 and IL-10, which were consid-
ered redundant. Because IL-6 had the lowest predictive 
power for occurrence of secondary infection (unadjusted 
HR 1.82 (0.95–3.45), p = 0.069), it was excluded from fur-
ther analysis.

The three remaining parameters were thus mHLA-DR, 
percentage of immature neutrophils and IL-10 (Table 2). 
When measured at days 5–7 from the cohort of inter-
est, all three parameters had excellent predictive power 
for occurrence of secondary infection at day 30, with 
percentage of immature neutrophils performing best 
(unadjusted HR 2.55 (1.38–4.73) p = 0.003), followed by 
mHLA-DR (unadjusted HR 2.52 (1.31–4.85) p = 0.006), 
and IL-10 levels (HR 2.18 (1.07–4.45) p = 0.031).

Predictive power for these three parameters was also 
computed for other prior timepoints (D1–2 and D3–4, 
see Additional file  1: Table  S3). None of the individual 
parameters had significant predictive power for occur-
rence of secondary infection at D1–2. When measured 
at D3–4, parameters only had moderate predictive power 
for occurrence of secondary infection at day 30 (mHLA-
DR, unadjusted HR 1.85, CI [1.15–2.98], p = 0.01; per-
centage of immature neutrophils, unadjusted HR 1.83 
[1.12–3.00] p = 0.01); IL-10 levels, unadjusted HR 1.72, 
CI [1.07–2.77], p = 0.02).

The REALIST score
For these remaining parameters (mHLA-DR, immature 
neutrophils and IL-10), a point was given for each “high-
risk” results as measured at D5–7. As such, for each 
patient still in the ICU at D5–7 (n = 189), a score between 
0 and 3 was obtained, with 3 representing the highest risk 
of secondary infection. Incidence of secondary infection 
increased from 8% for patients with score of 0 to 46% in 
patients with a score of 3 (Fig. 1). Higher REALIST score 
was also associated with increased mortality at 30  days 
(p = 0.001 by Fisher’s Exact Test).

When adjusted for a priori identified clinical risk fac-
tors for secondary infection, (SOFA score and inva-
sive mechanical ventilation at timepoint of interest) a 
higher REALIST score was independently associated 
with increased risk of secondary infection (Table 3). For 
instance, patients with a score of 3 were 3.2 times more 
likely to develop secondary infection than patients with 
a score of 0, independent of clinical risk factors (adjusted 
HR 3.22 (1.09–9.50), p = 0.034).

Discussion
As a sub-study of the REALISM project, the REALIST 
score was developed as a pragmatic and clinically appli-
cable stratification strategy to identify patients with 
occult immune dysfunction. In our cohort of mixed 
ICU patients, the REALIST score was able to identify 
patients at high risk of secondary infections, an associa-
tion that was independent from major clinical risk factors 
for infection. As such, this approach demonstrated that 
genuinely occult immune dysfunction can be identified 
in ICU patients with tools that are quite potentially avail-
able to the frontline critical care physician outside expert 
research centers [27, 28].

Insights from the REALISM study
The REALISM study outlined how the immune response 
to injury engages all components of the immune sys-
tem and does not significantly vary with the type of 
injury (infectious vs sterile). The initial response is not 

Table 2  Parameters of the REALIST score and their predictive power of secondary infection at day 30

As measured in the cohort of interest (n = 189 ICU patients at days 5–7)

Values are presented with 95% confidence interval (CI)

AUC​ area under the curve, PPV positive predictive value, NPV negative predictive value

Cutoff AUC​ Specificity (95% CI) Sensitivity (95% CI) PPV (95% CI) NPV (95% CI) HR (95% CI)

mHLA-DR  ≤ 7627 Ab/C 0.71 0.63
(0.46–0.79)

0.73
(0.53–0.9)

0.27
(0.22–0.38)

0.92
(0.89–0.96)

2.52
(1.31–4.85)

Immature neutrophils  ≥ 23.5% 0.71 0.72
(0.57–0.81)

0.7
(0.53–0.83)

0.32
(0.24–0.41)

0.93
(0.89–0.96)

2.55
(1.38–4.73)

IL-10  ≥ 8.5 pg/ml 0.60 0.53
(0.43–0.69)

0.73
(0.53–0.87)

0.23
(0.19–0.29)

0.91
(0.87–0.96)

2.18
(1.07–4.45)
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associated with increased risk of death and secondary 
infection, illustrating that the initial pro-inflammatory 
immune response induced by injury should not neces-
sarily be seen as a deleterious factor per se but rather 
represents an adaptive response to the injury. As induc-
tion of the pro-inflammatory effector response is asso-
ciated with the concomitant development of regulatory 
mechanisms to protect the host from such overwhelming 
immune response, this also illustrates the complex inter-
play between the effector and regulatory mechanisms 
of the immune system to set up a coordinated immune 
response to injury. This initial host response likely aims 
at controlling the aggression and at protecting the host 
from deleterious off-targets effects of this tremendous 
immune response.

Thus, after the initial physiologic immune response 
to injury, it is the persistence (or delayed recovery) of 
immune alterations that predisposes patients to deleteri-
ous infectious events, independently of usual confound-
ing factors. In this subgroup of patients, this persistently 
dysregulated immune profile cannot be considered as 
part of the physiologic response to injury but rather as a 
maladaptive evolution of the immune response.

Therefore, as tempting it might be to try to predict 
subsequent infection in patients soon after ICU admis-
sion, this might not be neither practical nor pertinent. A 
promising approach to immune monitoring, therefore, 
seems to be to target the persistence of immune altera-
tions at the end of the first week of ICU stay, identifying 
patients in which immune homeostasis is pathologically 

Fig. 1  REALIST score and subsequent cumulative probability of secondary infection in survivors. Computed from Cox proportional hazards model in 
the cohort of interest (n = 189 ICU patients at days 5–7)

Table 3  REALIST score and incidence of secondary infection and mortality at day 30

As measured in the cohort of interest (n = 189 ICU patients at days 5–7)

Hazard Ratios and P values were computed using univariate and adjusted Cox proportional hazards models from a priori identified clinical risk factors for secondary 
infection (SOFA score and mechanical ventilation at timepoint of interest)

Values are presented with 95% CI

REALIST score Secondary infection at D30 Mortality at D30

Incidence HR
(95% CI)

p Adjusted HR (95% CI) p

0 (n = 61) 5 (8.2%) – – – – 0 (0%)

1 (n = 42) 5 (11.9%) 1.15 (0.33–3.97) 0.827 1.05 (0.30–3.64) 0.943 0 (0%)

2 (n = 49) 15 (30.6%) 2.91 (1.05–8.03) 0.039 2.33 (0.81–6.73) 0.117 5 (10.2%)

3 (n = 37) 17 (46.0%) 4.41 (1.62–11.98) 0.003 3.22 (1.09–9.50) 0.034 5 (13.5%)
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compromised. Knowledge of such occult immune dys-
function is not only interesting, it can also directly 
influence and hopefully optimize patients’ care, either 
through enhanced clinical surveillance, accelerated start 
of antimicrobials in case of infection suspicion, removal 
of potentially superfluous invasive device, and eventually 
through immune stimulation strategies [29]. In parallel, 
a REALIST score of 0 in an otherwise clinically stable 
patient would provide further reassurance and possibly 
support deescalating antimicrobial treatment in the right 
clinical context, for instance. Finally, such immune func-
tion scoring could be used to enrich a study population 
with patients at high risk for secondary infection in the 
context of an eventual immune stimulation randomized 
controlled trial.

Our study echoes the work of Conway-Moris et  al.in 
the important INFECT study [14], in which the authors 
elegantly presented an immune score based on levels of 
mHLA-DR, Treg lymphocytes (CD4+/CD25++/CD127−) 
and dysfunctional neutrophils (nCD88) by flow cytom-
etry after strict standardization within different centers. 
Their score was shown to predict secondary infection in 
critically ill patients with organ dysfunction (unadjusted 
HR 4.30 [CI 1.70–10.20] when measured at days 4–6), 
which interestingly is quite similar to the performance of 
the REALIST score (unadjusted HR 4.41 [CI 1.63–11.98] 
at D5–7). Even though Conway-Morris et al. selected dif-
ferent immune parameters than ours and even though 
patients in the INFECT study had higher illness severity 
than patients in REALISM, these similar results tend to 
validate the concept and pertinence of combining param-
eters to tackle immune monitoring in the ICU across a 
wide range of patients, even those whom clinical status 
might seem somewhat reassuring.

Recently, Fang et  al. described and validated a simi-
lar immune dysfunction score performed at day 1 of 
ICU admission to help predict mortality in critically ill 
patients. In that study [30], the combination of mono-
cyte HLA-DR, Il-10 levels, G-CSF levels and ratio of 
segmented neutrophils to monocyte allowed predicted 
28  day mortality with an AUC of 0.789. Interestingly, 
even though the timepoint and outcome of interest are 
different than those in the REALIST score, there is sig-
nificant similarities between chosen immune parameters, 
further reinforcing the rationale behind immune moni-
toring in the critically ill.

Choice of immune parameters
Besides mHLA-DR, which is the most studied and vali-
dated biomarker in the field with widespread standardi-
zation across laboratories [31, 32], Conway-Morris et al. 
also used the level of Treg (CD4+/CD25++/CD127−) 
and neutrophils surface expression of CD88. Neutrophil 

CD88, a receptor for complement anaphylatoxin C5a, has 
been relatively scarcely described in the critical care con-
text and has only been reported in expert research cent-
ers [33–35]; it has not been performed in the REALISM 
study. In parallel, the phenotypical identification of Treg 
lymphocytes is notoriously problematic and the stand-
ardization of their staining by flow cytometry is chal-
lenging even with modern techniques in expert centers 
[36–38]. Of note, in the REALISM study, percentage of 
Treg lymphocytes was not associated with occurrence of 
secondary infection at D30 through univariate analysis, 
whether measured at days 1–2, 3–4 or 5–7 (best HR at 
D3–4: 1.08 (0.84–1.38), p = 0.552).

As immunophenotyping has historically suffered from 
lack of standardization and reproducibility [39], par-
ticular importance must be attributed to these aspects 
if one hopes for immune monitoring tools to permeate 
into clinical practice. Thus, for the REALIST score, we 
purposely and pre-emptively chose immune parameters 
based on their immediate applicability in clinical practice 
outside expert centers. As such, technical robustness and 
reproducibility were major drivers for selecting otherwise 
relevant immune parameters from the REALISM study.

To complement mHLA-DR, we selected the expression 
of CD10 and CD16 on neutrophils as a technically simple 
marker of dysregulated granulopoiesis and inadequate 
granulocyte maturation. In other words, CD10lowCD16low 
neutrophils are immature and quite probably the immu-
nophenotypic equivalent of band cells [26, 40, 41], 
although variability and impreciseness in band cell meas-
urement [42] has precluded such a definite association. 
Like band cells [43], an increase in CD10lowCD16low neu-
trophils has been associated with poor outcomes in sepsis 
patients, namely, occurrence of secondary infection and 
death [41], and might also directly contribute to impaired 
T cell function [40]. Our study supports these past find-
ings, as higher proportion of circulating CD10lowCD16low 
neutrophils at days 5–7 was independently associated 
with occurrence of secondary infection at day 30.

Lymphopenia has been found to be associated with 
poor outcome after sepsis and in other clinical illnesses, 
and therapeutic interventions to increase lymphocytes 
levels after sepsis have been proposed and are under 
investigation [44]. Surprisingly, low lymphocytes levels 
were not associated with secondary infection or mortal-
ity at any timepoint in the REALISM cohort, a finding 
that might be due to lower severity of illness and rela-
tively low event rate.

IL-6 and IL-10 levels were both associated with occur-
rence of secondary infection in our study, although they 
brought redundant information in pairwise analysis. As 
IL-6 is a pro-inflammatory cytokine and IL-10 a globally 
anti-inflammatory cytokine, it was somewhat expected 
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that elevated IL-10 levels would be associated with 
immune dysfunction, which was confirmed in this study. 
Of note, IL-10 levels are strongly correlated with IL-6 
levels at all timepoints, as shown in the REALISM study 
[17], a finding that reflects the intricate and immediate 
interplay between effector and regulatory limbs of the 
immune system. As such, IL-6 levels that fail to return 
towards normal at days 5–7 suggest either immune dys-
function through impaired homeostasis mechanisms 
and/or uncontrolled inflammatory focus with associated 
higher disease severity. Of note, the latter hypothesis is 
supported by the finding that the association between 
higher IL-6 levels at days 5–7 and secondary infection 
was not statistically significant after controlling for SOFA 
score and presence of invasive device.

Strengths and limitations
In our study, we assessed the performance of multiple 
parameters at multiple timepoints in a relatively large 
cohort of mixed critically ill patients. We tailored our 
score to be easily applicable in clinical practice, with a 
fixed and clear timepoint, reliable and technically robust 
parameters with a strong track record, and simple com-
putation by bedside clinicians. We also demonstrated 
strong association with secondary infections even after 
controlling for SOFA score and presence of invasive 
mechanical ventilation. We elected to control for both of 
these variables, even though they are partially redundant 
(as respiratory support is included in the SOFA score) 
because of the strong and clinically important associa-
tion between invasive mechanical ventilation and risk 
of infection (namely, pneumonia). This thus represents 
a more stringent statistical correction than seen in other 
similar studies, further supporting the claim that our 
score is not a mere marker of disease severity but really 
an immune monitoring tool that provides genuinely new 
and previously occult information to the clinician.

Among significant limitations, our study was single-
centre and suffers from a relatively low disease severity 
and low event rate. Although this reduced the strength 
of association between parameters and outcome, it also 
suggests that the score is applicable to a wide array of 
patients with varying disease severity, as secondary infec-
tions can occur even in patients with low disease severity 
with genuinely occult immune dysfunction. Importantly, 
the REALIST score will have to be further validated in a 
separate multicentric cohort.

Interpretation
In conclusion, we derived and presented the REAL-
IST score, a simple and pragmatic stratification strat-
egy which provides critical care clinicians with a clear 
and useful assessment of the occult immune status of 

their patient. This new tool could help optimize care of 
these fragile individuals and could contribute in design-
ing future trials of immune stimulation strategies. Ulti-
mately, we believe this score, in conjunction with the 
main REALISM study, provides important didactic value, 
as the question of critical illness induced immune dys-
function warrants widespread discussion within the criti-
cal care community if we are to adapt our practice to this 
complex phenomenon and lastingly provide better care.
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