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HIV-specific broadly neutralizing antibodies (bnAbs) have been isolated from patients with high viremia but also
from HIV controllers that repress HIV-1 replication. In these elite controllers (ECs), multiple parameters contrib-
ute to viral suppression, including genetic factors and immune responses. Defining the immune correlates asso-
ciatedwith the generation of bnAbsmay help in designing efficient immunotherapies. In this study, in ECs either
positive or negative for the HLA-B*57 protective allele, in treated HIV-infected and HIV-negative individuals, we
characterizedmemory B cell compartments andHIV-specificmemory B cells responses usingflowcytometry and
ELISPOT. ECs preserved theirmemory B cell compartments and in contrast to treated patients,maintained detect-
able HIV-specific memory B cell responses. All ECs presented IgG1+ HIV-specific memory B cells but some indi-
viduals also preserved IgG2+or IgG3+ responses. Importantly, we also analyzed the capacity of sera from ECs to
neutralize a panel of HIV strains including transmitted/founder virus. 29% and 21% of HLA-B*57+ and HLA-
B*57− ECs, respectively, neutralized at least 40% of the viral strains tested. Remarkably, in HLA-B*57+ ECs the
frequency of HIV-Env-specific memory B cells correlated positively with the neutralization breadth suggesting
that preservation of HIV-specificmemory B cellsmight contribute to the neutralizing responses in these patients.
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1. Introduction

HIV-1 (HIV) infection alters B cell differentiation resulting in sponta-
neous immunoglobulin secretion, hypergammaglobulinemia (Lane et
al., 1983) and decrease in memory B cell frequencies (Moir et al.,
2008; Hu et al., 2015; Buckner et al., 2013). HIV-specific antibodies
(Abs), with the capacity to neutralize the autologous virus, appear sev-
eralmonths after infection. However, these Abs poorly neutralize heter-
ologous HIV strains (Tomaras et al., 2008; Moog et al., 1997; Wei et al.,
2003; Deeks et al., 2006; Richman et al., 2003; Gray et al., 2007).
Cross-reactive neutralizing Abs, are produced only 2 to 4 years after se-
roconversion (Gray et al., 2011;Mikell et al., 2011; Richman et al., 2003)
and at low titers in most individuals (Hraber et al., 2014). Only 20% of
patients harbor high titers of cross-reactive neutralizing Abs (Doria-
Rose et al., 2010). Among them, 1% were identified as elite neutralizers
based on the capacity of their plasma to neutralize, across clades, a large
panel of HIV strains (Li et al., 2007; Simek et al., 2009). Broadly neutral-
izingmonoclonal Abs (bnAbs)were cloned fromHIV-specificmemory B
cells isolated from these patients (Scheid et al., 2009; Mouquet, 2014;
Sok and Burton, 2016). Understanding how these bnAbs are generated
in HIV-infected individuals could lead the path to the development of
an antibody-based vaccine. In viremic patients, the breadth of neutrali-
zation has been associated with higher viral loads (Doria-Rose et al.,
2010; Piantadosi et al., 2009; Deeks et al., 2006; Sajadi et al., 2011;
Doria-Rose et al., 2009; Sather et al., 2009; Rodriguez et al., 2007), dura-
tion of viral exposure and viral diversity (Rusert et al., 2016).

HIV-infected individuals who naturally control HIV infection with-
out combined antiretroviral therapy (cART) (Saez-Cirion and Pancino,
2013), in particular elite controllers (ECs, b1% of HIV-infected individ-
uals) who maintain very low to undetectable viremia (Lambotte and
Delfraissy, 2005; Grabar et al., 2009) represent a unique chance to
study immune responses potentially involved in viral suppression
(Walker and Yu, 2013). A fraction of ECs exhibit potent cytotoxic
CD8+ T cell responses against HIV-infected cells (Sáez-Cirión et al.,
2007; Betts et al., 2006; Hersperger et al., 2011), often associated with
the expression of the HLA-B*57 allele (Migueles et al., 2000; Lambotte
and Delfraissy, 2005; Betts et al., 2006). HIV-specific CD4+ T cells of
ECs express high avidity T cell receptors (TCRs) suggesting that T cell
helper responses contribute to HIV-control (Benati et al., 2016). In con-
trast, several studies have shown that ECs present lower cross-neutral-
izing Ab responses as compared to viremic individuals (Lambotte et al.,
2009; Pereyra et al., 2008; Bailey et al., 2006; Sajadi et al., 2011). How-
ever, among ECs, there is a marked heterogeneity, some presenting
broad cross-neutralizing capacities while others show minimal or no
neutralization (Lambotte et al., 2009; Scheid et al., 2009; Pereyra et al.,
2008; Bailey et al., 2006; Sajadi et al., 2011). Non-neutralizing Ab re-
sponses might also exert significant antiviral activities (Chung et al.,
2015). In particular, titers of Abs executing antibody-dependent cell-
mediated cytotoxicity (ADCC) have been shown to be higher in ECs
(Lambotte et al., 2009) and predominant in HLA-B*57− ECs as com-
pared to HLA-B57+ ECs (Lambotte et al., 2013). More recently, HIV-
control has been linked to the capacity of the sera from ECs to perform
multiple effector functions (Ackerman et al., 2016). Indeed, depending
on their isotype, Abs exhibit different effector functions such as Fcγ
receptors (FcγR) binding, initiation of ADCC and activation of the com-
plement cascades. Although the immunoglobulin G1 (IgG1) subclass
dominates HIV-specific responses, the proportion of IgG isotypes
might vary depending on individuals, theHLA status and the clinical pa-
rameters (Binley et al., 2008, Banerjee et al., 2010, Ackerman et al., 2016,
French et al., 2013). Ackerman et al. showed that the sera from ECs
exhibiting strong polyfunctional antiviral activities are enriched in Abs
of IgG1 and IgG3 subclasses (Ackerman et al., 2016). IgG2 Abs to the
HIV Gag protein have been associated with long-term nonprogression
(Martinez et al., 2005; Ngo-Giang-Huong et al., 2001) and seem more
abundant in HLA-B*57− ECs compared to HLA-B*57+ ECs (French et
al., 2013). Therefore, the quality of Ab responses, defined by the
diversity of Ab subclasses should be considered when characterizing
Ab responses elicited by HIV infection and vaccine candidates.

A successful vaccine should lead to the generation of long-lived plas-
ma cells and memory B cells that are thought to be essential for
sustained humoral immunity. However, during chronic infection, the
persistence of viral antigens alters B cell differentiation into memory
cells (Colineau et al., 2015). Memory B cells can be divided in 4 subpop-
ulations: activated memory (AM, CD27+CD21 −), resting memory
(RM, CD27+CD21+), intermediate memory (IM, CD27 −CD21+)
and tissue-like memory B cells (TLM, CD27 −CD21 −) (Moir et al.,
2008). AM and TLM B cells (the latter corresponding to anergic cells)
are overrepresented in untreated HIV-infected patients (Moir et al.,
2008; Pensieroso et al., 2013) and are associatedwith higher levels of vi-
remia (Kardava et al., 2014). In contrast, RM cells that contribute to
maintaining humoral responses, are decreased upon infection (Good
et al., 2009; Moir and Fauci, 2013). Remarkably, HIV-specific B cells
are enriched in TLM and AM B cell subsets but decreased in RM cells
(Kardava et al., 2014). Compared to the levels in HIV-negative individ-
uals, cART restores TLM and AM B cell proportions and only partially
the RM compartment (Moir et al., 2008; Moir et al., 2010; Pensieroso
et al., 2013). Although ECs do not clear the infection, studying their
memory B cell responses could help understand the maintenance of
long lasting humoral immunity in the presence of low to undetectable
antigen loads. In ECs, RM and AM B cell proportions are higher com-
pared to treated HIV-infected patients but no differenceswere observed
concerning the percentage of TLM cells (Pensieroso et al., 2013). How-
ever, in ECs, the frequency of HIV-specific TLM B cells is reduced com-
pared to treated HIV-infected patients (Buckner et al., 2016). Taken
together, these results suggest that ECs preserve their memory B cell
compartments but also exhibit features of viremic individuals (in-
creased AM cells). Whether this preservation of the memory B cell
subsets, in ECs, is associated with the maintenance and/or a higher fre-
quency of HIV-specific memory B cells expressing various Ab subclasses
remains an open question. In addition, potential correlations between
HIV-specific memory B cell frequencies and the neutralization breadth
in sera have not been investigated so far. Two studies previously ana-
lyzed potential correlations between Ab responses and Ab secreting
cells (Bussmann et al., 2010; Doria-Rose et al., 2009). Bussman et al.
asked whether the frequency of Env/gp120-specific B cells might corre-
late with the Ab titers to Env/gp120 protein (Bussmann et al., 2010)
while Doria-Rose et al. studied the frequency of plasmablasts that spon-
taneously secret HIV-specific Abs and the breadth of neutralization
(Doria-Rose et al., 2009). Both studies failed to observe any correlation
between these HIV-specific B cell responses and the Ab profiles.

In the present study, we characterized memory B cell responses in a
cohort of ECs either positive or negative for the HLA-B*57 protective al-
lele. We analyzed whether the preservation of B cell compartments
might be linked to the capacity of B cells to secrete HIV-specific Abs.
We compared B cell responses in HLA-B*57+ and HLA-B*57− ECs
with either that of aviremic patients undergoing successful cART or
HIV-negative individuals.Weobserved a global preservation ofmemory
B cell compartments in ECs with a proportion of TLM comparable to
what was observed in cART and HIV-negative individuals. Interestingly,
HIV-specific B cells were detected in 82% of ECs. In contrast, only 7% of
cART patients presented HIV-specific responses whereas all groups ex-
hibited similar levels of Influenza-specific B cell responses. HIV-specific
responses consisted mainly of IgG1 secreting B cells although HIV-spe-
cific IgG2 and IgG3 secreting B cells were detected in a third of ECs.
Next we analyzed whether these B cell responses might correlate with
the capacity of patients' sera to neutralize HIV. For this purpose, we
used mostly difficult-to-neutralize tier-2 transmitted/founder (T/F) vi-
ruses. 89% of sera from ECs neutralized at least one HIV strain tested
and 8% blocked infection of at least 40% of difficult-to-neutralize tier-2
T/F viruses. Remarkably, among HLA-B*57+ ECs, the frequency of
Env-specific memory B cells correlated positively with the capacity to
neutralize T/F HIV strains, suggesting that these cells might contribute
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to the neutralizing responses in this group of ECs. Overall, through the
analysis of Env-specific memory B cell frequencies, the isotype diversity
and the neutralization breadth, our results reveal major differences be-
tween HLA-B*57+ and HLA-B*57− ECs.

2. Materials and Methods

2.1. Patients and Samples

EC (n = 37) were recruited from the CO21 CODEX cohort imple-
mented by the ANRS (Agence nationale de recherches sur le SIDA et
les hépatites virales).Whole blood and PBMCwere cryopreserved at en-
rolment. Ten million PBMCs from ECs were available for this study. ECs
Table 1
Clinical and epidemiological characteristics of the study groups.
were defined as HIV-infected individuals maintaining viral loads (VL)
under 400 copies of HIV RNA/mL without cART for N5 years. ECs were
divided in 2 groups: HLA-B*57+ (n = 18) or HLA-B*57− (n = 19).
HIV-infected efficiently treated patients (cART) (n=13)were recruited
at Kremlin Bicêtre Hospital. They were treated for at least 1 year (mean
of 10 years) and had an undetectable viral load using standard assays.
HIV-negative individuals (n = 12) were anonymous blood donors
(Établissement Français du sang). A detailed description of the patients
is provided in Table 1, including the median and interquartile range for
age (at the time of the study), CD4 T cell count and RNA load for each
group. HIV-RNA loads were measured on site with different real-time
PCR-based assays; depending on the date of enrolment in the cohort
and the assay routinely used on each site, the VL detection limit varied
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from 50 to 10 copies/mL. To better quantify low levels of viral replica-
tion, VL were also determined using an ultrasensitive, real-time PCR
technique (GENERIC HIV, Biocentric, Bandol, France) with a threshold
ranging from 1 to 13 copies/mL, depending on the available plasma vol-
ume. Total cells associated HIV-1 DNA levels were quantified using the
real time PCR GENERIC HIV-DNA assay (Biocentric, Bandol, France)
(Avettand-Fenoel et al., 2009).

2.2. Ethic Statement

All the subjects provided their written informed consent to partici-
pate in the study. The CO21 CODEX cohort and this sub-study were
funded and sponsored by ANRS and approved by the Ile de France VII
Ethics Committee. The study was conducted according to the principles
expressed in the Declaration of Helsinki.

2.3. Flow Cytometry

Cell viability was evaluated using LIVE/DEAD® (ThermoFisher
Scientific) and the following Abs were used: CD19-APCCy7 (SJ25C1),
CD21-APC (B-ly4), CD27-PE (M-T271), IgD-PECF594 (IA6-2), IgG-
BV605 (G18-145), CD38-V450 (HB7) (all from BD biosciences), IgM-
AF700 (CH2, Exbio) and IgG2-AF488 (HP6002, Southern Biotech).
Staining assays were performed using standard procedures in PBS
containing 0.5% BSA and 2 mM EDTA (20 min at 4 °C). Samples were
processed on a Fortessa cytometer using FACSDiva software (BD Biosci-
ences) and further analyzed using FlowJo2 software (Tree Star).

2.4. Differentiation of B cells into Antibody Secreting Cells

PBMCs were thawed and cultured in Yssel medium supplemented
with 1% human AB serum (Institut Jacque Boy), 0.5 μg/mL of TLR7/8 li-
gand (R848, InVivoGen) and 100 U/mL rhIL-2 (Miltenyi Biotec). Cells
were cultured at 1 × 106 cells/mL. After 6 days, cells were harvested,
the proportion of B cells evaluated using flow cytometry (using anti-
CD19 antibody, not shown) and the frequency of HIV-specific B cells
evaluated using B cell-ELISPOT assay (Pinna et al., 2009).

2.5. B Cell-ELISPOT Assay

ELISPOT plates (Millipore MSIPN4550) were pre-wet with 35% eth-
anol (1 min), washed with PBS and coated overnight at 4 °C with 15
μg/mL anti-IgG antibodies (Mabtech, MT91/145) or viral antigens dilut-
ed in PBS. HIV antigens included a trimeric cleavage-deficient recombi-
nant glycoprotein from the YU-2 clade B (tier-2) HIV viral strain
(gp140Yu2b, originally described in (Yang et al., 2000)) produced in
HEK293T-derived cells by transient transfection as previously described
(Lorin and Mouquet, 2015), gp41S30 (Licence N°WO2012101509 A2)
and gp160THO (92THO23), oligomeric envelope glycoprotein produced
from a hybrid HIV env gp120 from CRF01_AE (92TH023) and subtype B
(LAI) gp41, which is deleted in the principal immunodominant domain
(PID), expressed by vaccinia virus in BHK21 cells (Thongcharoen et al.,
2007). HIV antigens were coated at 10 μg/mL. Influenza antigens (5
μg/mL, 2015 VAXIGRIP vaccine, Sanofi PasteurMsd) and keyhole limpet
hemocyanin (KLH, 10 μg/mL, Sigma-Aldrich) were used as positive and
negative controls, respectively. Plates were washed with PBS and satu-
rated with RPMI containing 10% FBS. Six days post activation, 1500 to
3000 or 1.5 × 105 to 3 × 105 B cells/well were plated for total IgG or an-
tigen-specific detections, respectively, and incubated overnight at 37 °C
in RPMI+ 10% FBS. Plates were then washedwith PBS+ 0.05% Tween-
20 prior incubation with biotinylated anti-IgG (1 μg/mL, MT78/145,
Mabtech), anti-IgG1 (1 μg/mL, G17-1, BD), anti-IgG2 (0.2 μg/mL,
HP6200, Mabtech) or anti-IgG3 (0.2 μg/mL, HP6050, Southern Biotech)
Abs (2 h, RT). Elispots were revealed using alkaline-phosphatase
coupled streptavidin (0.5 U/mL, Roche Diagnostics, 1 h RT) and 50 μL
BCIP/NBT substrate (15 min, Sigma). The reaction was stopped using
water. The number of spots was counted using AID reader (Autoimmun
Diagnostika GmbH). For each experimental condition, the Elispot was
performed mostly in triplicates and at least in duplicates. Frequency of
antigen-specific B cells was calculated taking account the number of
CD19+ B cells plated.

2.6. HIV-Specific IgG Ab Detection by Elisa

96-well plates were coated overnight with a sheep anti-human IgG
(1 μg/mL in carbonate buffer, Binding Site) for the detection of total
IgGs, or with gp140Yu2b or gp41S30 (2 μg/mL in carbonate buffer) for
the detection of anti-gp140 or anti-gp41 IgGs, respectively. Plates
were washed and saturated with PBS containing 5% BSA and incubated
with diluted sera (2 h, at 37 °C). Plates were thenwashed and a second-
ary goat anti-human IgG-HRP (HorseRadish Peroxidase) added (1 h at
37 °C, 0.2 μg/mL in PBS, Southern Biotech). Finally, TMB (3,3′, 5,5′
TetraMethylBenzidine) substrate was added. After 30 min, the reaction
was stopped (using 25 μL of 1MH2SO4 perwell) and the optical density
(OD) read at 450 nm (reference 650 nm). The ratios of HIV-specific IgG
were calculated as (OD of anti-gp140 or anti-gp41 IgGs × serum dilu-
tion) / (OD of total IgG x serum dilution).

2.7. Viruses and TZM-bl Neutralization Assays

For neutralization, pseudoviruses were produced by cotransfecting
293T cells with HIV-1 env expression plasmid SF162.LS, QH0692.42
and YU2 and the env-deficient HIV-1 backbone plasmid (pSG3ΔEnv).
Infectious molecular clones: CH058, CH077, CH106, RHPA,
THRO4156.18, REJO 4541.67 and TRJO4551.58 were produced by trans-
fection on 293T cells. These different strains were obtained through the
NIH AIDS reagent program.

Sera were tested for their ability to neutralize HIV-1 using TZM-bl
neutralization as described previously (Li et al., 2005). As negative con-
trols, HIV-negative sera (purchased at Etablissement Français du Sang)
were used and the capacity of EC's sera to neutralize MuLV was
assessed. One tier-1 reference strains (SF162.LS), eight tier-2 strains
(YU2, QH0692.42, CH058, CH077, CH106, RHPA, THRO4156.18 and
REJO4541.67) and one tier-3 strain (TRJO4551.58) were used. CH058,
CH077, CH106, RHPA, THRO4156.18 and REJO4541.67 and
TRJO4551.58 are T/F viruses. The 50% inhibitory reciprocal dilution
(IRD50) was defined as the sample reciprocal dilution that caused a
50% reduction in relative luminescence units (RLU) (Li et al., 2005).

2.8. Statistics

Statistical significances (p-values)were determined using a Kruskal-
Wallis test or a Mann-Whitney test (*p b 0.05, **p b 0.01, ***p b 0.001)
and associations between continuous variables were evaluated using
Spearman rank order correlation test using Prism software (GraphPad)
and “Visualization of a Correlation Matrix” R package version 0.77
(https://CRAN.R-project.org/package=corrplot).

3. Results

We characterized memory B cell responses and HIV cross-neutrali-
zation potential in a cohort of ECs either positive or negative for the
HLA-B*57 protective allele. We compared HLA-B*57+ and HLA-
B*57− ECs with aviremic patients undergoing successful cART or HIV-
negative individuals (Table 1).

3.1. Memory B Cell Compartments are Preserved in EC

Using flow cytometry, we first analyzed the peripheral memory B
cell compartments (as shown in Supplemental Fig. 1). The proportion
of CD19+ B cells was slightly higher, although not significantly, in ECs
compared to HIV-negative donors (Fig. 1a). ECs, cART and HIV-negative

https://CRAN.R-project.org/package=corrplot
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donors presented no significant differences concerning the proportions
of AM, IM and RM B cells (Fig. 1b) or other populations studied (total
memory B cells, naïve B cells, IgG+ and IgG2+ memory B cells,
plasmablasts and Marginal Zone-like (MZ-like) B cells (Supplemental
Fig. 2). In contrast, a significant increase of TLM B cell proportion was
detected in HLA-B*57− ECs compared to HIV-negative individuals
(Fig. 1b, p = 0.0247). Overall, with the exception of the TLM B cells
that were slightly expanded in HLA-B57− ECs, the B cell compartments
seemed preserved in ECs.

3.2. EC Maintain HIV-Specific Memory B Cell Responses with Stronger Pro-
liferative Capacity

We then evaluated the frequency of HIV-specific memory B cells
using ELISPOT (Fig. 2 and Supplemental Fig. 3). The frequencies of B
cells secreting total IgG, IgG1 or IgG3were not significantly different be-
tween the 3 groups (Supplemental Fig. 3). In contrast, we noticed a re-
duced frequency of IgG2 secreting B cells in ECs compared to HIV-
negative donors (p = 0.0131, Supplemental Fig. 3c). To detect anti-
gen-specific B cell responses, we used different HIV envelopes (HIV
Env): gp140Yu2b, gp41S30, gp160THO and Influenza antigens or KLH
as positive and negative controls, respectively. The gp140Yu2b trimers
can capture the B-cells and bind to non-neutralizing and cross-neutral-
izing Abs (Scheid et al., 2009; Mouquet et al., 2011) of all specificities
and more importantly, of all types of bNAbs and clonal variants
(Scheid et al., 2011; Mouquet et al., 2012), except PG16-like Abs.
Gp41S30 is the target of Abs to gp41 such as bNAbs against the MPER
(e.g. 2F5, 4E10 and 10E8) or non-NAbs against the PID (e.g. 7B2).
Gp160THOwas used in the RV144 vaccine trial that showed an estimat-
ed 31% vaccine efficacy (Rerks-Ngarm et al., 2009). It allows the capture
Fig. 1. Memory B cell compartments are preserved in ECs. In PBMC from ECs (n = 37), cAR
lymphocytes and (b) frequencies of AM (CD27+CD21−), RM (CD27+CD21+), IM (CD27
represented by a specific dot on each graph (shape and color). Circle: HLA-B*57+ EC; Square
followed by a Dunn's test (*p b 0.05). Bars indicate median values.
of Abs directed to gp120 and to gp41 except Abs directed to the PID and
PG16-like Abs. As an additional control, the frequency of HIV-specific B
cells was evaluated in healthy HIV-negative donors (Fig. 2a). Remark-
ably, 82% of ECs (27/33 ECs tested) but only 7% of cART patients (1/
13) exhibited a positive response against HIV Envs (Fig. 2a). This very
low frequency of responders among cART patients was consistent
with other studies describing that upon initiation of cART the frequency
of HIV-specific B cells drops to low or undetectable levels (Morris et al.,
1998; Bussmann et al., 2010; Buckner et al., 2016). This difference is
strictly specific to HIV antigens since both groups reacted to Influenza
antigens (63% and 75% reacting ECs and cART-patients, respectively)
(Fig. 2b). Therefore, although both ECs and cART patients have unde-
tectable viral loads, Env-specific memory B cells were detected mainly
in ECs.

3.3. HIV-Specific Memory B Cell Responses are Mainly of the IgG1 Isotype

Wenext analyzed the specificity and isotype of HIV-specific secreted
Abs in ECs (Fig. 3). Patientswithdetectable antibody responses to gp140
also reacted against gp41 and gp160 (Fig. 3A). In ECs, IgG+ B cells spe-
cific for gp140, gp41 and gp160 represented respectively 0.24, 0.20 and
0.13 mean % of IgG+ B cells (Fig. 3A). In ECs, the frequencies of IgG+
Influenza-specific and HIV Env-specific B cells were in the same order
of magnitude (Fig. 3a). Note that in ECs, cART and HIV-negative donors,
we did not observe a significant difference in the frequency of Influenza-
specific B cells (Supplemental Fig. 4).

HIV Env- and Flu-specific B cell responses in ECs were mainly medi-
ated by IgG1 Abs, which represented nearly 50% of responses (Fig. 3b).
In addition, all patients reacting to HIV Env antigens exhibited an HIV-
specific IgG1 response. In contrast, only 35% and 26% of ECs showed
T (n = 13) and HIV-negative donors (n = 12): (a) frequency of CD19+ B cells among
−CD21+) and TLM (CD27−CD21−) B cells among CD19+ B cells. Each individual is
: HLA-B*57− ECs. The statistical significance was calculated using a Kruskal-Wallis test



Fig. 2. ECsmaintain HIV-specificmemory B cell responses. Percentage of ECs (n=33), cART (n=13) andHIV-negative (n=6) donors presentingmemory B cell responses against (a) at
least one HIV antigen (gp140Yu2b, gp41S30 or gp160THO) and (b) Influenza vaccine antigens (2015 VAXIGRIP vaccine). B cell memory responses were evaluated by B cell ELISPOT.
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gp140-specific IgG2+ or IgG3+ B cell responses, respectively (Fig. 3c–
d). Note that IgG2+ and IgG3+ responses were not necessarily detect-
ed in the same patients (Fig. 3c–d).

Finally, whatever the targeted antigens, the proportion of ECs pre-
senting IgG, IgG1, IgG2 and IgG3 Env-specific memory B cell responses
and the magnitude of these responses were similar in HLA-B*57− and
HLA-B*57+ ECs (Fig. 3).

3.4. In HLA-B*57+ ECs, the Frequency of Env-Specific Memory B Cells
Correlates with the Neutralization Breadth

We then askedwhether HIV-specific B cell memory responsesmight
be associated with the capacity of ECs to neutralize HIV-1 infection. To
this end, we tested the ability of the sera from ECs to neutralize a refer-
ence (tier-1) strain, 8 difficult-to-neutralize tier-2 strains (including 7
transmitted founder (T/F) strains) and one highly difficult-to-neutralize
tier-3 T/F strain (Fig. 4). Sera frommost ECs (87%) neutralized the neu-
tralization-sensitive HIV-1SF162 strain. 25% of sera neutralized at least 4
HIV strains out of the 10 tested (Fig. 4). 48% blocked infection of at
least one tier-2 virus. 36% blocked at least one tier-2 T/F virus (Fig. 4b)
Fig. 3. In ECs, HIV-specific memory B cell responses are mainly of the IgG1 isotype. Percenta
gp160THO) and Influenza vaccine antigen (Flu, 2015 VAXIGRIP vaccine) presented according
ASC. Each individual is represented by a specific dot on each graph (shape and color). Statistic
0.05). Bars indicate median values.
and 8% blocked at least 40% of tier-2 T/F strains (Fig. 4b). This demon-
strates that some ECs effectively neutralize difficult-to-neutralize tier-
2 T/F. Interestingly, when examining the neutralizing potential, the
sera from HLA-B*57+ ECs had a twofold higher capacity to neutralize
T/F strains than the sera from HLA-B*57 - ECs (Fig. 4a, average of 14%
T/F neutralized versus 7% for HLA-B*57+ and HLA-B*57− ECs, respec-
tively), although this difference was not statistically significant (p =
0.19). In addition, 30% of the HLA-B*57+ versus 16% of the HLA-
B*57− ECs' sera neutralized N20% of the T/F viruses tested (Fig. 4b).
This difference was almost exclusively due to the capacity of HLA-
B*57+ ECs' sera to neutralize the T/F virus REJO.

To further analyze Ab responses in ECs, we examined potential cor-
relations between the frequency of Env-specific B cells, evaluated in
ELISPOT, and the percentage of neutralized strains for each individual
(Fig. 5). In ECs, the capacity to neutralize all HIV strains or T/F viruses
was neither associated with the frequency of anti-gp140 nor anti-
gp41 secreting B cells (among IgG+ B cells), for all IgG subclasses ana-
lyzed (Fig. 5a and not shown). However, by separating ECs into HLA-
B*57+ and HLA-B*57− donors, we showed that, among HLA-B*57+
ECs the frequency of gp140- and gp41-specific B cells correlated with
ge of antibody secreting B cells specific for HIV-Env antigens (gp140Yu2b, gp41S30 or
to the Ab isotype: (a) total IgG+, (b) IgG1+, (c) IgG2+ and (d) IgG3+ antigen-specific
al significance was calculated using a Kruskal-Wallis test followed by a Dunn's test (*p b



Fig. 4. Capacity of ECs to neutralize tier-2 T/F HIV strains in the TZM-bl assay. Sera fromECs (n=36)were tested against one lab and 8 difficult-to-neutralize tier-2 HIV strains, including 7
T/F strains. The capacity to neutralizeMuLVwas used as a negative control. (A) Neutralization data are shown as the reciprocal serumdilution that neutralized 50% of the infection (IRD50)
tested. A color code (right) indicates the potency of neutralization based on IRD50. The gray color indicates a decreased infection (at 1/20 dilution) that did not reach consistently 50%
inhibition. An absence of color means that no neutralization was found at the lowest dilution tested (1/20). (B) Neutralization breadth expressed as percentage of neutralized strains
for all strains (top panel) and T/F strains (lower panel) in all ECs (Total ECs, left rings), HLA-B*57+ (B*57+ ECs, middle rings) and HLA-B*57− ECs (B*57− ECs, right rings). The
numbers indicate the % of patients for each fraction.
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the capacity to neutralize all HIV strains (p=0.01) including T/F viruses
(p = 0.02) (Fig. 5a–b, blue square). Dissecting Env-specific isotypic re-
sponses in HLA-B*57+ ECs, we observed that gp41-specific IgG1+ B
cell frequencies also correlated with the neutralization of all HIV strains
(p = 0.02) and T/F strains (p = 0.02) (Fig. 5b, blue rectangle). In addi-
tion in these ECs, gp140-specific B cell frequencies correlated with the
IRD50 for 6 out of 8 tier-2 T/F neutralized (Fig. 4a and not shown). Inter-
estingly in HLA-B*57+ECs, Env-specific IgG3+memory B cell frequen-
cies correlated positively with both total IgG and IgG1 Env-specific
responseswithout being directly associated to the neutralization poten-
tial (Fig. 5b).

In contrast, in HLA-B*57− ECs, the frequency of Env-specific B cells
did not correlate positively with any of the neutralizing parameters an-
alyzed. In fact in HLA-B*57− ECs, an inverse correlation was observed
between the frequency of gp140-specific IgG B cells, or of gp140- and
gp41-specific IgG1 B cells and the number of T/F viruses neutralized
(Fig. 5b, red rectangles, p b 0.05). A significant inverse correlation was
also observed between the frequencies of gp140- and gp41-specific



Fig. 5. In HLA-B*57+ ECs, the frequency of HIV-specific B cells correlates with the neutralization of tier-2 T/F virus. (a) Association of HIV gp140-specific B cell frequency (among IgG+ B
cells) and percent of neutralization for all HIV strains tested (toppanel) or T/F HIV strains (bottompanel) for all ECs (Total EC), HLA-B*57+andHLA-B*57− ECs. (*) p b 0.05. (b) Spearman
correlationmatrices between the frequency of gp140- and gp41-specific B cell of various IgG isotypes and the percentage of neutralized strains (All strains) or T/F strains and the frequency
of Env-specific B cell of various IgG subtypes. Left panel HLA-B*57+and right panel HLA-B*57− ECs. Strength and significance are represented as size and color intensity: blue for positive
correlation and red for negative correlation. The numbers are p values.
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IgG3+ B cells and the total number of viruses neutralized (Fig. 5b, red
rectangle, p b 0.05). Note that these opposite correlations observed in
HLA-B*57+ and HLA-B*57− ECs, between Env-specific memory B cell
frequencies and the neutralization potentials, did notmirror the quanti-
ty of Env-specific IgGs or IgG subclasses present in their sera (Supple-
mental Fig. 6 and not shown). Indeed, using Elisa, we detected similar
levels of Env-specific IgGs in the sera of both groups (Supplemental
Fig. 6a). In addition, no correlation was found between the frequency
of Env-specific memory B cells and the quantity of Env-specific IgGs
present in the sera (Supplemental Fig. 6b).

Altogether, these results show that HLA-B*57+andHLA-B*57− ECs
have similar sustained frequency of HIV-specific B cells responses, sim-
ilar HIV-specific Abs responses and non-statistically different neutraliz-
ing capacities. Despite these findings, the strong correlation observed
in HLA-B*57+ ECs between the frequency of Env-specific memory B
cells and the neutralizing parameters suggests that the quality of the
Env-specific Abs induced differ with that of HLA-B*57− ECs. In HLA-
B*57+ ECs, the maintenance of HIV-specific memory B cells may sus-
tain the production of functionally relevant neutralizing Ab responses.

4. Discussion

In this study, we show that, in contrast to treated patients, ECs natu-
rally preserve their memory B cell compartments and maintain HIV-
specific memory B cell responses despite low to undetectable viral
loads. HIV-specific B cells mainly express the IgG1+ Ab isotype and
some ECs also express anti-HIV IgG2 and IgG3 Abs. The sera from a
fraction of ECs exhibit a broad cross-neutralization capacity against
difficult-to-neutralize tier-2 T/F viruses. Remarkably, the frequency of
Env-specific B cells, in HLA-B*57+ ECs, correlates with a broader
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cross-neutralizing capacity. Our results suggest that, in HLA-B*57+ECs,
memory B cell responses might contribute to the maintenance of broad
neutralization capacities and perhaps to the natural control of HIV
infection.

Ex vivo analysis of B cell compartments in ECs, cART and HIV-nega-
tive donors showed a global preservation of the B cell subsets. This is in
contrast to other studies that have observed a slight decrease of RM B
cells in cART patients (Pensieroso et al., 2013; Buckner et al., 2016) com-
pared to HIV-negative donors and an increase of AM B cells in ECs
(Pensieroso et al., 2013). However, we noticed a clear increase of TLM
B cell proportion in HLA-B*57− compared to HLA-B*57+ ECs and to
HIV-negative donors. This expansion of TLM B cells cannot be explained
by a higher residual replication in HLA-B*57− ECs compared to HLA-
B*57+ individuals, as neither the levels of plasma RNAnor cell associat-
ed viral DNA were significantly different between the two groups. Un-
fortunately, owing to the limited amount of cells available for this
study, we could not directly analyze the phenotype of HIV-specific B
cells using for instance gp140-fluorescent probes and flow cytometry.
We analyzed the frequency of HIV Env-specificmemory B cell responses
using B-cell ELISPOT, that requires fewer cells but whose results corre-
late with the frequency obtained using fluorescent antigens and flow
cytometry (Buckner et al., 2016).

Remarkably, despite very low to undetectable viral loads, themajor-
ity of ECs presented Env-specific memory B cell responses.We obtained
similar results using HIV Gag p24 as antigens (not shown). In ECs, the
magnitude of gp140-specific IgG+ memory B cell responses were
0.24%, a result slightly higher than reported by Bussman et al. (0.1% of
memory B cell responses specific to gp120) using a cohort of 10 control-
lers with a median viral load above 400 RNA copy/ml (Bussmann et al.,
2010). In contrast, we showed that memory B cells from cART patients,
under successful virological control, rarely reacted to HIV antigens. This
observation is consistent with other studies describing that upon initia-
tion of cART the frequency of HIV-specific Ab secreting cells is strongly
reduced to low or undetectable levels (Morris et al., 1998; Bussmann
et al., 2010; Buckner et al., 2016; Fondere et al., 2004). Interestingly,
using six ECs, Buckner et al. recently showed that the initiation of
cART led to a decrease of HIV-specific memory B frequencies (Buckner
et al., 2016). Therefore, although in our study, the frequency of HIV-
specific memory B cells in ECs did not correlate with any virological
parameters (Table 1), the maintenance of HIV-specific memory B cell
responses might be due to a persistent low viral replication in the
blood and/or tissues (Hatano et al., 2009; Pereyra et al., 2009).

Several studies have highlighted that ECs present heterogeneous
cross-neutralizing Ab responses, with some ECs exhibiting broad
cross-neutralizing capacities while others show minimal or no neutral-
ization (Deeks et al., 2006; Scheid et al., 2009; Pereyra et al., 2008; Bailey
et al., 2006; Sajadi et al., 2011; Doria-Rose et al., 2009; Braibant et al.,
2008). In this work, we also observed some heterogeneity between
ECs and we identified 8% of ECs with broader cross-neutralizing activi-
ties. This value is slightly lower than the 12% of ECs with broad cross-
neutralization responses reported in previous studies (Sajadi et al.,
2011; Scheid et al., 2009). As previously observed in ECs (Palmer et al.,
2016; Ranasinghe et al., 2015),we did notfind a correlation between re-
sidual viral loads and cross-neutralization potentials. In two studies on
ECs (defined as controllers with viral loads below 2000 RNA copy/ml),
the breadth of cross-neutralizationwas linked to an expansion of termi-
nally differentiated CD57+CD8+ T cells (Palmer et al., 2016) and an
enhancement of HIV-specific CD4+ T cell responses (Ranasinghe et
al., 2015). Recently, Martin-Gayo et al. observed in controllers a correla-
tion between the enrichment of CXCR5+CXCR3+PD-1low CD4+ Tfh-
like cells and the neutralization breadth (Martin-Gayo et al., 2017)
while Dugast et al. identified a unique inflammatory profile that might
be linked to the evolution of the neutralization breadth (Dugast et al.,
2017).

Remarkably, we show here that in HLA-B*57+ ECs, the frequency of
Env-specific B cells, correlated positively with the breadth of viruses
neutralized. Previous studies analyzed potential correlations between
antibody secreting cells and Ab responses (Bussmann et al., 2010;
Doria-Rose et al., 2009). We confirmed the findings from Bussman et
al. that Env-specific B cell frequencies do not correlatewith the Ab titers
to Env in the sera of ECs (Bussmann et al., 2010). Doria-Rose et al. did
not observe anassociation between the frequencyof plasmablasts spon-
taneously secreting HIV-specific Abs and the breadth of neutralization
(Doria-Rose et al., 2009). In our study, we focused on long-livedmemo-
ry B cells that provide not only an archive of contemporaneousHIV-spe-
cific Ab secreting cells but also of historic of Ab responses to the
infection. In HLA-B*57+ ECs, we found a positive correlation between
Env-specific memory B cell responses and the neutralizing breadth.
However, it is important to note that this association was lost or corre-
lated inversely when considering the global ECs population or HLA-
B*57− ECs, respectively.

Taking this study together with previously published work, we are
proposing that in HLA-B*57+ ECs, an early and spontaneous control
of viral replication (Goujard et al., 2009), probably mediated by CTL
(Sáez-Cirión et al., 2007) and innate components of immunity (Barblu
et al., 2012), might favor an early preservation of CD4+ Tfh cells and
the establishment of efficient memory B cell responses sustaining the
generation of potent antiviral responses including broad cross-neutral-
ization. It is tempting to speculate that as recently observed in a unique
HLA-B*57+ individual (Freund et al., 2017), broad neutralization in
HLA-B*57+ ECs may also contribute to the control of HIV infection.

Abs can also mediate antiviral functions independently of their abil-
ity to neutralize viruses, for instance through the binding of FcR and the
initiation of ADCC. Interestingly, when comparing 9 nonneutralizing
and 5 broadly neutralizingmonoclonal Abs, a recent publication report-
ed that bnAbs, due to their enhanced capacity to recognize HIV-infected
cells,mediatemore potent ADCC than non-neutralizingAbs (Bruel et al.,
2017). However, in sera from patients, neutralization-independent Ab
activities have been previously associated with long-term control of
HIV infection (Lambotte et al., 2009; Lambotte et al., 2013; Baum et
al., 1996). In particular, using HIV-infected cells, Lambotte et al. ob-
served that HLA-B*57− ECs present significantly higher ADCC Ab titers
than HLA-B*57+. They suggested that ADCC plays a role in the immune
control of HIV, especially in HLA-B*57− ECs (Lambotte et al., 2013). In
the present study, in HLA*B57− ECs, we reveal an inverse correlation
between Env-specific memory B cell frequencies and the neutralization
breadth. Therefore in both group of ECs, whether HIV-specific memory
B cell frequencymight be associated with the potency of non-neutraliz-
ing antiviral Ab functions, such as ADCC of infected cells, needs to be
further addressed. In a study, using the sera of 9 controllers and 11
progressors, Smalls-Mantey et al. analyzed potential correlations be-
tween ADCC of infected cells and various parameters including neutral-
ization (Smalls-Mantey et al., 2012). They observed similar ADCC Ab
titers in both groups and did not find a correlation between ADCC and
neutralization activities (Smalls-Mantey et al., 2012). However, the
controler cohort was limited in size and they did not compare the
ADCC and neutralization profiles based on the HLA-B genotype
(Smalls-Mantey et al., 2012).

Ackerman et al. proposed that the capacity to exertmultiple antiviral
functions might be linked to HIV-control (Ackerman et al., 2016). In-
deed, depending on their isotype, Abs exert different antiviral functions.
For instance, in contrast to IgG2 and IgG4, IgG1 and IgG3 bind strongly
to FcR on phagocytic cells inducing efficient effector activity. Ackerman
et al. showed that the sera from ECs exhibiting strong polyfunctional
antiviral activities are enriched in Abs of IgG1 and IgG3 subtypes
(Ackerman et al., 2016). In contrast, in viremic controllers, anti-HIV
IgG2 production has been previously associated with HIV-control and
slow progression (Martinez et al., 2005; Ngo-Giang-Huong et al.,
2001). In this work, we show that in ECs, Env-specific memory B cell re-
sponses were mainly composed of IgG1 Abs. Only few ECs presented
IgG2+ or IgG3+ responses. Interestingly in HLA-B*57+ ECs, Env-spe-
cific IgG3+ memory B cell frequencies correlated positively with both
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total IgG and IgG1 Env-specific responses. In contrast, in HLA-B*57−
ECs, Env-specific IgG3+ memory B cell frequencies were negatively
associated with the neutralization breadth of HIV. These observations
suggest that depending on the HLA genotype (e.g. HLA-B*57+/−)
different Ab isotypes and/or functions might be involved in immune
control of HIV infection.

To summarize, our work highlights the facts that ECs maintain HIV-
specific memory B cell responses associated to effective antiviral
humoral activities and that Env-specific memory B cell responses are
positively associated with the neutralization breadth in HLA-B*57+
ECs. We propose that promoting HIV-specific B cell polyfunctional re-
sponses by therapeutic vaccination might be highly beneficial in cART
treated patients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2017.05.029.
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