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Abstract 
 
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely 
observed in the general population. We explored the genes disrupted by these variants from 
joint analysis of protein-truncating (PTV), missense, and copy number variants (CNVs) in a 
cohort of 63,237 individuals. We discovered 72 ASD risk genes at false discovery rate 
(FDR)≤0.001 (185 at FDR≤0.05). De novo PTVs, damaging missense variants, and CNVs 
represented 57.5%, 21.1%, and 8.44% of association evidence, while CNVs conferred greatest 
relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD, N=91,605) 
yielded 373 ASD/DD risk genes at FDR≤0.001 (664 at FDR≤0.05), some of which differed in 
relative frequency of mutation between ASD and DD. The DD-associated genes were enriched 
in transcriptomes of progenitor and immature neuronal cells whereas genes displaying stronger 
evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-
associated genes, emphasizing that these neuropsychiatric disorders share common pathways 
to risk. 
 
 
Introduction 
 
Autism spectrum disorder (ASD) affects approximately 2.3% of children in the United States1. 
ASD is highly heritable2, with the majority of risk stemming from common genetic variants, each 
of small effect, acting additively across the genome3. However, in at least 10% of ASD cases, 
rare and de novo variants confer substantial risk, and exome sequencing has enabled rare 
coding variant studies across ASD and many related developmental and neuropsychiatric 
disorders4–7. These studies have largely focused on single nucleotide variants (SNVs) and 
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insertions/deletions (indels) that arise de novo, though modest over-transmission to ASD 
probands has been observed for some classes of rare variants4,8,9. The relative contribution of 
de novo protein truncating variants (PTVs) to risk varies significantly by ascertainment strategy: 
burden is greatest in individuals with developmental delay (DD), intellectual disability (ID), or 
multi-system congenital anomalies; moderate in individuals with ASD or isolated developmental 
anomalies; and lowest in schizophrenia and other neuropsychiatric disorders4,5,7,10,11. Hundreds 
of risk genes have been discovered across these disorders, with associations largely driven by 
phenotypic severity and cohort size12,13. 
 
Early microarray studies established that individuals with ASD also harbor an excess of very 
large copy number variants (CNVs)14–19. These studies identified many recurrent genomic 
disorder (GD) CNVs associated with syndromic features that arose due to mispairing of long 
homologous segments, a mechanism known as non-allelic homologous recombination 
(NAHR)14,16,20,21. Due to their high mutation rate, GDs are among the best characterized genetic 
risk factors across all neurodevelopmental disorders (NDDs)6,16,21,22. Beyond these large 
segments, defining the contribution of small CNVs localized to individual genes in ASD across 
large cohorts has been a technical challenge. With advancing technologies, structural variant 
(SV) discovery is now tractable from whole-genome sequencing (WGS) and has been applied to 
population resources23–25, but only to relatively small ASD cohorts26–30. These studies, as well as 
long-read WGS on a small number of individuals31,32, have revealed the mutational diversity of 
SVs that exist in all genomes, >99% of which were not detectable by microarray studies32,33. We 
demonstrate here that refined models of exome-based CNV discovery can capture small, rare 
coding CNVs with sensitivity and specificity that is comparable to indel discovery and amenable 
to large-scale association studies. We reasoned that joint analyses of rare coding SNVs, indels, 
and CNVs at the resolution of individual genes and exons in large cohorts would provide a more 
complete picture of allelic diversity and mutational mechanisms that impact specific genes 
contributing to ASD. 
 
Discovery of risk genes can also be enhanced through the integration of functional effects of 
rare variation and metrics to quantify negative selection4. One such measure is the ‘loss-of-
function observed/expected upper bound fraction’ (LOEUF) score34, which is a continuous 
measure of selective pressure against PTVs in each gene. Similarly, the ‘missense badness, 
PolyPhen-2, and constraint’ (MPC) score35 is a measure of the estimated deleteriousness of 
missense variation. In this study, we use a Bayesian statistical framework, the Transmission 
and De Novo Association (TADA) model36, to incorporate these functional annotations into joint 
analyses of coding SNVs, indels, and CNVs across the largest exome-sequenced ASD and DD 
cohorts to date, comprising 63,237 individuals from ASD cohorts (20,627 ASD-affected 
individuals) and 91,605 samples from DD cohorts (31,058 DD-affected individuals). We identify 
hundreds of genes associated with these disorders and reveal significant overlap, as well as 
substantial heterogeneity, in the genes associated with each phenotype and in the neural cell 
types expressing them. Overall, these analyses provide new insights into the contributions of 
rare coding variation in NDDs, including broad overlap and nuanced distinctions of genetic risk 
and its influence on specific pathways and developmental trajectories. 
 
 
Results 
 
Patterns of rare coding variants in ASD 
We aggregated exome sequencing data across 33 ASD cohorts that included 63,237 
individuals: 15,036 affected probands, 28,522 parents, and 5,492 unaffected siblings from family 
data, as well as 5,591 affected and 8,597 unaffected individuals from case-control studies (Fig. 
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1a, Supplementary Tables 1-4). Of the family data, 58.7% had not previously been published. 
After filtering, variant counts were comparable across cohorts, with an average of 1.64 
(1.66/affected, 1.57/unaffected) de novo SNVs and 0.18 (0.18/affected, 0.16/unaffected) de 
novo indels per individual. Consistent with prior studies, PTVs and damaging missense variants 
were enriched in individuals with ASD compared to unaffected individuals (Fig. 1b-c). PTV 
enrichment was greatest in genes under selective constraint, represented by low LOEUF 
scores34 (Supplementary Tables 5-8), with both de novo and inherited PTVs enriched in the 
lowest three deciles of LOEUF (binomial test, Fig. 1b). We annotated two groups of deleterious 
missense variants, MisB (MPC ≥ 2) and MisA (2 > MPC ≥ 1); MisB variants were strongly 
enriched in ASD cases while the effect of MisA variants was modest (Fig. 1c). Overall, we 
observed the greatest ASD risk in de novo variation, with less significant risk observed in rare 
case/control (for which de novo status cannot be determined) and inherited variants.  
 
Discovery of rare and de novo CNVs from exome sequencing 
Microarray-based studies have established a clear etiological role for large, rare CNVs in 
ASD14,16–18,37–40. Here, we applied a CNV discovery tool, GATK-gCNV, that predicts read-depth 
changes from short-read sequencing41. We performed extensive benchmarking using 
orthogonal technologies across 7,035 individuals with matching CNVs detected from WGS26,42. 
These analyses observed 86% sensitivity and a positive predictive value (PPV) of 90% to detect 
rare (site-frequency <1%) CNVs discoverable by WGS at a resolution greater than two captured 
exons (Fig. 1d), and comparable sensitivity (83%) and PPV (97%) for de novo CNVs 
(Supplementary Figs. 1-2). Using these site-frequency and resolution filters, we analyzed 
CNVs in 55,678 samples with accessible data (Methods, Supplementary Table 4). We 
observed 17,774 rare inherited and 662 de novo autosomal CNVs after filtering; 3.95% of ASD 
cases and 1.39% of unaffected siblings harbored at least one de novo coding CNV (odds ratio 
[OR]: 2.91, p=2.2x10-21, Fisher’s exact test; Fig. 1e-f, Supplementary Table 9). A greater 
proportion of female cases harbored de novo CNVs than males (6.0% vs. 3.5%, OR: 1.8, 
p=2.1x10-8, Fisher’s exact test), consistent with a female protective effect that proposes a higher 
burden of risk factors required for an ASD diagnosis in females17,43. De novo deletions spanning 
at least one constrained gene (LOEUF<0.4) showed the greatest enrichment in ASD cases 
across all variant classes (9.33 fold enrichment, p=6.7x10-21, binomial test), with a relative 
difference approximately three-fold higher than de novo PTVs in the same constraint decile 
(p=2.3x10-4, permutation test). Duplications displayed similar but more attenuated enrichment 
patterns (Fig. 1e-f).  
 
We next sought to dissect the relative impact of large GD segment CNVs (Fig. 2a) from 
alterations to individual genes. We considered 79 GD segments previously associated with 
NDDs, as described in Collins et al.22 (Supplementary Table 10). Of the 662 de novo CNVs 
discovered, 253 (38.2%) matched one of these loci (Methods). As expected, de novo GDs were 
strongly enriched in ASD cases (deletion OR: 4.8, p=2.6x10-8, duplication OR: 2.9, p=3.6x10-5, 
Fisher’s exact test, Fig. 2b), whereas a weak trend was detected for inherited GDs (OR:1.2, 
p=0.053, Fisher’s exact test). After excluding GD segments, the remaining 409 de novo CNVs 
were enriched in ASD probands, but with more modest effect sizes (non-GD deletion OR: 3.1, 
p=1.1x10-9; non-GD duplication OR: 2.1, p=5.4x10-4, Fisher’s exact test). However, the impact of 
a non-GD de novo deletion of a constrained gene was comparable to a GD deletion (OR: 6.9, 
p=2.2x10-12, Fisher’s exact test, Fig. 2c) and significantly greater than de novo PTVs in 
constrained genes (OR: 2.74, p=3.7x10-34, Fisher’s exact test, Fig. 2c).  
 
We also quantified risk associated with GDs in ASD compared to the general population by 
applying GATK-gCNV to exome data in the UK Biobank (UKBB)44. We processed the UKBB 
data using identical parameters as the ASD cohort and compared carrier rates for 79 GD loci in 
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13,786 ASD cases and 145,532 UKBB controls with accessible phenotype information and no 
documented neuropsychiatric or developmental phenotypes. These analyses demonstrated a 
linear inverse correlation of decreasing OR in ASD with increasing GD frequency in the UKBB, 
with the most significant loci including established GDs such as 15q11.2-q13.1, 17q12, and 
17q11.2, among others (OR>50; Fig. 2d). We provide these results in Supplementary Fig. 3 
and Supplementary Table 10 as a reference for future GD variant interpretation.  
 
Finally, De novo SNVs and indels more frequently arise on the paternal allele38,45,46, yet a 
maternal bias has been observed for de novo CNVs in ASD47.  We explored the mechanisms 
associated with this bias using SNV/indel data to estimate the parent of origin for 225 de novo 
CNVs and observed no bias in ASD cases (Fig. 2e, 49% maternal, p=0.89, binomial test; 
Methods). However, 69% of de novo CNVs at NAHR-mediated GD preferentially arose on the 
maternal allele (p = 3.7x10-4, binomial test) and recapitulated prior findings, with the strongest 
bias observed for the 16p11.2 CNV across this cohort and the Simons Searchlight project47,48 
(95% maternal origin, Fig. 2e). By contrast, CNVs that were not NAHR-mediated GDs showed a 
significant paternal bias (63.5%; p = 2.0x10-3, binomial test), suggesting a mechanistic maternal 
bias in NAHR-mediated CNV formation, but a paternal bias in all other classes of de novo 
structural variants, consistent with prior analyses using WGS42.  
 
Integration of variant classes for ASD gene discovery 
The relative risk of variants associated with ASD varied by mode of inheritance, variant class 
(PTV, MisB, MisA, deletion, duplication), and evolutionary constraint. We thus sought to 
leverage these insights to refine ASD gene discovery by extending a Bayesian analytic 
framework, TADA4,36, to include: (1) rare and de novo CNVs, (2) variants present in unaffected 
offspring, and (3) evolutionary constraint from gnomAD (LOEUF34, Methods, Supplementary 
Table 8, Supplementary Fig. 4). For each autosomal protein-coding gene, a Bayes Factor (BF) 
was calculated to represent evidence of association across variant types and modes of 
inheritance, taking into account mutation rates and prior relative risks (Fig. 3a).  
 
Applying this model to the aggregated ASD data (TADA-ASD), we identified 72 genes 
associated with ASD at FDR ≤ 0.001 (Fig. 3b) and 185 genes at FDR ≤ 0.05 (Supplementary 
Table 11). Within the 72 genes, de novo PTV, MisB, or MisA variants were detected in 4.0% of 
cases and 0.5% of controls (combined OR: 8.44, p = 3.4x10-51, Fisher’s exact test), and we 
applied cross-validation to refine variant class-specific risk (Supplementary Note, 
Supplementary Table 12). Notably, the FDR ≤ 0.001 used here is approximately equivalent to 
an exome-wide Bonferroni significance threshold (p < 2.8x10-6) when back-calculating a p-value 
and correcting for 18,128 autosomal genes, making it comparable to recent studies of 
schizophrenia7 and DD5. We calibrated the relative impact of the inclusion of multiple variant 
classes and our updated model parameters here compared to prior ASD studies on a subset of 
these samples (Fig. 3c, Supplementary Fig. 5). While we observed considerable mutational 
diversity across ASD risk genes (Fig. 3d-e), haploinsufficiency was the predominant 
mechanism; PTVs and deletions accounted for >90% of the evidence in 21 of 72 ASD risk 
genes (29.2%). However, for 9 genes (12.5%), >90% of evidence was derived from missense 
variants and duplications (e.g., DEAF1, SLC6A1; Fig. 4a), including one gene (PLXNA1) where 
over-transmission of missense variants was observed specifically within the Plexin domain of 
the encoded protein (Fig. 4b-c).  
 
Although this framework is not intended to assess autosomal recessive risk in ASD, we 
examined offspring with two (or more) PTV and/or MisB alleles within the same gene, whether 
from homozygous or compound heterozygous variants. We found 10 genes with two or more 
occurrences in ASD cases (B3GALT6, BTN2A2, DNAAF3, EIF3I, FEV, KCP, RDH11, RNF39, 
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RNF175, and SSPO), and no such occurrence in unaffected siblings. Some genes such as FEV 
have been implicated in recessive models of ASD49, whereas de novo missense variants in 
EIF3I have been associated with a neurodevelopmental syndrome but not yet an autosomal 
recessive form of ASD50.  
 
Lastly, we evaluated two hypotheses regarding the excess burden of de novo variants in 
females across the 185 FDR ≤ 0.05 genes and the GD loci: (1) the excess is due to a female 
protective effect; or (2) it arises from an ascertainment bias by which females diagnosed with 
ASD tend to be more severely affected than males51,52. In fact, both severity and sex are 
associated with being a carrier of such mutations. Using dichotomized full-scale IQ (FSIQ, 2,095 
samples) and autism diagnostic observational scale (ADOS, 5,280 samples) test scores as 
proxies of phenotypic severity, we constructed logistic regressions to estimate the odds ratio of 
carrying a de novo damaging variant (PTV, MisB, GD CNV, or CNV overlapping one of the 185 
ASD genes) as a function of sex and phenotype. We found that ASD individuals harboring these 
damaging mutations are significantly more likely to be female and to be severely affected, and 
that sex and severity status combined additively to determine burden. There was no evidence of 
an interaction effect, which would be expected with ascertainment bias (Methods, 
Supplementary Table 13a-d). Thus, these analyses strongly favor the female protective effect.  
 
Comparing the genetic architectures of ASD and general DD 
Significant overlap has been observed between genes affecting ASD and those affecting 
development more broadly, including NDDs53,54. To explore commonalities and differences 
across genes that impact NDD risk, we sought to integrate data from our ASD cohort with an 
independent cohort of 31,058 offspring ascertained for broadly defined DD and their parents5. 
De novo SNVs and indels from this cohort were recently analyzed using DeNovoWEST, a 
permutation-based frequentist method, which reported association for 252 autosomal genes5. 
We re-analyzed these data using our TADA framework to enable direct comparisons between 
cohorts using uniform statistical models and significance thresholds. This implementation 
identified 309 autosomal genes associated at FDR ≤ 0.001 (TADA-DD), including 237 (94%) of 
the 252 autosomal genes discovered previously5 (Supplementary Table 11). Moreover, our 
FDR values were highly correlated with those derived from the DeNovoWEST significance 
values5 (r=0.95, p<1.0x10-22, Supplementary Fig. 6). As expected, given the enrichment of 
cases with severe and syndromic disorders in the DD cohort5, the de novo PTV, MisB, and MisA 
counts in offspring showed similar but much stronger variant enrichment across the top three 
deciles of LOEUF (Fig. 5a-b).  
  
Because a cardinal rule of meta-analysis is that the data should not be too heterogeneous, 
before combining results across cohorts, we assessed whether the genes identified in the ASD 
cohort were also associated in the DD cohort, and vice versa. To do so, we converted the 
distribution of TADA FDRs to p-values for each study (Methods). If the genes associated in one 
cohort were also associated in the other, or some fraction thereof, the distribution of their 
association p-values would be skewed toward zero. When we selected the 477 genes 
associated in the DD cohort from the TADA-DD analysis at FDR ≤ 0.05, the estimated fraction 
of ASD genes also showing association was 0.701 (Methods, Fig. 5c), indicating that 70.1% of 
these DD genes affect risk for ASD. The converse conditioning estimated that 86.6% of ASD 
risk genes have broad effects on development (Fig. 5c-d). Thus, because the ASD and DD 
cohorts are somewhat complementary, we conducted a joint analysis using the TADA 
framework to integrate the genetic evidence for each gene across the cohorts by combining the 
BFs, conceptually similar to a frequentist meta-analysis. This combined analysis (TADA-NDD) 
revealed 373 genes associated with general NDDs at FDR ≤ 0.001 (664 genes at FDR ≤ 0.05; 
Supplementary Table 11). Notably, 54 of the 373 genes did not achieve FDR ≤ 0.001 in either 
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cohort alone, demonstrating a 14% increase in yield. Although we did not have access to CNV 
data from the DD cohort, we nonetheless found a profound and specific enrichment of 134 de 
novo CNVs that impacted one of the 373 TADA-NDD genes across all ASD cases and only one 
such CNV in siblings (OR: 48.9, p=6.4x10-17, Fisher’s exact test). We also used this set of genes 
to assess support for an oligogenic model of ASD and DD, finding no support for the hypothesis 
(Methods, Supplementary Tables 14a-c). 
 
Heterogeneity of mutation patterns between ASD/DD risk genes 
Isolating genes that exert a greater effect on ASD than they do on other DDs has remained 
challenging due to the frequent comorbidity of these phenotypes. Still, an estimated 13.4% of 
the TADA-ASD genes show little evidence for association in the DD cohort (Fig. 5d). The 
remainder are likely pleiotropic, yet some could have a greater impact on ASD risk than other 
features of development. To evaluate heterogeneity between the ASD and DD cohorts, we 
retained only de novo SNVs/indels for independent gene-level BF calculations. For the 373 
genes at TADA-NDD FDR ≤ 0.001, we observed a Pearson’s correlation of 0.78 of the gene-
level log BF between the two major ASD sub-cohorts (the Simons Powering Autism Research 
[SPARK] initiative versus all others) compared to 0.42 between the ASD and DD cohorts, 
reflecting more consistent evidence between ASD cohorts than between ASD and DD cohorts 
(Supplementary Fig. 7). 
  
We next determined which genes were more commonly mutated in one cohort or the other by 
selecting 464 “signal genes” (Supplementary Table 15). These genes were defined as any 
gene with FDR ≤ 0.05 in either TADA-ASD or TADA-DD from de novo PTVs and MisB variants, 
which as classes confer similar relative risk for ASD (Fig. 1b, c); MisA variants were excluded 
because they conferred far less risk (Fig. 1b, c). Of these signal genes, 120 belonged to TADA-
ASD, 428 to TADA-DD, and 84 to both. Notably, the 84 genes significant in both cohorts still 
demonstrated significant variant count heterogeneity (X2=317.6, DF=83, p=3.8x10-23) between 
the cohorts. A common way to assess which of the 464 genes have more variation in either 
cohort would be a standardized chi-squared test statistic (C statistic, Methods), but its power to 
discriminate is abrogated by the much higher burden of risk variants in the DD cohort (Fig. 5a-
b). We therefore adjusted for the difference in mutational burden between the cohorts by 
randomly downsampling the DD mutations to be comparable to that for ASD mutations. A 
mixture model was then adopted to disentangle the two commingled distributions, assigning 
posterior probabilities that a gene is from the ASD or DD component of the statistical distribution 
(Fig. 5e-f, Supplementary Table 15). Using a posterior probability cutoff of greater than 0.99, 
we find 36 genes to be a part of the ASD mixture component (ASD-predominant) and 82 genes 
to be a part of the DD component (DD-predominant) (Fig. 5f, Supplementary Table 15).  
 
Differential neuronal layers impacted by ASD/DD risk genes 
To explore differences in expression between genes identified across ASD and DD cohorts, we 
examined single-cell gene expression patterns from human fetal brains. Two studies provided 
data from more than 37,000 cortical cells ranging from 6-27 weeks post-conception55 
(Supplementary Table 16). To combine these datasets, we adjusted for batch effects using 
cFIT56. UMAP plots showed that similar cell types from the different batches grouped together, 
while cells unique to either batch were preserved (Fig. 6a, Supplementary Fig. 8). We applied 
unsupervised clustering to the combined data to identify cell subtypes in the context of a 
hierarchical tree to illustrate the relationships between major and minor cell type clusters. Using 
the MRtree method57, we observed that cells of each labeled type were merged across datasets 
into common clusters. Visualizing the tree, the major branches corresponded to glial and 
progenitor cells, excitatory neurons, deep layer enriched excitatory neurons, and inhibitory 
neurons (Supplementary Table 17). Likewise, minor splits reflected expected relationships 
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between cell types (Supplementary Fig. 9a). Based on the trajectory analysis of Polioudakis et 
al.58, the ExN clade is less differentiated than the ExM clade, which in turn is less differentiated 
than the ExMU clade. 
  
Next, we assessed the enrichment of ASD and DD risk genes meeting the posterior probability 
0.99 threshold within cell clusters (Fig. 5f). Among the 36 genes classified as ASD-
predominant, 22 were expressed in these cell types; of the 82 genes classified as DD-
predominant, 59 were expressed. Using odds ratios to reflect the strength of signal, both ASD-
predominant and DD-predominant genes were enriched in interneurons and excitatory neurons 
compared to glial and progenitor cells (Fig. 6b, Supplementary Fig. 10, Supplementary 
Tables 15, 18-19). ASD-predominant enrichment appeared somewhat stronger than DD-
predominant enrichment in excitatory neuron lineages, with a difference in log odds (comparing 
enrichment in the major clade of excitatory neurons to progenitors) of 1.29 for ASD and 0.7 for 
DD (one-sided p = 0.017 for ASD; p = 0.031 for DD). 
 
The DD-predominant expressed genes tend to occur in cell types that are less differentiated 
than the corresponding cell type enriched for ASD-predominant genes: ExN3, ExM2, IP, InCGE 
(for details see Supplementary Table 18 and Supplementary Note). By contrast, ASD-
predominant expressed genes (Supplementary Table 19) are strongly enriched in only one cell 
type, maturing excitatory neurons (ExMU1) and its clade. These genes highlight a shift from 
mainly migration-focused genes to more mature processes involved in building the neurons’ 
nascent connectivity. If we judge enrichment solely by significance after Bonferroni correction 
for 21 cell types, ExMU1 remained significant for enrichment of ASD-predominant genes; 
likewise, ExN3 remained significant for enrichment of DD-predominant genes. Our results are 
consistent with DD-predominant genes being expressed earlier in development and in less 
differentiated cells than ASD-predominant genes. 
 
Emergence of shared risk genes in schizophrenia and ASD 
Shared genetic risk between ASD and schizophrenia, as well as other neuropsychiatric 
disorders, has long been postulated59. The Schizophrenia Exome Meta-Analysis (SCHEMA) 
Consortium recently identified 244 genes associated with schizophrenia at p < 0.01 7, 234 of 
which are in our TADA model. Among the 72 ASD genes we discovered at FDR ≤ 0.001, 61 
were associated with DD (using TADA-DD FDR ≤ 0.001), and eight were associated with 
schizophrenia at p < 0.01. These two groups of 61 ASD/DD genes and eight ASD/schizophrenia 
genes overlap each other less than expected (p = 0.023, binomial test, Methods, 
Supplementary Fig. 11a). Similarly, using the gene sets shown in Fig. 5f, six of the 36 ASD-
predominant genes (ANK2, ASH1L, BRSK2, CGREF1, DSCAM, and NRXN1) are 
schizophrenia-associated, while only three of the 82 DD-predominant genes (ATP2B1, GRIN2A, 
and HIST1H1E) are schizophrenia-associated. The ASD-schizophrenia overlap was significantly 
enriched (p = 8.4x10-6, binomial test), while the DD-schizophrenia overlap was not (p = 0.10, 
binomial test, Methods, Supplementary Fig. 11b). The two outcomes (6/36 vs. 3/82) were also 
different when compared to each other (p = 0.023, Fisher's exact test). Together, these data 
suggest that one subset of ASD risk genes may overlap DD while a different subset overlaps 
schizophrenia. 
 
 
Discussion 
Integrating rare protein-coding SNVs, indels, and CNVs across 63,237 individuals from ASD 
cohorts reveals an allelic spectrum of rare coding variation associated with ASD that is 
dominated by de novo PTVs, damaging missense variants, and deletions of constrained genes. 
Nonetheless, many genes were associated with multiple inheritance or variant classes and 
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some displayed the strongest evidence from de novo missense variants and duplications. While 
discovery is currently driven by de novo variants imparting loss of function, larger ASD cohorts 
will likely catalyze future discoveries from the subtler and more heterogeneous functional effects 
of missense variants and intragenic or individual exon duplications. Independently applying the 
same statistical model to both the DD and ASD datasets reinforces that our analytic framework 
and statistical thresholds are robust, as our results for DD are highly correlated with the 
permutation-based approach applied to those same data5. Integrating the two cohorts together 
yielded 373 genes at FDR ≤ 0.001, including 54 genes that were unique to the joint analyses 
and were not captured by either dataset alone, and 664 likely risk genes at FDR ≤ 0.05.  
 
This study is also the largest exploration to date of CNVs at the resolution of individual genes 
and exons to ASD architecture. Benchmarking against WGS, >85% of all rare coding CNVs 
spanning more than two exons could be recalled by exome-based CNV discovery. We find that 
deletion of a highly constrained gene confers comparable risk to alteration of an established GD 
segment, and we observe a dramatic enrichment of CNVs among ASD probands compared to 
unaffected siblings across the 373 NDD risk genes identified. We also recapitulate the 
observation of a maternal bias in gamete-of-origin for de novo CNVs in ASD probands47 but find 
this enrichment to be restricted to NAHR-mediated CNVs (e.g., 95% of 16p11.2 CNVs), 
whereas all other mechanisms were predominantly paternal in origin and consistent with prior 
WGS analysis in controls42. These results collectively emphasize the value of routine joint 
analysis of all classes of genomic variation in gene discovery and the potential impact of gene 
level CNV analyses in diagnostic testing.  
 
We expect these findings to shed light on the neurobiological origins of ASD. However, given 
the substantial overlap between the genes implicated in NDDs writ large and those implicated 
directly in ASD, disentangling the relative impact of individual genes on neurodevelopment and 
phenotypic spectra is a daunting yet important challenge. Consider two of the ASD risk genes, 
ARID1B and DSCAM. Both are highly associated with ASD, although statistical evidence is 
stronger for ARID1B. Yet while some individuals with mutations in ARID1B also have comorbid 
ASD, it is only one of a wide range of developmental phenotypes60. The profound impact of 
ARID1B on development is apparent by the contrast of de novo mutations in the DD and ASD 
cohorts: 132 carriers out of 31,058 DD probands versus nine carriers out of 15,036 ASD 
probands, a sevenfold higher rate in DD. This raises a challenge for neurobiologists: 
neurodevelopmental features associated with perturbation of ARID1B could be relevant to DD, 
yet irrelevant to ASD. Because evidence for DSCAM comes solely from the ASD cohort, it could 
be a better choice for neurobiological studies of ASD. Still, as we develop here, DSCAM is also 
involved in risk for schizophrenia, and studies such as ours continue to demonstrate the 
pleiotropic consequences of many such genes implicated in ASD and NDD risk. To identify the 
key neurobiological features of ASD will likely require convergence of evidence from many ASD 
genes and studies. Careful selection of candidates among the genes implicated here based on 
their mutational and functional features could inform these future studies. We have taken a step 
in that direction here as genes expressed at earlier stages of cortical development, such as 
progenitor genes, broadly display greater DD enrichment, while those expressed later, such as 
maturing neurons, lean towards ASD. This is consistent with the expectation that earlier and 
more generalized impairment leads to severe global DD, and later, neuron-specific impairments 
affect more isolated developmental domains, such as social interaction and the presence of 
repetitive behaviors and/or interests that typify ASD.  
 
In conclusion, our analyses of rare coding variation illuminates the allelic diversity contributing to 
ASD and the shared and distinct genetic architectures between ASD and related NDDs. We 
further highlight differential enrichment of associated genes at different neuronal timepoints. The 
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consortia studies aggregated here have catalyzed a rapid evolution in genetic studies in ASD, 
including preliminary analyses in recent preprints that have leveraged these data for insights 
into gene discovery in ASD and DD datasets, and into the combined impact of rare and 
common variant polygenic risk across males and females8,9,61,62. As sample sizes rapidly 
expand, the analytic framework presented here will continue to yield returns in both gene 
discovery and improved understanding of the differential risks to disorders on the 
neurodevelopmental and neuropsychiatric spectrum posed by variants within these genes. 
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Figure legends 
 
Fig. 1. Overview of SNV/indel and CNV rates in ASD by mode of inheritance and constraint. a, The 
ASD cohort consisted of 49,049 family-based samples (15,036 cases) and 14,188 case/control samples 
(5,591 cases). One sample was a proband in one trio and a mother in another. b, The relative difference 
in PTV frequency between cases and unaffected controls (top) and average per-sample variant count in 
unaffected controls (bottom) across inheritance classes (color) and LOEUF deciles (5,446 genes in top 3 
deciles of LOEUF). Using a binomial test, cases were enriched for PTVs among the most constrained 
genes (lower LOEUF deciles), which weakened as negative selection against PTVs was relaxed (higher 
LOEUF deciles). c, Equivalent analyses were performed for missense variants annotated by MPC score 
and synonymous variants. Synonymous variants were not enriched in cases or controls, as evaluated via 
binomial tests. d, Benchmarking of the GATK-gCNV exome CNV discovery pipeline compared against 
WGS on overlapping samples achieved a sensitivity of 86% and positive predictive value of 90% for rare 
CNVs (<1% site frequency) that spanned more than two captured exons (red line). e, The relative 
difference in variant frequency between cases and controls for deletions. Using binomial tests, we found 
that the enrichment of deletions overlapping genes in the lowest LOEUF decile were stronger than PTVs 
in the same LOEUF deciles. f, Equivalent analysis for duplications demonstrated a similar pattern of 
enrichment compared to deletions but with more subtle relative differences.  
Abbreviations: PTV: protein truncating variant; CNV: copy number variant; WGS: whole genome 
sequencing; WES: whole exome sequencing; MisB: missense variants with MPC score ≥2; MisA: 
missense variants with MPC score ≥1 and <2. 
Statistical tests: b-c,e-f: two-sided binomial tests with 95% confidence interval error bars shown, p-
values (not corrected for multiple tests) and sample sizes located in Supplementary Table 22. 
 
Fig. 2. Contribution of CNVs to ASD by mechanism and genomic location. a, CNVs included 
deletions (DEL) or duplications (DUP) of genomic segments and involved a subset of recurrent sites 
known as genomic disorder (GD) loci. GDs mediated by non-allelic homologous recombination (NAHR) 
harbored recurrent breakpoints localized to flanking segmental duplications, whereas non-NAHR GDs did 
not. b, De novo CNVs were highly enriched in affected cases compared to unaffected offspring (Fisher’s 
exact test) and the effect size was greater than that observed in de novo PTVs or de novo missense 
variants (logistic regression). c, ORs for de novo GD CNVs in probands compared to unaffected siblings, 
a subset of which have no observed de novo CNVs in unaffected individuals in this cohort (e.g., 16p11.2 
deletions, 15q11.2-q13 duplications). d, Analysis of all GDs (de novo and inherited) in ASD cases 
compared to GDs in a population-based cohort (UK Biobank) discovered using GATK-gCNV with identical 
parameters, with loess-smoothed bands of the 95% confidence interval of the OR in gray. e, Parent-of-
origin analysis of de novo CNVs using binomial tests showed maternal bias for NAHR-mediated CNVs at 
GD regions, which was most pronounced for the 16p11.2 GD as previously described47. 
Abbreviations: CNV: copy number variant; DEL: deletion CNV; DUP: duplication CNV; NAHR: non-allelic 
homologous recombination; PTV: protein truncating variant; GD: genomic disorder. 
Statistical tests: b-c: Fisher’s exact test with 95% confidence interval plotted as error bars, p-values (not 
corrected for multiple-tests) and sample sizes are located in Supplementary Table 22; d, Fisher’s exact 
test of carrier status in 13,786 unique ASD cases and 143,532 unique UK biobank controls, p-values (not 
corrected for multiple-tests) are located in Supplementary Table 10; e: binomial test with 95% 
confidence interval plotted as error bars, sample sizes and p-values (not corrected for multiple-tests) are 
located in Supplementary Table 22. 
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Fig. 3. Integrating variant types and inheritance classes significantly boosts association power 
and reveals mutational biases within candidate genes.  
a, Our new implementation of the TADA model included de novo, case/control, and rare inherited 
modules for each variant type: PTV, MisB, MisA, deletion, and duplication. We leveraged information from 
ASD probands as well as unaffected siblings in evaluating the effect of de novo variants. b, The evidence 
of ASD association contributed by each variant type for each of the 72 ASD genes with FDR ≤ 0.001. 
Some genes were predominantly associated with missense variants and duplications (e.g., PTEN, 
SLC6A1), suggesting mechanisms other than haploinsufficiency. c, Applying TADA to our aggregated 
ASD dataset yielded 72 genes at FDR ≤ 0.001, compared to 32 and 19 genes at the same threshold in 
previous studies on a subset of the samples (Satterstrom et al. 2020 and Sanders et al. 2015, 
respectively). Our expanded TADA model improved the integration of available evidence of 
association and increased gene discovery at equivalent statistical thresholds on the same datasets. d-e, 
We quantified the relative contribution of variant class and mode of inheritance to these 72 ASD-
associated genes, demonstrating that de novo PTVs and MisB variants represented the strongest 
contributions to the association signals.  
Abbreviations: BF: Bayes factor; PTV: protein truncating variant; MisB: missense variants with MPC 
score ≥2; MisA: missense variants with MPC score ≥1 and <2; Del: deletion CNV; Dup: duplication CNV; 
Inh: inherited; CC: case/control; DN: de novo.  
Statistical tests: b, Extended TADA model. 
 
Fig. 4. Relative contribution of evidence types in ASD risk genes. a, The relative evidence of ASD 
association in the extended TADA model (log10BF) for the 72 ASD risk genes (FDR ≤ 0.001) shown for 
likely loss-of-function mechanism (PTVs and deletions) on the x-axis versus variants that may act via 
alternative mechanisms (missense variants and duplications) on the y-axis. b, Plot of the relative 
association evidence from de novo (y-axis) versus inherited (x-axis) variation for the 72 ASD risk genes. 
c, Evidence for ASD-association for the gene PLXNA1 was derived from de novo and inherited missense 
variants localized to the Plexin domain at the C-terminus of the Plexin-A1 protein.  
Abbreviations: BF: Bayes factor.  
Statistical tests: c: Transmission disequilibrium test.  
 
Fig. 5. Integration of ASD and DD datasets. We performed meta-analysis of the ASD cohort with 
31,058 DD trios reported in Kaplanis et al. 2020 (N = 46,094 combined NDD cases). a, Relative 
difference of de novo PTVs in ASD and DD cohorts across deciles of constraint as measured by LOEUF. 
b, Relative difference of de novo missense variants in DD and ASD cohorts across categories of MPC 
scores. c, To explore overlap in association evidence across ASD and DD risk genes, we considered the 
477 TADA-DD genes with FDR ≤ 0.05. We evaluated their p-value distributions converted from TADA-
ASD FDRs and observed non-uniformity suggesting that, in aggregate, 70.1% of these genes also 
evidence of association with ASD. d, In the complementary analysis of the 185 TADA-ASD genes with 
FDR ≤ 0.05, we looked at their p-value distributions converted from TADA-DD FDRs and again observed 
high non-uniformity, suggesting that in aggregate 86.6% of these genes had evidence of association with 
DD. e, Using PTV and MisB variant data, we devised a chi-squared statistic, denoted the C statistic, to 
measure if a gene has more observed variants in one cohort relative to the other. A mixture model was 
used to deconvolve the commingled distributions. f, We transformed the fitted mixture distribution into 
posterior probability for ASD enrichment. Using a cutoff of <0.01, we found 82 DD-predominant genes, 
while using a cutoff of >0.99 we found 36 ASD-predominant genes. 
Abbreviations: PTV: protein truncating variants; BF: Bayes factor; DD: developmental delay; FDR: false 
discovery rate.  
Statistical tests: a-b: two-sided binomial test, with 95% confidence interval error bars shown, p-values 
(not corrected for multiple-tests) and sample sizes located in Supplementary Table 22; c-d: R-3.5.3 
package limma_3.38.3, e-f: mixture model. 
 
Fig. 6. Single-cell data reveals differential neuronal layers impacted by ASD and DD genes. a, A 
UMAP plot visualization after integrating two studies72,73 that provided single-cell gene expression of 
human fetal brains consisting of 37,000 cortical cells 6-27 weeks post-conception. Similar cell types from 
the two batches were grouped together while preserving cells unique to either study. See 
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Supplementary Table 17 for unabbreviated cell type labels and classifications to “progenitor” and 
“neuron” types. b, Both ASD- and DD-predominant genes (right and left, respectively) were found to be 
enriched in interneurons and excitatory neurons compared to glial cells. Compared to DD-predominant 
genes, ASD-predominant genes were relatively more neuron-enriched than progenitor-enriched. The 
developmental trajectory of excitatory neurons was approximately recapitulated in the UMAP, starting 
with OPC and other progenitor cells and ending with maturing upper-layer enriched and deep layer 
excitatory neurons. For interneurons, InCGE and InMGE were precursors to InN.  
Abbreviations: UMAP: Uniform Manifold Approximation and Projection  
Statistical tests: b, Fisher’s exact test 
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Methods 
We confirm that this research complies with all relevant ethical regulations and was approved by 
the Mass General Brigham Human Research Committee (MGBHRC) Institutional Review Board 
(IRB) of Mass General Brigham: 
 
Study Protocol 2012P001018, The Study of Novel Autism Genes and Other 
Neurodevelopmental Disorders (March 12, 2021) 
Study Protocol 2013P000323, Genomic Studies of Human Neurodevelopment (September 07, 
2018) 
 
Protocols undergo annual continuing review by the MGBHRC IRB, Mass General Brigham, 399 
Revolution Drive, Suite 710, Somerville, MA 02145. All necessary patient/participant consent 
has been obtained and the appropriate institutional forms have been archived. No participant 
compensation was provided from this study. 
 
SNV/indel processing 
ASD samples were aggregated from four independent sources: (1) previously published data 
from the Autism Sequencing Consortium (ASC; total N = 26,2684,63); (2) previously published 
data from the Simons Foundation Autism Research Initiative (SFARI) Simons Simplex 
Collection (SSC; total N = 9,17063,64); (3) unpublished data from the ASC (N = 5,036); and (4) 
the recently released Simons Foundation Powering Autism Research for Knowledge (SPARK 
initiative; N = 22,76665). The distribution of these samples is provided in Supplementary Table 
1 (one family is in both SPARK and unpublished ASC data, with different probands; one mother 
in the unpublished ASC data is also a proband in a different trio in the same dataset).  
 
From these sources, family-based samples were processed and jointly genotyped in four 
batches. The first two batches included the published and unpublished ASC and SSC cohorts: 
1) "ASC B14" included ASC samples through consortium sequencing batch 14 plus the SSC (N 
= 24,099, 4,632 new, 14,415 males and 9,684 females), and 2) "ASC B15-16" included ASC 
batches 15 and 16 (N = 832, all new, 500 males and 332 females). The latter two batches 
included two independent releases of the SPARK cohort: 3) the "SPARK Pilot" initial release (N 
= 1,379, 833 males and 546 females), and 4) the SPARK.27k.201909 ("SPARK main freeze") 
release (N = 21,387, 12,679 males and 8,708 males).  
 
Raw sequencing outputs were aligned where needed to the GRCh38 reference genome and 
variants were jointly called following GATK66 best practices. Briefly, individual gVCFs were 
generated by GATK HaplotypeCaller in gVCF mode and subsequently jointly genotyped for high 
confidence alleles using GenotypeGVCFs, accompanied by Variant Quality Score Recalibration 
(VQSR) to produce output VCFs. For additional details containing the specifics for each of the 
four batches, please see Supplementary Note. Finally, raw data was not available for 1,354 
children and family members reported in Satterstrom et al.4, and these variants were lifted over 
directly to GRCh38 (Supplementary Table 1).  
 
SNV/indel filtering 
Creation of working datasets 
Hail 0.2 (https://hail.is) was used to process VCFs and write working datasets. Reported 
relationships and sample uniqueness were verified, sex was imputed, and variant 
consequences were annotated. Genotypes were filtered based on (1) depth, (2) genotype 
quality (GQ), (3) phred-scaled likelihood of the call being homozygous reference (PL[HomRef]), 
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(4) allele balance, (5) number of informative reads, and (6) Hardy-Weinberg p value. For 
additional details please see Supplementary Note. 
De novo variant calling and quality control 
 
For curation of de novo variants, we used Hail’s de_novo() function to identify candidate 
variants, taking into account population variant frequencies. Candidates were further filtered 
based on: (1) frequency in gnomAD population and within their respective dataset, (2) 
“ExcessHet” filter, (3) allele balance and parent/child depth ratio, (4) VQSLOD values, and (5) 
excess number of de novo candidate variants within the same sample. For additional details 
please see Supplementary Note. 
 
Case-control variants 
ASC case-control samples consisted of Danish iPSYCH samples and Swedish PAGES 
samples. Rare variant counts for 4,863 autism and 5,002 control samples from the iPSYCH 
cohort were taken from the data of Satterstrom et al. (2019)67, where rare variants were defined 
as those with an allele count no greater than 5 in the combination of the iPSYCH data with non-
Finnish Europeans from the non-psychiatric subset of gnomAD (a total of 58,121 people). In 
addition to samples labeled as "Autism", samples labeled as "Both" in that study (meaning that 
an individual had both autism and ADHD diagnoses) were used as autism cases for our 
purposes. Rare variant counts for 728 autism and 3,595 control samples from the PAGES 
cohort were taken from Satterstrom et al. (2020)4, where rare variants were defined as those 
with an allele count no greater than 5 in the 18,153 combined parents, cases, and controls in 
the dataset, as well as an allele count no greater than 5 in the non-psychiatric subset of ExAC 
r0.3 (45,376 people). Counts were removed for 17 cases for whom parental sequences became 
available, so that they are now included in our family-based data instead. 
 
Transmitted variants 
Counts of transmitted and non-transmitted alleles were produced starting from each of the four 
working datasets described above. First, variants were dropped that had been marked 
"ExcessHet" in the Filters field by GATK or had allele frequencies greater than 0.1% in either 
their own dataset or the non-neuro subset of gnomAD GRCh38 exomes v2.1.1. In addition, a 
filter requiring a GQ of at least 25 was applied to every genotype. Hail's 
transmission_disequilibrium_test() function was then called to count transmitted and 
untransmitted alleles for each variant in family-based data. Subsequently, additional dataset-
specific filters on VQSLOD values were applied to derive final counts of transmitted and non-
transmitted alleles. For additional details please see Supplementary Note. 
 
CNV processing 
For the subset of samples with available raw genomic data (Supplementary Table 3), we 
employed GATK-gCNV for exome CNV detection, along with an additional supplement of 7,832 
general research use (GRU) controls. GATK-gCNV is a Bayesian method specifically designed 
to adjust for known bias factors in exome capture and sequencing (e.g. GC content), while 
automatically controlling for other technical and systematic differences. Briefly, raw sequencing 
files were compressed into read counts over the set of annotated exons and used as input, and 
a PCA-based approach was implemented on observed read counts to distinguish differences in 
capture kits (Supplementary Fig. 1), followed by a hybrid density- and distance-based 
clustering approach to curate batches of samples for parallel processing. After batching 
determination, GATK-gCNV was run for each batch and filtering metrics produced by the 
underlying Bayesian model were used to balance between sensitivity and positive predictive 
value (PPV). For details please see Supplementary Note. Of note, we observed five instances 
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among probands of possibly complex de novo SVs on chromosome 15, exhibiting adjacent GD 
duplications of differing copy states (Supplementary Table 9) 
 
CNV Benchmarking 
We had access to 8,439 samples for which matching genome and exome sequencing data were 
available for benchmarking comparisons. The ground truth data were CNVs called from WGS 
using the ensemble machine learning method GATK-SV25,26. After removing samples that did 
not pass GATK-gCNV exome QC filters (Supplementary Note, n=971 samples) and removing 
samples that had an outlier number of rare (site frequency <1%) calls in the GATK-SV genome 
callset (>16 rare calls, based on median+2*interquartile range, n=477 samples), 7,035 samples 
remained for direct comparison. Benchmarking was carried out for all rare CNVs (site frequency 
< 1%). Sensitivity was measured by the proportion of sites called from WGS data that had a 
match in the GATK-gCNV callset. Specifically, for each site, if at least 50% of the samples that 
had that CNV in the WGS data also had a GATK-gCNV call with a consistent direction (deletion 
or duplication) that overlapped at least 50% of the captured intervals, this was considered a 
success. For CNVs called by GATK-gCNV, PPV was measured by requiring that 50% of the 
GATK-gCNV samples with that call had a match in the WGS calls (ground truth) with at least 
50% interval overlap. We evaluated sensitivity and PPV as a function of the number of captured 
exons overlapping the canonical transcripts of protein-coding genes. 
 
TADA Bayesian Framework for Gene Association 
TADA is a Bayesian framework that produces gene-level measures of evidence for association 
that can be transformed into a false discovery rate42. Broadly speaking, for a given variant type 
and gene, TADA produces a Bayes Factor (BF) to measure statistical evidence, taking as input 
the count of variant events, the mutation rate, the number of samples, and a prior on the risk of 
a variant in each gene. BF can be readily combined across different variant types for the same 
gene by multiplication, arriving at a total measure of association for a given gene. This total BF 
can then be directly transformed into a FDR and the appropriate statistical threshold can be 
applied to extract a candidate gene list. In the previous TADA study4, evidence was aggregated 
for de novo PTVs, MisB variants, and MisA variants, as well as case/control PTVs to find 102 
genes meeting an FDR ≤ 0.1 threshold. 
 
For this analysis, we have extended TADA to leverage updated measures of constraint 
(LOEUF), the full combination of de novo, case/control, and inherited x PTV, MisB, MisA, 
deletion, and duplication variants, as well as variants in unaffected siblings. For full details 
please see Supplementary Note.  
 
Applying TADA to DD data 
We accessed the summary tables released by the DDD in Kaplanis et al.5, detailing de novo 
variants detected and gene-level variant counts in 31,058 trios where the offspring was 
diagnosed with a developmental disorder. To calculate the number of PTVs per gene, we 
aggregated the Kaplanis et al. variants annotated with consequences of "frameshift_variant", 
"splice_donor_variant", "splice_acceptor_variant", or "stop_gained". For synonymous counts, 
we aggregated variants with labels of “synonymous_variant” or “stop_retained_variant”. We 
annotated missense variants (“missense_variant”) with MPC scores, and using those MPC 
scores, we assigned MisB and MisA status and aggregated counts per gene. 
 
To create TADA-DD, we supplied the per-gene counts of PTVs, MisA variants, and MisB 
variants to TADA in the same manner as we supplied our ASD cohort counts. TADA-DD BFs 
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were then combined with those from the ASD cohort on a per-gene basis, allowing us to 
estimate FDR on a combined NDD super-cohort (TADA-NDD). 
Comparison of TADA-DD and denovoWEST from Kaplanis et al. 
Kaplanis et al. reports association values for 19,654 genes, of which 285 are significant at an 
exome-wide threshold. Of the 18,128 autosomal genes investigated by our study, 17,919 (99%) 
have a match from Kaplanis et al, including all 252 significant autosomal genes. Of the Kaplanis 
et al. denovoWEST exome-wide significant genes, 237/252 (94%) also appear in the TADA-DD 
FDR ≤ 0.001 list. 
 
We also measured the concordance of the Bayesian TADA-DD FDR with the frequentist 
denovoWEST estimates of gene significance reported in Kaplanis et al. by transforming the 
Kaplanis p-values (denovoWEST_p_full) into FDRs (FDR denovoWEST) using the R function 
p.adjust(method=”fdr”). A pairwise plot of TADA-DD FDR with transformed Kaplanis FDR 
reveals high concordance (Supplementary Fig. 6, cor=0.95) on the log scale, signaling 
convergence in evaluation of gene-level evidence between our studies, and allowing us to 
integrate the Kaplanis variant data in our Bayesian framework.  
 
Female protective effect versus ascertainment bias of affected females 
Severity of phenotype and sex are known to be associated with the presence of de novo 
SNV/indel or CNV mutations in individuals with ASD. Specifically, those with more severe 
phenotypes or females are more likely to be carriers of such mutations. Notably, various studies 
have also found that females are less likely to be diagnosed with ASD compared to males with 
similar presentation51,52,68, creating the possibility that the excess burden of damaging de novo 
variants observed in females could be due to this ascertainment bias – females are simply more 
severely affected. An alternative is that severity and sex combine approximately additively to 
determine burden. This would be consistent with an alternative hypothesis, a female protective 
effect, which posits that females require a greater burden of genetic risk variation to be 
affected.Using ADOS and IQ as proxies for severity where available, we constructed logistic 
regression models of carrier status as the outcome and sex, severity, and their interactions as 
predictors. We found no evidence to support ascertainment bias and instead favor the additive 
alternative (Supplementary Table 13). For more details please see Supplementary Note. 
  
Evaluating oligogenicity in ASD and DD 
We tabulated the number of individuals with 0, 1, and 2 de novo damaging variants (PTV or 
MisB) among the TADA-ASD 72, TADA-ASD 185, and TADA-NDD 373 genes and constructed 
a poisson expectation on the number of expected individuals with 2 such variants as follows: 
 

p = (number of variants/number of samples)^2 
Expectation = (p * number of samples) * exp(-p)/2! 

 
These analyses also offer a glimpse into the evidence supporting an oligogenic model of ASD 
and DD. Using the list of 373 NDD-associated genes, we observed 913 (6.1%) of the 15,036 
ASD probands harboring a damaging de novo variant of interest (PTV or MisB), and 12 
probands that carried two (0.08%). Across all 31,058 DD probands, one de novo variant was 
found in 5,176 (16.7%) cases, and 96 (0.31%) carried two. Using a Poisson expectation model 
for the number of affected individuals carrying two variants, we find depletion in both the ASD 
and DD cases carrying two variants (ASD: 27.4 expected, 12 observed; DD: 390 expected, 96 
observed). This same depletion was observed when restricting to the 72 or 185 genes 
associated with ASD alone, indicating no support for oligogenicity among ASD or DD cases 
from these analyses (Supplementary Tables 14a-c).  
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Conditional analysis of cross-cohort association 
For the ASD and DD cohorts, separately, we first converted the set of 18,128 gene q-values into 
p-values using the following R command: pval = qval * rank(qval) / (max(qval) * length(qval)). 
Next, we selected genes meeting FDR ≤ 0.05 from the TADA-ASD and TADA-DD cohorts, 
treating the derived lists separately. For the set of 185 identified TADA-ASD genes, we 
evaluated the distribution of their back-transformed p-values from TADA-DD using the 
‘propTrueNull’ function from the R package ‘limma_3.38.3’69,70 to estimate pi0 and pi1=1-pi0, 
which is the estimated fraction of the number of genes associated in the DD cohort. pi0 is the 
estimated fraction of genes that have no association and for which their p-values would be 
uniformly distributed on the interval 0-1. We then did the converse: choosing the set of 477 
identified TADA-DD genes, we evaluated the distribution of their p-values from TADA-ASD to 
estimate pi1. 
 
ASD-DDD heterogeneity analysis 
We asked which of the 464 signal genes was more tightly connected with either ASD or DD 
than expected by chance. To do so, we formulated an approach that builds on the familiar chi-
statistic residual. Before computing the residuals, we needed to overcome the far larger number 
of mutations present in the DD sample because the standardized residual performs best when 
the total count of events, per cohort, is equal. We therefore down-sampled the DD mutations in 
signal genes to obtain a count of 1001 mutations, matching the count of mutations in the ASD 
cohort. This was repeated for 100 repetitions. 
 
C statistic. For the C statistic, we used a standard log-linear model analysis by conditioning on 
the row (gene) and column totals (over ASD or DDD). We asked if the residual for ASD was 
substantially different from that expected under the null. The residual for gene i was defined as 

 
where: 

 
with the average over the 100 down-sampling repetitions was recorded as the C statistic for 
each gene. 
  
Mixture modeling 
If gene mutation rates were independent of cohort, then the C statistic would be distributed as a 
standard normal statistic, but this was clearly not true (Fig. 5e). Genes with unusually few 
mutations in the ASD cohort produced a negative C statistic and those with unusually many 
mutations in the ASD cohort produced a positive statistic. Assuming the genes split into two 
classes, one favoring DD mutations and the other favoring ASD mutations, we fitted a two-
component normal mixture model. This calculation was performed using the normalmixEM 
function in the R library71. We restricted the model to have a common standard deviation for 
both components (option arbvar=F), which was estimated to be 0.527. Although the C statistics 
varied continuously across the spectrum of values observed, we could estimate the posterior 
probability a gene was from the DD or ASD component to determine likely group membership. 
Genes with posterior probability greater than 0.99 for either class were labeled by that class.  
 
Tree analysis 
To understand the developmental cell types in which these genes were expressed, we analyzed 
two datasets using a new approach called cFIT, the Common Factor Integration and Transfer 
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learning algorithm56. cFIT relies on a linear model assuming a common factor matrix shared 
among datasets, as well as gene-wise location and scale shifts unique to each dataset. It 
estimates the shared and batch specific parameters through iterative nonnegative matrix 
factorization and then recovers the batch-free expression for each dataset based on the 
common factor and factor loadings. We applied cFIT to fetal cells from two studies55,58 and used 
unsupervised clustering (MRtree)57 to the integrated data to generate a hierarchical tree of 
various cell types. For details please see Supplementary Note. 
 
Enrichment analysis 
We performed enrichment analysis for each cluster in the resulting tree to determine if any 
clusters expressed an unusual number of ASD-predominant or DD-predominant risk genes. 
Before performing the enrichment analysis, i.e., creating a 2x2 table for expressed gene 
(yes/no) by risk gene (yes/no), we needed to first identify the set of genes to be included in the 
analysis, which is defined as the set of genes “expressed” in at least one cell type. Because the 
integration process often replaces zero values in the gene expression matrix with small positive 
values, we considered any integrated expression value less than 0.5 to be non-expressed. A 
gene was considered “expressed” for a particular cell type if its expression was greater than 0.5 
for at least 25% of the cells in the terminal clusters. For each cluster, we then determined if the 
expressed genes belonged to the ASD-predominant or DD-predominant gene sets and 
computed the odds ratio from the 2x2 table to determine enrichment (Fig. 5c).  
 
Evaluating overlap with Schizophrenia-associated genes 
We compared our ASD- and DD-associated genes to the schizophrenia-associated genes 
reported by SCHEMA7 to determine if there was any overlap between ASD and schizophrenia at 
the level of individual risk genes and, if so, whether it was related to ASD-DD overlap. Note that 
3/309 genes with FDR ≤ 0.001 in TADA-DD were not included in the SCHEMA results, while 
10/244 genes identified by SCHEMA as schizophrenia-associated at p < 0.01 were not 
evaluated by our TADA model (8/10 were on chr X).  
 
As described in the main text, among the 72 ASD genes we discovered at an FDR ≤ 0.001, 61 
show an association with DD (using FDR ≤ 0.001, based on TADA-DD), and 8 show an 
association with schizophrenia at p < 0.01. If the two associations were independent, we would 
expect ~1 of the 8 ASD-schizophrenia genes to lack an association with DD (based on all but 
11/72 = ~15% of the ASD genes overlapping DD). However, we in fact find that 4 of the ASD-
schizophrenia genes lack an association with DD, which is a significant overrepresentation 
compared to random chance (p = 0.023, binomial test, Supplementary Fig. 11a).  
 
We also analyzed ASD-schizophrenia overlap using the 36 ASD-predominant genes and 82 
DD-predominant genes shown at the extremities of the distribution in Fig. 5f (which shows 
posterior probability for ASD enrichment of the genes in our heterogeneity analysis). We looked 
for overlap between these gene sets and the 244 genes identified by SCHEMA as 
schizophrenia-associated at p < 0.01. We found that 6 of the 36 ASD-predominant genes were 
schizophrenia-associated, while 3 of the 82 DD-predominant genes were schizophrenia-
associated (Supplementary Fig. 11b). If we compare to the null hypothesis that each of the 
17,294 genes from our TADA model that are also in the SCHEMA results has an equal chance 
of being schizophrenia-associated, then the ASD-schizophrenia overlap is significantly enriched 
(p = 8.4x10-6, binomial test), while the DD-schizophrenia overlap is not (p = 0.10, binomial test). 
The two outcomes (6/36 vs. 3/82) are also different when compared to each other (p = 0.023, 
Fisher's exact test). 
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Data Availability 
The data used in this study are available at: 
Repository/DataBank Accession: NHGRI AnVIL 
Accession ID: phs000298 
Databank URL: https://anvilproject.org/data 
 
Repository/DataBank Accession: Simons Foundation for Autism Research Initiative SFARIbase 
Accession ID: SPARK/Regeneron/SPARK_WES_2/ 
Databank URL: https://www.sfari.org/resource/spark/ 
 
De novo variant data used analyses are reported in Supplementary Table 9 (CNVs) and 
Supplementary Table 20 (SNV/indels). Other candidate de novo CNVs that were either too 
small (spanning two exons or less) or did not meet QS threshold (QS<200) to be included in our 
statistical analyses are reported in Supplementary Table 21. Aggregated rare variant counts 
(inherited, case/control) are released in Supplementary Tables 5-7. To access all individual 
variants, please see above repositories. 
 
GRCh38 reference genome: gs://gcp-public-data--broad-
references/hg38/v0/Homo_sapiens_assembly38.fasta 
 
Access to UK Biobank data will be provided by the UK Biobank. 
 
Code Availability 
 
The R code used to generate TADA association results is available under the MIT license at 
https://github.com/talkowski-lab/TADA_2022 
DOI:10.5281/zenodo.6496480 
 
Analyses executed in R 3.5.3: limma_3.38.3, stringr_1.4.0, GenomicRanges_1.34.0, 
GenomeInfoDb_1.18.1, IRanges_2.16.0, S4Vectors_0.20.1, BiocGenerics_0.28.0. 
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a Integrated fetal cortex single cell RNA-seq data

Nowakowski et al. 2017

Polioudakis et al. 2019
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b Fetal cortical cell type enrichment

Cell types
ExDp1
ExDp2
ExMV1
ExM1
ExM2
ExMU1
ExMU2
ExN1
ExN2
ExN3
InCGE
InMGE

Deep layer

Maturing 

Maturing,
visual cortex

Maturing, upper
layer enriched 

Migrating

Interneuron CGE
Interneuron MGE

Newborn interneuron

Intermediate
progenitor

Cortex
MGE

PgG2M
PgS

IP
MGE IP
InN
OPC
oRG
vRG

Outliers

Radial
glia

Outer
Ventricular

Cycling
progenitors

G2/M
S

Oligodendrocyte progenitor

Excitatory neurons

InN

InCGE
InMGE

ExN3

IP

ExN2ExN1

ExDp2

ExDp1

ExMV1

ExM1

ExM2

ExMU1
ExMU2OPC

oRG MGE IP
vRG

PgG2M
PgS

vR
G

oR
G

PgG
2M

PgS

M
G

E IP

O
PC

ExN
3

ExN
2

ExN
1

IP ExM
U

1
ExM

U
2

ExM
V1

ExM
2

ExM
1

ExD
p1

ExD
p2

vRG
oRG

PgG
2M

PgS

M
G

E IP

O
PC

ExN3
ExN2
ExN1
IP ExM

U1
ExM

U2

ExM
V1

ExM
2

ExM
1

ExDp1
ExDp2

InM
G

E
InN

InCG
E

0.5

1.5

2.5

0.0

1.0

2.0

3.0

Odds
ratio

10
20
30

# DD
genes

# ASD
genes

1
10

82 DD-enriched genes 36 ASD-enriched genes

* ** *

InM
G

E
InC

G
E

InN

* **** P.adj
< 0.05

* P < 0.01

NeuronsProgenitors Progenitors NeuronsProgenitors Progenitors

Neu
ron

s

Pr
og

en
ito

rs


	ASC-SSC-SPARK_MS_042722_final-refromatted
	Fu figures
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6


