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Abstract
Recording from a large neuronal population of neurons is a crucial challenge to unravel how
information is processed by the brain. In this review, we highlight the recent advances made in the
field of ‘spike sorting’, which is arguably a very essential processing step to extract neuronal activity
from extracellular recordings. More specifically, we target the challenges faced by newly
manufactured high-density multi-electrode array devices (HD-MEA), e.g. Neuropixels probes.
Among them, we cover in depth the prominent problem of drifts (movements of the neurons with
respect to the recording devices) and the current solutions to circumscribe it. In addition, we also
review recent contributions making use of deep learning approaches for spike sorting, highlighting
their advantages and disadvantages. Next, we highlight efforts and advances in unifying, validating,
and benchmarking spike sorting tools. Finally, we discuss the spike sorting field in terms of its open
and unsolved challenges, specifically regarding scalability and reproducibility. We conclude by
providing our personal view on the future of spike sorting, calling for a community-based
development and validation of spike sorting algorithms and fully automated, cloud-based spike
sorting solutions for the neuroscience community.

1. Introduction

Recording simultaneously from a large population of neurons is a crucial challenge to unravel how
information is processed by the brain. This is especially striking if one assumes that fine neuronal
correlations, ubiquitous in the brain, are a crucial key to such an understanding [4, 23]. Nowadays, only
calcium imaging and extracellular electrophysiology can perform simultaneous large-scale recordings from
hundreds of neurons and, at a first glimpse, it may seem that extracellular electrophysiology suffers from
fewer intrinsic limitations than calcium imaging [92]. First, genetically-encoded calcium indicators (GECIs)
are only an indirect sensor of neuronal spiking activity and have a slow kinetic leading to a poor temporal
resolution compared to electrophysiological recordings. Second, calcium imaging requires indicators to be
genetically expressed in the target cells, which is not the case with extracellular recordings. Finally, the
imaged neurons need to be visible under a microscope (by removing the skull), which makes imaging more
invasive than implanting an electrode. Therefore, extracellular signals seem to be much more flexible
candidates to extract relevant information from a large ensemble of neurons.

The above-mentioned advantages are even more relevant when one considers the emergence of newly
manufactured high-density multi-electrode array (HD-MEA) devices, both for in vitro [7, 25] and in vivo
applications, e.g. Neuropixels probes [40, 83]. These devices introduced a tremendous increase in the
number of extracellular channels that can be recorded simultaneously (from tens to thousands) and their
spatial density, resulting in the capability to record from hundreds, or even thousands of neurons at once.
Such HD-MEA probes can record numerous cells either across layers [83], with flexible designs across
different structures [17, 32], or by optimizing electrode switching to increase the yield [45].
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The procedure of ‘spike sorting’ consists of various processing steps to extract single-neuron spiking
activity from extracellular recordings. Mathematically, it belongs to the category of blind source separation
problems, but despite the numerous possibilities given by these new HD extracellular recordings, the analysis
of such data arguably creates new challenges [84]. Indeed, with the increased density of the recording
channels, the probability of isolating neurons via spike sorting is also higher, and so is, as a direct
consequence, the probability of having to deal with overlapping spikes (either in space or in time). These
spike collisions are hard to resolve and complicate the spike sorting process [26]. In addition, the very dense
spatial resolution of HD probes makes some known issues of spike sorting even more evident, especially
regarding the prominent problem of drifts (movements of the tissue with respect to the recording devices).
Finally, the amount of data generated by HD devices is now becoming so large that the need for fully
automated and reproducible spike sorting solutions is pressing.

In this review, we will discuss these open issues in the field of spike sorting. On the algorithmic side, we
will focus on describing the generic implementation principles that have been developed to handle drifts and
reviewing recent contributions making use of deep learning approaches for spike sorting. Then we will
discuss recent advances in benchmarking, validation, and comparison of available spike sorters. In particular,
we will describe the SpikeInterface [12] and SpikeForest [50] projects, as common efforts to provide a
unified framework for spike sorting and a quantitative comparison among a large number of well-established
spike sorters on a large body of ground-truth datasets. Finally, we will discuss the open challenges of the
spike sorting field and provide an overview on how, in our opinion, the future of spike sorting will look like.

2. The spike sorting pipeline

Spike sorting is a complex but necessary procedure to turn extracellular signals into spike trains. Over the
years, several algorithms have been developed (see [15, 33, 46] for recent reviews), but despite mild subtleties
and variations, they can all be described given the schematic shown in figure 1. In a nutshell, the generic
workflow of spike sorting can thus be described as follows. First, the raw extracellular signals (panel 1) are
preprocessed to include only the relevant information for spike sorting. Usually, preprocessing involves
filtering via a band-pass filter to exclude the low frequency local field potential (LFP) contribution. In
addition, a denoising step, such as whitening or common median reference, can also be used to reduce
correlated noise among channels (panel 2). Once signals have been preprocessed, putative spike events are
detected via threshold crossings (panel 3). Snippets of these putative spikes are then aligned in time (panel 4)
and gathered so that they can all be projected into a lower dimensional space. This dimensionality reduction
(or feature extraction) step is often achieved using principal component analysis (PCA), but other methods
can be considered (e.g. independent component analysis or wavelet transform). In such a reduced space
(panel 5), a clustering step splits the spike events into separate groups (see panel 6 and [90] for a review on all
clustering algorithms used in the field). Every cluster centroid is a so-called ‘template’ (panel 7), i.e. the
average spatio-temporal motif visible on the extracellular channels when a given neuron is firing an action
potential. Once the clustering step is completed, either the spike sorting algorithm stops (and the units are
thus the labels of the clusters), or an extra template-matching step is added (see [46] for a review) to
reconstruct the signals as a linear sum of the discovered templates and obtain a more accurate estimation of
the spike trains (panel 8). Note that this reconstruction creates a more accurate estimation of the spike trains
both by resolving colliding spikes and improving detection of low signal-to-noise ratio (SNR) spikes.

While template-matching is probably one of the most significant recent addition to the classical pipeline
of spike sorting, since it enhances considerably the performance of the reconstruction [26, 62], this is not the
only attempted modification. Indeed, several methods have been recently introduced to enhance the classical
view of spike sorting. A full review of these methods is out of the scope of this article, but among those, one
could cite works trying to improve the selection of the features (panel 5 of figure 1) [16, 81], using
Independent Component Analysis [11, 47] to identify the templates, tracking down the temporal evolution
of the templates over time with [79, 86] with statistical assumptions, and consolidating the clustering step by
consensus-based methods [12, 22].

3. Recent advances in spike sorting algorithms

3.1. Drift correction
One of the major disadvantages of extracellular recordings over calcium imaging is that the tissue in the
vicinity of the electrodes remains invisible. Thus the number, the types, and more importantly the positions
of the neurons in the surrounding of the neural probe is unknown. The latest is currently the most
challenging problem in the field of spike sorting, since one wants to guarantee the identities of the cells over
times. While recording, as shown in figure 2(A), it is possible for cells to drift over time and change their
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Figure 1. Overview of the generic spike sorting workflow. The spike sorting pipeline is composed of multiple processing steps.
Raw extracellular potentials (panel 1) are preprocessed via band-pass filtering (panel 2) before detecting putative spikes (panel 3)
as thresholds crossings. Snippets around these spike times are then aligned (panel 4) and projected into a lower dimensional space
(panel 5) in order to be clustered as groups (panel 6). Each group is a putative unit with a given template (panel 7), and spikes can
be obtained either from the clustering or via an additional template-matching procedure (panel 8).

Figure 2. Neuronal drifts. (A) Illustration of the problems raised by neuronal drifts. Two neurons (red and orange) have two
distinct waveforms, but after some non rigid drifts (movements), the templates are changed. (B) Illustration of the drift in vivo. A
Neuropixels 1.0 probe in the cortex of the mice is moved up and down with an imposed triangular movement of amplitude 50µm
(top trace) [82, 83]—p1 dataset. The row shows the depth of all the detected peaks (positional raster plot, see text) as function of
the time. As one can see, when the probe starts moving (red dotted line), so does the depth of the peaks, since neurons are drifting
across channels. While the drift here is imposed, spontaneous drifts can happen locally and non homogeneously over the whole
probe (see inside light blue boxes before and after movements).

positions with respect to the recording probe. These drifts can introduce distortions of the waveforms
recorded extracellularly. In order to ensure that units are recognized correctly over the course of a recording,
one needs to track down these waveform changes over time. One way to visualize drifts is to represent the
distribution of the spiking activity (e.g. the firing rates) as function of the electrode position over time. In
figure 2(B), for example, one can see the activity of the neurons as function of time, recorded by a
Neuropixels probe in vivo [83]. More precisely, the panel displays a positional raster plot, where the peak
positions are estimated just after spike detection, before any spike sorting step. Usually, the position of the
peaks is estimated as its center of mass, but more refined methods can be applied [9, 13, 74]. During the
recording, the probe is moved along the vertical axis with a triangular movement of 50µm amplitude. The
oscillations visible in the raster plot here reflect the fact that neurons are moving up and down with respect
to the recording channels.

The causes and the temporal extent of these drifts can be numerous. The main source is mechanical: in
vivo, cells are likely to slowly drift from initial positions because of the pressure release in the tissue after the
insertion of a probe. These drifts can have arbitrary time constants, and thus either be abrupt and
discontinuous or slow and continuous. Another source of waveform distortion, which is not related to
relative displacement, can be functional: if a pharmacological drug is added to the media, or if neurons are
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Figure 3. Strategies for drift correction. (A) Peaks position as function of the depth, estimated via the center of mass method, for
the recording shown in figure 2. A binning procedure can be used to create an image of the peaks distribution, over space, as
function of time. (B) Registration of the extracellular recordings via a common activity template, computed as the average activity
profile over all chunks [83]. (C) Same as (B), but with a template computed in a decentralized manner [89]. (D) Illustration of the
motion clouds method, trying to refine the estimation of the peaks’ position before clustering. Spikes (black dots) during three
different consecutive intervals of time δt are shown, superimposed on the probe layout. Red and blue circles show spikes form two
different cells, drifting along the depth axis over time. Tracking these movements (bottom lines) can be used to resolve drifts. (E)
Illustration of the post-processing methods. Several independent spike sorting procedures are launched, with overlapping time
windows. Overlapping results can be used to track drifts over units.

forced to fire in a non-physiological manner (for example with optogenetics if sustained and/or too intense
light stimulation [58, 71]). Such external perturbations are likely to distort the templates, in a possibly
non-reversible manner, and thus are another real challenge for spike sorting.

There is yet no consensus on how to deal with drifts in extracellular recordings. However, before
reviewing the different methods used by modern algorithms, it is worthwhile noticing that solutions can be
grouped into two main categories: drifts can either be handled during the pre- or post-processing stages.
Both approaches have advantages and disadvantages. On one hand, handling drifts at the pre-processing
stage could ease the task of the spike sorting algorithms, at the cost of (possibly) distorting the input data
(for example by introducing unwanted artifacts in the signals). On the other hand, handling drifts at the
post-processing stage does not modify the input data, but it might result in erroneous results depending on
the extent and nature of the drifts.

The basic idea behind correcting for drifts at the pre-processing stage is to mimic drift-correction
procedures that have been applied in the field of calcium imaging [28], and thus perform a non-rigid spatial
registration of the extracellular signals directly (pre-registration). While such approach, to date, has only been
applied to Neuropixels devices to estimate the drifts along the depth dimension of the electrodes [83], in
theory it could be generalized to drifts in several dimensions [9]. The algorithm starts from the positional
raster plot, where each detected event is plotted against its estimated position; next, a binning procedure
allows one to create an image of the drifts as function of time, i.e. a picture of the activity as function of the
depth (see figure 3(A)). Each column of this image is termed activity histogram. Assuming the activity of
neurons in the recording is stationary enough, the pre-registration method tries to find the (non) rigid
transformations over time that would maintain the histogram of the peaks, for every chunk of duration d,
as constant as possible.

The fine details of the registration might vary from algorithm to algorithm. For example, in [83], an
average template is obtained as the mean of activity histograms computed by chunk (see figure 3(B)) and
used as a reference for motion correction. However, this average template approach assumes that the spiking
activity is relatively constant over the time course of the recording. To relax this assumption, a recent work
has proposed a decentralized method [89] that computes all the pairwise displacements between chunks to
directly estimate a motion signal to register the traces (see figure 3(C)). These pre-registration methods can
be either rigid (motion is constant over depth) or non rigid (motion depends on the depth). The extension
to the non-rigid case can be easily performed by considering only local spatial neighbourhoods along the
depth axis. However, note that irregardless of the strategy, the registration procedure, acting at the
pre-processing stage, is distorting the input data and, in doing so, might introduce unwanted artifacts that
might affect, to some extent, the overall spike sorting performance. Nevertheless, pre-registration of the data
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seems to be more robust than what was done in previous versions of KiloSort (v2.0), where chunks of data
were grouped by their similarity and templates were able to to evolve through the detection process as a result
of an optimization procedure.

A different approach to handle drifts is to try to perform spike localization and motion correction in
order to ease the job of downstream clustering (figure 3(D)). An accurate estimate of spike position with
respect to the probe layout can be used as an additional feature for clustering and reduce spurious noisy
fluctuations in the feature space [9, 34, 39]. While the simplest estimation of spike positions can be done via
the centers of mass of the detected spike waveforms, more refined methods using variational inference [38]
or point-source models [9] have been proposed and can also provide and estimate of the spike depth
(3D localization). Using estimated positions as a spike feature for the clustering step could enhance the the
recognition and tracking of different clusters over time [9]. In addition, the estimated spike positions can be
used as an alternative method for image-based registration approaches (figures 2(B)–(C)), using a
point-cloud registration to estimate motion signals and correct for drifts.

Finally, the last option is to handle drifts at the post-processing stage (figure 2(E)). To do so, the approach
followed by [18, 57] is to divide the recording into small and overlapping temporal intervals and to perform
the sorting of each of these chunks individually. Using the information in the overlapping regions, one could
then try to establish the juncture and track the cell identities over time despite small changes in waveforms.
For example, if neuron A is firing during [t0, t1] and neuron B is firing during [t2, t3] with t1 ⩾ t2, then if
spikes of A and B are the same in [t2, t1], the two cells are likely to be the same. The main disadvantage of such
an approach is that one needs to launch several instances of the spike sorting procedure, at the cost of
slowing down the whole processing pipeline. In addition, the duration of the overlapping window is ad hoc,
and should reflect a prior expectation of the temporal evolution of the drifts.

While most of the methods for drift correction were mainly developed for and applied to data from
rodents, a recent study featuring Neuropixels recordings in human subjects [60] showed that, at this spatial
scale, the drift problem is more prominent and it is strongly modulated by cardiac and breathing cycles. The
relatively fast dynamics of these oscillations might make the methods described above, which rely on spike
detection and binning to correct for drift, to fall short, mainly because there would not be enough spikes to
robustly estimate drift in such short periods (e.g. 1 s). In order to correct for drifts, Paulk and colleagues [60]
turned instead to LFP signals and manually drew and aligned signals based on vertical shifts of the LFP
bands. LFPs, therefore, could potentially be the data source for automated drift correction methods that
perform well across species and scales.

3.2. Deep learning approaches
The last few years have witnessed a boom in the efforts of using deep learning approaches to tackle the spike
sorting problem [20, 44, 48, 64, 66, 76, 87, 95, 97, 98]. Deep learning methods, in fact, have proven so
powerful and accurate in many complicated applications, ranging from image classification to natural
language processing. It is therefore natural to turn to deep learning for such a complex task as spike sorting.

Deep learning (DL) refers to machine learning techniques using very deep artificial neural networks
(ANN), with many more layers, parameters and artificial neurons. In addition to the higher complexity with
respect to standard feed-forward ANN models, DL can also employ a wide variety of architectures to tackle
different problems. Convolutional neural networks (CNNs), for example, make use of convolutional layers
that combine the input features using convolutions in various dimensions (1D, 2D, and even 3D). They are
commonly used in image classification tasks, where 2D convolutional layers allow the model to capture
2-dimensional features of the data [41]. Another class of DL models that have been applied to spike sorting
are long short-term memory (LSTM) networks, which are a type of recurrent neural networks well suited to
process time series data, as their recurrent structure enables them to keep amemory of the previous times
[36]. A third DL concept that is worth introducing is autoencoders [5]. Autoencoders (AE) are a family of
unsupervised models that aim at encoding the input data into a low-dimensional latent space. This is usually
achieved by an encoder network, that projects the input data onto the latent space, and a decoder network
that goes from the latent space to the output.

In the following, we review the recent contributions that used machine/deep learning strategies to tackle
the spike sorting process. We identified four main strategies in which DL solutions have been employed for
spike sorting (figure 4): (i) end-to-end solutions, (ii) DL approaches for different spike sorting steps,
(iii) SNN-based solutions, and (iv) DL for automatic spike sorting curation.

3.2.1. End-to-end solutions
The first strategy to employ DL models for spike sorting is to build a so-called end-to-end solution.
End-to-end solutions ideally take the raw (or filtered) traces as input to the DL model and output directly the
spike trains of the different spike sorted neurons (figure 4(A)). A few different solutions have been proposed
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Figure 4. Deep learning strategies for spike sorting. (A) End-to-end solutions use DL network to predict spike times and labels
from the signal traces. (B) Alternatively, different DL approaches can be used to for separate steps, such as denoising, spike
detection, and feature extraction. (C) Unsupervised spiking neural networks (SNN) use spiking neuronal models and plasticity
rules to learn to recognize different units in the recordings. (D) DL can also be used to automatically curate and clean the raw
output of an automated spike sorter.

to this end. In the work from Racz et al [64], the authors implemented separate networks for spike detection
and spike sorting for a 128-channel high-density device [21] using a combination of CNN and LSTM. Li et al
[48] developed a similar approach focused on recordings from single channels. However, instead of splitting
the detection and sorting phase, they used a single 1D CNN architecture to directly detect and sort spikes in
the input recording. Racz et al [66] proposed a different architectures that uses a CNN+LSTM-based
autoencoder architecture to find a latent space and dense output networks to perform the spike sorting task.

While end-to-end solutions arguably represent a tempting strategy to tackle the spike sorting problem,
there are a few apparent limitations that need to be highlighted. Supervised learning methods, and in
particular DL models with many parameters, require a very large amount of labeled or ground-truth data to
be trained. In the three solution described above, the authors mainly used manually curated or synthetic
recordings to train their models, and each model was trained separately on each recording. This allowed
them to know a priori the number of output neurons to be used, for example, but this information is
normally not known in advance when spike sorting, which is an unsupervised problem in nature. In addition,
it is still unclear how end-to-end strategies could generalize over different recordings from different brain
regions and states, as well as from different probe geometries. For example, in the cerebellum, Purkinje cells
produce both simple and complex spikes, which have very different spike shapes. Complex spikes represent a
well-known problem for spike sorting, so that specific cerebellum-specific spike sorters have been developed
[77]. To tackle the same problem, Markanday and colleagues [51] implemented an end-to-end solution to
detect complex spikes data manually labeled by experts.

3.2.2. Deep learning for spike sorting steps
A second strategy to use DL models for spike sorting is to utilize specific networks for different spike sorting
steps, rather than as an end-to-end solution (figure 4(B)). As introduced in section 2, spike sorting methods
can be split into several and relatively isolated steps, some of which may be tackled and improved with the aid
of a DL approach.

3.2.2.1. Recording denoising
Extracellular recordings contain several sources of independent noise components, that may arise from the
readout electronic circuit and also from the biological sample itself (e.g. the activity of far away neurons).
Before further processing, it could be therefore useful to apply some denoising techniques, e.g. common
average/median reference or whitening of the signals. Lecoq and colleagues [43] approached the problem of
denoising by using an autoencoder approach to interpolate the input signal (DeepInterpolation). The idea is
to train a deep network to predict the signal at time t using samples before and after t. This allowed the
authors to remove independent noise sources in the input signals (the same approach was also applied to
calcium imaging and fMRI data). When applied as a pre-processing step to extracellular recordings from a

6



Prog. Biomed. Eng. 4 (2022) 022005 A P Buccino et al

Neuropixels probe, the spike sorting output (using Kilosort2 [59]), yielded a larger number of high quality
units.

3.2.2.2. Spike detection and waveform denoising
A second processing step that is essential to spike sorting is spike detection. Normally, this step is performed
channel-wise by simply detecting intervals of the signals that cross a certain threshold that is set based on
some dispersion measures (e.g median absolute deviation [65]). One of the major problems of spike
detection is the presence of colliding spiking events, that result in distorted waveforms. These collision events
can strongly degrade downstream processing steps, especially clustering, and therefore need to be removed.
In order to ameliorate the performance of spike detection, Lee and colleagues, in developing the YASS spike
sorter [44], used a DL strategy for spike detection and waveform cleaning/denoising. First, the authors
implemented a temporal and spatial CNN architecture to detect spikes in the signals, similarly to [64]. The
detection network was trained using synthetic snippets on channel neighborhoods that either included a
spike event (manually curated templates with additive noise) or did not (noise snippets). After a spike event
was detected, a second denoising network was used to clean collision-corrupted spikes. In this case, the
model was trained using simulated spike events corrupted by a collision to output the clean template. The
combination of the spike detection and waveform denoising network showed to greatly improve the
separation of different units in the clustering space. Note that this waveform denoising method was recently
also applied to Neuropixels data to clean waveforms before the spike localization [9]. Saif et al [75]
implemented a 1D-CNN model for single-channel data to remove noisy spike events before clustering. In
this case, the model was trained on a large dataset of manually labeled data, in which experts flagged single
spikes as being of neuronal origin or noise events.

3.2.2.3. Feature extraction
After spikes are detected, the aligned waveforms need to be projected onto a low-dimensional space before
the clustering step; this feature extraction step is normally performed by means of PCA or wavelet
decomposition. As briefly mentioned before, autoencoders have emerged as optimal candidates to find
low-dimensional latent spaces and have therefore been proposed to reduce the dimensionality of waveforms.
Wu and colleagues [97], for example, used deep compressive autoencoders to extract features from detected
spikes and showed that they outperform several other dimensionality reduction techniques in compressing
waveforms. Similarly, Eom et al [20] proposed an ensemble of autoencoders with different complexities to
project waveforms onto a low-dimensional space and showed that their method provides a better separability
of different units in the latent space in comparison to other dimensionality reduction strategies.

In addition to the use of autoencoders to extract features, Wouters et al [95] introduced a DL strategy to
tackle the problem of spike collisions in spike sorting [26]. When two spikes are perfectly overlapping in
time, the observed collision event will be a linear sum of the waveforms from the two neurons; if the feature
extraction method is linear (e.g. PCA), the collision spikes from two neurons will form a third cluster with a
centroid in correspondence to the sum of the two neurons’ clusters. However, when spikes from two neurons
have a small jitter in time, the linearity in the feature space is lost. The authors introduced a deep neural
network for dimensionality reduction and trained it with synthetic data to enforce linearity in the feature
space with respect to spike collisions even when a jitter between the colliding spikes is present. The promising
results showed that the proposed feature map is capable of achieving a performance close to optimal
template matching without a template-matching phase.

3.2.3. Spiking neural networks (SNN)-based solutions
Deep neural networks utilize a very simplistic model of artificial neurons, i.e. the perceptrons [68], which
integrate their weighted input to produce an output. The output of an artificial neuron can be thought as a
mean firing rate, as there is no concept of spikes in these kind of neural networks. Conversely, in spiking
neural networks (SNN) the artificial neurons communicate via spikes and synaptic inputs. Leaky
integrate-and-fire (LIF) models of single neurons temporally integrate the synaptic inputs received from
other neurons and they produce a spike whenever their membrane potential crosses a threshold. By
employing models of synaptic plasticity, SNNs have shown to be able to perform several unsupervised
learning tasks [19, 30].

In the context of spike sorting, Werner et al [93] introduced a 2-layer SNN implementation capable of
spike sorting extracellular data from a single channel in real-time. The proposed method first decomposed
the input signal using bank filters whose output modulated the firing of the corresponding input neurons.
The input neurons were fully connected to five output neurons (the number of output neurons needs to be
greater than the number of expected units), which connected to each other with inhibitory synapses to
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implement a winner-take-all approach (only one output neuron can fire at a time). Using spike-timing
dependent plasticity (STDP), the SNN was able to learn to recognize spikes from different neurons in the
recordings. Importantly, the spike trains generated by the output layer correspond directly to the sorted spike
trains (figure 4(C)). In a follow-up study, Bernert and colleagues [8] used a different SNN-based solution to
spike sort data both from single channel recordings and from tetrode data. The authors introduced an
additional hidden layer that uses plasticity to learn different waveform fragments in the input signal. The
output neurons learn to recognize combinations of different fragments as different units and to output the
spike trains. Additionally, an attention neuron is employed to gate the learning only when an action potential
is occurring.

SNN-based solutions represent an emerging strategy for spike sorting, especially given their intrinsic
capability of functioning in real-time and of being implemented in neuromorphic hardware solutions [93].
This characteristics makes them optimal candidates for brain-machine interface applications, where the raw
signals need to be processed and decoded in real-time. However, in the context of precise spike sorting for
systems neuroscience, some limitations exist. Unsupervised learning rules for SNN (such as spike timing
dependent plasticity) are very sensitive to initial conditions, and quite often unstable without metaplasticity
(see [99] for review). Thus, very precise fine tuning of the parameters is often necessary. Moreover, questions
such as how the extracellular traces should be turned into spikes, or what is the optimal size of the SNN
required to capture all the spiking dynamics, still remain open.

3.2.4. Deep learning for spike sorting curation
The last strategy to utilize DL in the spike sorting process is to build models that automatically curate a spike
sorting output. Differently from all the strategies described above, in this case the DL model will take a raw
output from a spike sorter as input and output a curated version of the spike sorted units (figure 4(D)).
Manual curation of spike sorting output is still a very common and required step to improve the results of
automatic spike sorters before further analysis. Spike sorters, in fact, do make mistakes [12, 50] and an expert
electrophysiologist can correct such mistakes by inspecting features of the spike sorted units. Several software
tools (Phy [70], Neuroscope [31], CellExplorer [61], JRClust [39]) are used by the community to
remove bad or noisy units, merge oversplit units, and split unit clusters (when overmerged or when
contaminated by noise events). The former two curation actions (removing bad units and merging) could be
well suited for a supervised DL approach, since they do not modify the underlying spike trains. However, this
solution is still relatively unexplored. One option could be to gather all the annotated curation steps and
train a network using these community-labeled data. However, since it is well known that manual curation is
prone to bias [70, 94], a second or complementary option could be to use ground-truth datasets to train a
network to perform the best curation steps given the ground-truth spiking activity.

4. Benchmarking spike sorting results

Spike sorting tools require extensive and quantitative validation to assess their performance. To provide such
validation, one needs to utilize so-called ground-truth (GT) data, i.e. recordings in which the spiking activity
of the underlying neurons is known. There exist three different strategies to obtain ground-truth recordings,
which differ in their biophysical detail and amount of units available as ground truth (figure 5(A)).

4.1. Paired recordings
These GT data are obtained by recording the same neuron simultaneously with an extracellular probe and a
second measuring modality, such as a glass micro-pipette inserted in the target neuron (intracellular) [91],
attached to the cell membrane (juxtacellular) [56], or via whole-cell patch-clamp [2, 52, 100] (figure 5(1)).
The second modality enables to record spikes of the target neuron unequivocally and reliably, so that they
can be used as ground-truth. While paired recordings are the most realistic source of ground-truth data, the
acquisition of such paired dataset is arguably challenging, especially in vivo [2, 52, 56]. A second limitation of
this approach is its very low-yield: in most cases only a single ground-truth neuron is available for each
dataset and this prevents a full characterization of the spike sorting performance. In addition, recording via a
micro-pipette could be inherently biased in terms of the cell-type of the target neuron, as interneurons are
less numerous and smaller than pyramidal cells, and therefore less likely to be targeted.

4.2. Hybrid recordings
A second type of GT data is constructed by adding artificial spiking activity to experimental recordings
[70, 96] (figure 5(2)). The templates of the artificial neurons are usually extracted from previously sorted and
curated data and are re-injected into the recording by adding modulations to resemble physiological
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Figure 5. Spike sorting validation. (A) Different strategies for GT data: (1) paired extracellular and intra-/juxtacellular recordings;
(2) hybrid recordings with injected artificial neurons; (3) fully synthetic recordings with biophysical models. (B) The
SpikeInterface project showed how largely spike sorters disagree. (1) Snippet of a Neuropixels trace with its activity map on
the top; (2) number of units found by six different sorters (HS—Herding Spikes, KS—Kilosort2, IC—IronClust,
TDC—Tridesclous, SC—Spyking Circus, HDS—HDSort); (3) units in agreement with k different sorters. Reproduced from [12].
CC BY 4.0. (C) The SpikeForest project systematically benchmarks spike sorters against a large body of ground-truth data.
Example of the result tables, with the accuracy of spike sorters on the left (blue) and the number of units found by each sorter on
the right (green). Reproduced from [50]. CC BY 4.0.

variability, for example due to bursting [2]. While hybrid recordings provide a higher yield with respect to
paired recordings, they still do not allow a full characterization of the spike sorting output. In practice, only a
limited number of artificial units can be injected in the original recording in order to avoid an overcrowded
spiking activity that could compromise the intrinsic performance of spike sorters.

4.3. Synthetic recordings
A third strategy to obtain GT data is to use simulations of extracellular signals and corresponding spiking
activity [10, 14, 29, 39, 55] (figure 5(3)). In this case, the GT dataset allows for an exhaustive and full
benchmark of spike sorting results, since all neurons making up the spiking activity are known. However, the
debate on whether synthetic recordings are realistic enough to capture subtleties of experimental data is still
open. Nevertheless, simulations can provide a powerful and highly controllable tool to develop and
benchmark spike sorting tools. As an example, controlled simulations were used to specifically assess the
performance of spike sorters against spike collisions, which are a well known challenge for accurate spike
sorting [26].

With these different ground-truth recordings, one can start approaching the task of systematically
benchmarking the performance of multiple spike sorting tools. However, this step is challenging for several
reasons: first of all, in extracellular electrophysiology, there is a large variety of proprietary formats and
acquisition systems; second, the community has produced several spike sorters, each coming with its own
requirements in terms of input format, parameters, configuration files, and output format.
SpikeInterface is an open-source software tool developed to unify existing technologies into a single
framework [12]. Providing a standardized access to the multiple acquisition formats and spike sorters,
SpikeInterface allows one to run and assess the performance of many sorters on the same recordings.
Strikingly, when six modern spike sorters were run on the same Neuropixels dataset [80] (figure 5(B.1)
shows a snippet of the traces) there was a large disagreement among them (figure 5(B.2) and (B.3)). Out of a
total of∼1400 units found, only 33 were in agreement between all sorters and 263 in agreement between at
least two sorters [12]. Clearly, this highlights the need of more systematic benchmarking efforts in order to
trust the results of automatic spike sorters.
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In this direction, the SpikeForest project [50] attempted to gather a large body of ground-truth data,
systematically run spike sorters on them, and report the results in an interactive and intuitive manner. The
resulting website (https://spikeforest.flatironinstitute.org/) reports the performance tables (figure 5(C)) of
spike sorting results from over 1.3 TB of ground-truth data coming from diverse sources and strategies
(paired, hybrid, and synthetic recordings). Such effort provides unprecedented guidance to end-users,
willing to explore and understand the performance of different tools on different types of recordings
(e.g. tetrodes vs high-density probes) and it arguably represented a push for the spike sorting community, as
now developers have a massive and curated ground-truth repository to test their tools, and new features,
against. Moreover, the SpikeForest team had to overcome intrinsic software engineering challenges that we
cover in more details in the next section.

5. Open challenges and the future of spike sorting

In this review, we covered the recent advances in the field of spike sorting, especially all the recent pre- and
post-processing techniques applied by spike sorting algorithms to track the neurons over time when they are
drifting with respect to the recording sites. We also gave an overview of all the attempts to use deep learning
approaches in order to boost the performance of these algorithms, highlighting different strategies with their
advantages and limitations. Finally, we covered the latest progress in generating ground-truth data for
systematic benchmarking and validation of spike sorting tools. Despite the tangible advances in spike sorting
development and validation efforts over the last few years, the neurotechnology revolution that we are
experiencing with the advent and broad distribution of high-density probes is setting novel challenges for
spike sorting pipelines.

The first new challenge is scalability. Since the first extracellular recording from a tungsten microelectrode
[37] neural devices for both in vivo and in vitro applications have experienced a steady increase in the number
of electrodes that can be recorded simultaneously (figure 6(A)). For in vitro applications, where probe size is
less of a constraint than in vivo, micro-electrode array technologies have allowed to reach over 1000
simultaneously recorded electrodes [7, 25] packed at very high spatial densities. Recently, some prototypes
have been proposed that can even record from over∼20 000 electrodes simultaneously [101]. Neural devices
with several hundreds of electrodes have also been developed for in vivo applications [3, 17, 21, 40, 83], with
the Neuropixels technology being arguably a game changer in the field of systems neuroscience. Spike sorting
algorithms need to be able to cope with this steadily increasing number of channels. A 1 hour Neuropixels 1.0
or 2.0 probe recording [40, 83], with their 384 channels sampled at 30 kHz and with 2 bytes per sample, will
produce over∼80 GB of unprocessed raw data. With a similar calculation, a 1 hour recording of the
20 000-channel device in [101] (sampled around 10 kHz) will give a 1 TB file to analyze. Spike sorters,
therefore, need to implement algorithmic solutions with scalability, speed, and performance in mind, for
example by leveraging multiprocessing, distributed, and GPU-accelerated solutions. In addition, spike
sorting developers need to be aware of the trends in neurotechnology and try to predict what neural devices
will look like in the next years to come4. Finally, it is also essential that the computational time of spike
sorting is faster than 1x (i.e. it takes less for spike sorting than the duration of the recording), otherwise, as a
field, we will never finish our spike sorting pre-processing and move on with downstream analysis.

A second challenge for spike sorting is reproducibility. Despite the more and more common usage of
automatic tools for an initial spike sorting, a manual curation step to clean the spike sorting output is still
very common, if not necessary. A number of tools have been developed to allow users to remove, merge, and
split units [31, 39, 61, 69], but this manual curation is still very subjective and can provide different outputs
[70, 94]. Clearly this hinders full reproducibility of the results and all downstream analysis that depends on
spike sorting. In section 3.2.4 we discussed the possibility to use deep learning methods trained on
ground-truth data to automatically curate spike sorting outputs, but this strategy is still relatively unexplored
and it requires a large amount of high-quality ground-truth data and validation efforts. A second and
probably more viable approach consists of using unsupervised quality metrics computed directly on the spike
sorting output [6, 35]. These metrics are designed to assess the goodness of a sorted unit both using known
biophysical properties (e.g. a neuron should not fire during its refractory period) and data-driven metrics,
for example by measuring the isolation of a unit in the feature space. While a wide array of these metrics have
been proposed, the community is still lacking a consensus on which metrics are informative and should be
used to automatically clean spike sorting outputs. With the ever increasing effort of gathering ground-truth
and curated datasets [50], it is of paramount importance for spike sorting developers and end-users to

4 Strikingly, the Klusta spike sorter [70], developed in 2016 for ‘large and dense’ probes (up to 64 channels), has become outdated in
less than 4 years.
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Figure 6. Challenges and future of spike sorting (A) Scalability. The constant increase of electrode counts both in vivo (blue) and
in vitro (orange) represents a challenge for spike sorting tools. (B) The reproducibility challenge can be addressed by using
containerized software (via Docker or Singularity) and automatic curation. (C) The future of spike sorting, in our view, is to make
storage and processing remotely. After acquisition, recordings are converted to standardized formats, such as NWB, NIX, or BIDS,
and uploaded to cloud-based archives, e.g. DANDI or EBRAINS. Analysis pipelines, including spike sorting, can be then deployed
on cloud computing services.

collaborate in order to identify and converge on common curation strategies to reduce the burden and bias
of manual curation. A third but computationally expensive option to avoid manual curation could be
running several spike sorters on the same recording and aggregating the results in an ensemble fashion [12].
While this ensemble strategy produced curated outputs which largely overlapped with manually curated ones
when applied to a neuropixels recording [12], its validation is still limited and more testing is required.

Reproducibility can also be affected by the intrinsic life cycle of spike sorting software tools, which can
undergo many modifications and releases as bugs are fixed, methods are improved, and new features are
added. While version controlled systems (VCS) can keep track of all these changes, from a user perspective it
can be confusing and even complicated to know which exact version of a spike sorter was used on specific
datasets and to report correctly. A possible solution to the version problem is to encapsulate spike sorters of
different versions in containers, i.e. pieces of software that package all codes and dependencies for an
application to run independent of the environment. Containers can be run through platforms such as
Docker [54] and Singularity [42] and ensure reproducibility on the software side. The SpikeForest
project first introduced containerized and version-tagged containers of 11 different spike sorters which we
recently collected and distributed through SpikeInterface5. In addition to improving reproducibility of
the results, containers can also ease the process of installing and setting up different spike sorters, which can
be difficult as the number and complexity of dependencies increases. The combination of containerized
solutions and automatic curation would enable a fully reproducible spike sorting pipeline, which does not
require any human intervention (and possibly human bias) in the loop (figure 6(B)).

In addition to the above-mentioned scalability and reproducibility challenges, the main open challenge of
spike sorting in general probably remains its accuracy and reliability. Spike sorters are prone to various types
of errors, especially for low SNR units [50], and have been shown to largely disagree between each other [12].
Taken together, this inaccuracy requires users to carefully check and correct spike sorting results, e.g. via
manual curation. Therefore, spike sorting algorithms still necessitate extensive development to increase their
accuracy and reliability, specifically in light of some complex characteristics of extracellular recordings which
are known to make spike sorting even harder. Among them, a major problem is how to automatically handle

5 OnGitHubhttps://github.com/SpikeInterface/spikeinterface-dockerfiles—andDockerHubhttps://hub.docker.com/orgs/spikeinterface.
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waveforms modulation due to bursting, which causes an amplitude and shape distortion of the extracellular
waveforms during the firing of consecutive spikes [2]. Several algorithmic attempts have been proposed to
tackle the issue [63, 78], but to date there is no definitive solution implemented in the most commonly used
spike sorting tools and correction of spike sorting errors due to bursting modulation is still mainly addressed
via post-hoc manual curation. Spike collisions (spike events overlapping in space and/or time), which have
been proven to degrade the spike sorting performance [26], represent a second well-known issue for spike
sorting methods to address. Although recent spike sorting solutions based on template-matching appear to
ameliorate the problem [26], automatic spike sorters are still more error-prone when spikes are colliding
(especially from neurons with similar templates). Spike sorting becomes particularly challenging during
network bursts, which are very common in in vitro cell cultures [88], due to the concomitant bursting
modulation and high spike collision rates. Different brain samples (e.g. in vivo, brain slices, embryonic cell
cultures, or induced pluripotent stem cell (IPSC)-derived cultures), brain areas, species, as well as brain
states could largely affect spike sorting results, given the large diversity of the underlying neural signals. A
one-spike-sorter-fits-all strategy might therefore be sub-optimal (see for example specific solutions
developed for spike sorting data from the cerebellum [49, 77]) and the spike sorting step should be flexible
enough to accommodate recordings with various subtleties and differences.

Finally, while we have mainly focused on offline applications, online spike sorting for HD probes has the
potential to tremendously boost the possibilities for neuroprosthetics or brain-machines interfaces. While
several attempts have been made [24, 73], all the aforementioned bottlenecks (drifts, bursts, collisions,
scalability) are even more striking in an online context.

In addition to the increased number of electrodes and size of single files, the large availability and
distribution of HD probes is producing, worldwide, an unprecedented amount of data. Current solutions
utilized by single laboratories or institutions usually rely on local machines or institutional servers, which
might fall short in terms of both storage capacity and computational load, given the sharp increase of
number of electrodes and overall number of recordings. Additionally, there is still a large variation among
groups in the way that spike sorting is carried out, both in terms of the chosen software and custom
post-processing and manual curation steps. A possible solution forward is to move both data storage and
spike sorting fully remotely, on cloud computing services [1, 67]. A remote and centralized solution for spike
sorting could solve several issues that we have introduced so far. As new probes with even more electrodes are
developed and more and more recordings are generated by the neuroscience community, cloud-based
solutions (e.g. the DANDI archive https://gui.dandiarchive.org/#/ and the EBRAINS platform
https://ebrains.eu/) could provide on-demand storage as required and would prevent individual institutions
to constantly upgrade their servers and storage capabilities. In addition, when uploading data onto a remote
server, standardized file formats could be enforced, e.g. NWB [72, 85], NIX [53], and BIDS [27], and as a
by-product several standardized tools for data processing and visualization can be developed. Plus, data
sharing and reuse would be drastically facilitated. Leveraging cloud computing providers, we could move the
heavy computational burden of spike sorting remotely and use processing resources as needed. In this regard,
the containerization of spike sorting tools is already an important step toward the deployment of spike
sorting on the cloud. In addition, users could also benefit from efficient and cloud-based visualization tools
from standardized APIs (e.g. SpikeInterface), which would facilitate data exploration and reuse. Another
benefit of moving processing on the cloud is to allow a centralized and collaborative spike sorting
development and deployment, instead of the current individual state where many different groups are aiming
to develop and improve their own tools. Given the modular nature of the spike sorting processing, where
several well identified and circumscribed steps are needed to go from extracellular traces to spike trains, it is
very likely that different sorters are providing optimal solutions for different steps. Following this idea, the
SpikeInterface project has started to break down different sorters and re-implement them in a modular
fashion. By doing so, it calls upon the spike sorting developer community to collaborate in this effort and
collaborate to discuss, define, implement, and test different sorting components available from multiple
sorters6. In such a view, a modular and collaborative spike sorting development phase, where different steps
of the pipeline are implemented in a standardized, efficient, accessible, and continuously tested framework
by the entire spike sorting developer community, will represent a tangible progress in making spike sorting
tools more reliable, efficient, and trustworthy.

Data availability statement
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6 https://spikeinterface.readthedocs.io/en/latest/module_sorting_components.html.
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