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a b s t r a c t 

Machine learning is revolutionising medical image analysis, and clearly the future of the field lies in this 

direction. However, with increasing automation there is a danger of misunderstanding or misinterpreting 

models. In this paper, we expose an underlying bias in a commonly used publicly available brain tumour 

MRI dataset. We propose that this is due to implicit radiologist input in the selection of the 2D slices. 

Through several experiments we show how this bias allows us to achieve a high tumour classification 

accuracy, even with no information regarding the tumour itself. No other papers that use the dataset 

mention this bias. These findings demonstrate the importance of understanding machine learning models 

and their medical context, and the perils of not doing so. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The last 20 years have seen an explosion in the use of machine 

earning (ML) algorithms in the medical imaging domain. Mod- 

ls have been built to automate tasks across the gamut of clin- 

cal oncology, from tumour detection and segmentation to ther- 

py decisions ( Skourt et al., 2018 ; Giger, 2018 ; Esteva et al., 2017 ;

osny et al., 2018 ). In many cases these models are beginning to 

utperform human experts. With more data, higher quality images, 

nd more powerful computers, machine learning-based automation 

s predicted to fundamentally change the way clinical medicine op- 

rates ( Litjens et al., 2017 ; Hosny et al., 2018 ; Ghafoorian et al.,

017 ). 

However, we should proceed with caution. As models be- 

ome increasingly sophisticated and complex, they become in- 

reasingly difficult to interpret ( Hosny et al., 2019 ; Reyes et al., 

020 ; Oren et al., 2020 ). Blindly employing models can lead to er-

oneous results and false conclusions, highlighting the importance 

f domain-specific methodological knowledge ( Wen et al., 2020 ; 

arrett, 2019 ; Raimondi et al., 2021 ). As designers of models with 

otentially life-changing impacts on people’s lives, we need to be 

igilant of these issues. This means not only building a model with 

 good performance, but also understanding why the performance 

s good. 
∗ Corresponding author. 

E-mail address: wallisphd@gmail.com (D. Wallis). 
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One way a misunderstanding of data can bias a result is if there 

re spurious correlations in the training data, known as the Clever 

ans effect ( Pfungst, 1911 ). In Lapuschkin et al. (2019) this effect is

llustrated for several commonly used non-medical ML problems. 

n one example a neural network was trained to classify images 

into categories e.g. ‘person’, ‘train’, ‘car’, ‘horse’), but closer in- 

pection of the data revealed that all the ‘horse’ images had text 

n the corners. Saliency maps showed that the network was using 

his text, rather than the horses, to classify the images. Clearly the 

etwork would not generalise to images without this text present. 

ther studies have shown models that learnt to classify images 

ased on the backgrounds of images, rather than the objects them- 

elves. Zhu et al. (2017) found that a model trained with only 

ackground context could still achieve reasonable performance on 

n image classification task. Beery et al. (2018) showed that their 

odel was good at classifying objects in common contexts (e.g. 

 cow in an alpine pasture), but performed poorly when objects 

ere placed in unusual settings (e.g. a cow on a beach was labelled 

s ‘seahorse’). Several other papers give examples of networks tak- 

ng shortcuts to achieve high classification accuracy ( Geirhos et al., 

020 ; Heuer et al., 2016 ; Rosenfeld et al., 2018 ; Dawson et al.,

019 ). Similar effects have also been demonstrated in medical con- 

exts. In the KDD CUP breast cancer identification challenge, it was 

ound that the patient IDs (which had not been removed from the 

ata) were highly correlated with the malignancy of the patients’ 

umours ( Perlich et al., 2008 ). Raimondi et al. (2021) showed that 

any methods used to distinguish ‘driver’ mutations from ‘pas- 

enger’ mutations in cancer genome analysis use datasets with a 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Summary of published PubMed studies that cite the original article and use the dataset to build models. Any studies that used the dataset for classification with whole 

slice inputs will have been affected by the bias. 

Reference Task Description 

Cheng et al. (2015) Classification (segmented region) Original study. Used radiomic features and tested dilating the tumour region (to include 

surrounding tissue). Best results were obtained using some surrounding tissue 

Gu et al. (2021) Classification (whole slice) Used convolutional dictionary learning with local constraints. Ran tests on this dataset 

and a second brain MRI dataset, using whole slice inputs. Classification results will have 

been affected by the bias 

Gunasekara et al. (2021) Segmentation and classification Performed segmentation and classification on a subset of the images (using axial 

gliomas and meningiomas only). Classification results will have been affected by the bias 

Díaz-Pernas et al. (2021) Segmentation and classification Used a multi-scale CNN to both classify and segment the tumours. Classification results 

will have been affected by the bias 

Kutlu and Avci (2019) Classification (whole slice) Used a CNN for feature extraction from whole slices, discrete wavelet transforms for 

signal processing, and long short-term memory for signal classification. Classification 

results will have been affected by the bias 

c

c

b

m

c

N

h

1

a

t

t

m

S

m

M

1

m

t

o

e

t

i

a

c

g

t

b

fi

t

t

a

a

b

i

i

o

a

t

m

t

p

h

2

2

C

C

C

m

o

o

t

e

p

s

a

a

r  

F

i

e

w

s

2

l

i

T

G

e  

p

2

u

t

2

w

onstruction bias. This bias allows ML models to take a ‘short- 

ut’ and solve a much easier task. Building a dataset without this 

ias resulted in an 8–28 percentage point drop in the perfor- 

ance (in terms of area under the receiver operating characteristic 

urve). Several recent studies ( DeGrave et al., 2021 ; Maguolo and 

anni, 2021 ; López-Cabrera et al., 2021 ; Teixeira et al., 2021 ) 

ave shown that many datasets constructed to identify COVID- 

9 from X-ray images are biased, with positive and negative im- 

ges taken from different sources. DeGrave et al. (2021) showed 

hat ML models learnt to identify the sources of the images rather 

han COVID-relevant features. Performance was much worse when 

odels were tested on external test sets from different sources. 

aliency maps revealed that the models often focused on laterality 

arkers that originate during the radiograph acquisition process. 

aguolo and Nanni (2021) exposed a similar bias in some COVID- 

9 X-ray studies. They showed that a similar classification perfor- 

ance could be achieved placing large zero-intensity rectangles on 

he lung regions (thus training their model on only the outer parts 

f the images). Again, this demonstrated that the ML models were 

xploiting biases in the datasets to cheat, rather than truly learning 

o distinguish COVID-19 from non COVID-19 cases. 

In this paper, we demonstrate a Clever Hans effect affect- 

ng classification performance in a commonly used publicly avail- 

ble medical image dataset. The dataset consists of T1-weighted 

ontrast-enhanced MRI images with tumours segmented and cate- 

orised as one of three types (meningiomas, gliomas, and pituitary 

umours). Made available in 2015, the dataset was originally used 

y Cheng et al. (2015) to build a radiomics-based tumour classi- 

cation model. It has since been used in numerous publications 

o benchmark different machine learning, deep learning, segmen- 

ation, and classification models. Table 1 lists published PubMed 

rticles which use the dataset. In addition, the study is cited by 177 

rticles according to Google Scholar ( Google, 2021 ), with the num- 

er of citations increasing year on year since publication. Any stud- 

es that used the dataset to classify the tumours using whole slice 

nputs will have been affected by the bias. Some studies simultane- 

usly segmented and classified the tumours; whether these were 

ffected by the bias depends on the exact experimental setup. A 

horough investigation of all cited studies was performed and none 

entioned the bias. 

By running the experiments described below, we clearly show 

he source of the effect and its impact on classification models. In 

ublishing these results we hope to alert others to the dangers of 

idden data biases. 

. Material and methods 

.1. Dataset 

The data were acquired from Nanfang Hospital, Guangzhou, 

hina, and General Hospital, Tianjing Medical University, 

hina, from 2005 to 2010. The dataset was originally used in 
2 
heng et al. (2015) to automatically identify tumour type and after 

ade publicly available at [dataset]Jun Cheng (2017) . It consists 

f 2D T1-weighted contrast-enhanced MRI images containing one 

f three brain tumour types (meningiomas, gliomas, or pituitary 

umours). There are 233 cancer patients, but multiple images for 

ach patient, giving a total of 3064 images. In total, there are 82 

atients with meningiomas (708 slices), 89 with gliomas (1426 

lices), and 61 with pituitary tumours (930 slices). The images are 

 mixture of orientations (axial, coronal, and sagittal), and there 

re not the same number of images per patient. All images have a 

esolution of 512 × 512 pixels and a pixel size of 0.49 × 0.49 mm 

2 .

urther information such as scanner type and imaging protocol 

s not detailed. Tumours have been manually delineated by three 

xperienced radiologists, though it is not clear if this delineation 

as individual or consensus-based. Some example images are 

hown in Fig. 1 , and a full dataset breakdown is shown in Table 2 . 

.2. Preprocessing 

We ran several experiments to test for the presence of under- 

ying biases. Before running the experiments, we preprocessed the 

mages. Images were symmetrically cropped to 450 × 450 pixels. 

his removed some of the background space surrounding the head. 

iven that MRI intensity values are not absolute, we also rescaled 

ach image to between 0 and 10 0 0 using the 99 th percentile. These

reprocessing steps are consistent with other studies in Table 1 . 

.3. Feature set creation 

To test for the presence of a bias, we created sets of features 

sing six different preprocessing procedures as follows: 

1. Extracting radiomic features from the full 450 × 450 pixel slice 

without any tumour segmentation 

2. Extracting radiomic features from the segmented tumour region 

(as in conventional radiomic studies) 

3. Placing an 80 × 80 pixel square of intensity zero centred on the 

tumour (i.e. with its centre at the tumour centre of mass), then 

extracting radiomic features from the whole slice 

4. Thresholding the image by setting pixels less than 100 to zero 

and pixels greater than 100 to one. This left a binary image of 

the skull outline. Radiomic features were then extracted from 

this binary image (with two discretisation levels) 

5. Using only three features: the number of zero-intensity pixels 

(i.e. the size of the background region), the maximum intensity, 

and the orientation of the slice (sagittal, axial, or coronal) 

6. Combining the features from 1. and 2. 

Examples of these procedures are shown in Fig. 2 . Radiomic fea- 

ures were extracted using PyRadiomics ( van Griethuysen et al., 

017 ) with a fixed bin width of 25 (except for experiment 4, 

hich only had two intensity levels). Default PyRadiomics settings 
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Fig. 1. Examples of T1-weighted contrast-enhanced MRI images with the tumour segmentations in red. The three classes (meningiomas, gliomas, and pituitary tumours) are 

shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Examples of images used in the different experiments. The tumour outline is shown in red. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 2 

Dataset Summary. 

Tumour Type Number of Patients Number of Images MRI View Number of Images 

Meningioma 82 708 Axial 209 

Coronal 268 

Sagittal 231 

Glioma 89 1426 Axial 494 

Coronal 437 

Sagittal 495 

Pituitary 62 930 Axial 291 

Tumour Coronal 319 

Sagittal 320 

Total 233 3064 3064 

3 
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Table 3 

Accuracy and standard deviation for SVMs built 

using the different feature sets described in 2.3 . 

Preprocessing Procedure Accuracy 

1. Full 450 × 450 slice 0 . 86 ± 0 . 03 

2. Segmented tumour region 0 . 86 ± 0 . 03 

3. Occluded tumour region 0 . 87 ± 0 . 04 

4. Skull outline 0 . 74 ± 0 . 04 

5. Three features 0 . 77 ± 0 . 04 

6. Combining (1) and (2) 0 . 94 ± 0 . 02 
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ere used in all cases. We extracted first-order, grey level cooc- 

urence matrix (GLCM), neighbouring grey tone difference matrix 

NGTDM), grey level run length matrix (GLRLM), grey level size 

one matrix (GLSZM), grey level dependence matrix (GLDM), and 

rst-order features based on gradient, exponential, and wavelet fil- 

ers (with coiflet 1 wavelets and high and low-pass filters in both 

imensions). For experiment 2, we also extracted shape-based fea- 

ures. This gave a total of 229 features per image (239 for exper- 

ment 2 as this also included shape-based features). See the Sup- 

lementary Material for full details of the radiomic features used. 

.4. Training and evaluation of the ML model 

We then built support vector machines (SVMs) to compare the 

erformances of these feature sets. The experimental setup was 

dentical in each case. We used a linear kernel with a C-value of 

 and a one-vs-all setup, balancing class weights by their frequen- 

ies in the training set. Excepting experiment 5, all feature sets 

ontained a large number of features. We reduced the number of 

eatures using a two-stage feature reduction process; the 140 best 

eatures were chosen using a univariate ANOVA F-test, then any 

eatures above a correlation threshold of 0.95 were removed (for 

wo correlated features the mean absolute correlation of each fea- 

ure was calculated and the feature with the largest mean absolute 

orrelation was removed). Before analysis, features were scaled to 

ave zero mean and unit variance. For both of these steps the 

raining data was used for calibration. 

The dataset was split into 190 patients in the training set and 

3 patients in the validation set. The selection of training and 

alidation set was done patient-by-patient (rather than image-by- 

mage) so that images from the same patient were not present in 

he training and validation sets. Performance was evaluated using 

 200-iteration random holdout method, with the training and val- 

dation sets selected randomly each time. The accuracy and its as- 

ociated standard deviation were calculated by averaging the per- 

ormances obtained on the validation sets during this process. 

.5. Model interpretation 

We then wanted to explain the performance of models built us- 

ng radiomic features extracted from full slices (experiment 1 in 

.3 ). To do this, we found the most important radiomic features for 

ach of the 200 models using the SVM feature coefficients (each 

eature had three coefficients corresponding to the three classes, 

e ranked them using the mean of these three coefficients). By 

xamining these, we could determine which features within the 

mages were being used for classification and whether these fea- 

ures were related to the tumours or to the bias. 

. Results 

.1. Performance of different feature sets 

The performances of the SVMs built using the different features 

ets are listed in Table 3 . 

.2. Model interpretation 

The two most important features from experiment 1’s models 

ere the interquartile range of low/high pass wavelet-transformed 

mages and the robust mean absolute deviation of high/low pass 

avelet-transformed images (the robust mean absolute deviation 

s defined as the mean distance of all intensity values from the 

ean value calculated on pixels between the 10 th and 90 th per- 

entile), with one of these features being the most important in 

46 out of 200 random holdout models. Here and in Figs. 3 and 4 ,
4 
e denote a wavelet-transformed image created using a low-pass 

lter in the x-dimension and a high-pass filter in the y-dimension 

s low/high and vice versa. Because the dataset consists of slices 

f different orientations, these do not always refer to the same di- 

ension on the MRI scan. Rather, they just refer to the horizontal 

r vertical dimensions of the images. 

To understand these wavelet-based features, in Fig. 3 we plotted 

istograms of the pixel intensities of wavelet-transformed images 

cross all patients for each class separately. In Fig. 4 , we plotted 

ome example wavelet-transformed images to link the histogram 

istributions to physical characteristics of the MRI scans. The in- 

ensities have been cropped at -20 0/+20 0 to show the extreme val- 

es more clearly. 

. Discussion 

Experiment 1 (extracting radiomic features from whole slices) 

chieved a comparable accuracy to experiment 2 (using a pre- 

ise tumour segmentation). Given these two results, we could con- 

lude that the radiomic features used in experiment 1 were capa- 

le of extracting useful information from the tumour, even with 

his whole slice view. However, we thought this initial hypothesis 

nlikely. The tumours were small compared to the slice size, and 

here is a lot of heterogeneity in the non-tumour regions which 

e thought would obscure any tumour-based differences. In ex- 

eriment 3, we achieved an accuracy similar to that of experiment 

 ( 0 . 87 ± 0 . 04 vs 0 . 86 ± 0 . 03 ) while occluding the tumour with a

ero-intensity square. Evidently the tumour itself was not essen- 

ial for classification. We may still hypothesise that there was suffi- 

ient information in the surrounding (non-occluded) tissue to clas- 

ify the images, or that the occluded region itself was being used 

y the radiomic features to locate the tumour and therefore aid 

n classification. In experiment 4, we erased all tissue-based infor- 

ation in the brain, leaving just the outline of the skull. We were 

till able to achieve a high classification accuracy ( 0 . 74 ± 0 . 04 ). This

esult clearly shows that there is another force at play. The three 

ypes of brain tumour classified here tend to grow in specific areas 

f the brain (meningiomas on membranes surrounding the brain 

nd spinal chord, gliomas in the cerebrum or cerebellum, and pitu- 

tary tumours on the pituitary gland ( Johns Hopkins Medicine (a) ; 

ohns Hopkins Medicine (b) ; Johns Hopkins Medicine (c) )), so po- 

itional information and information outside the tumour are use- 

ul for classification. However, with 2D slices this information is 

mplicitly contained within the slice, which has been preselected 

y a radiologist because it contains the tumour. The position and 

rientation of the slice can therefore be used as a proxy for tu- 

our type (the Clever Hans effect). There was still a performance 

ifference between experiments 1 and 4, but this is likely due 

o the extra information contained in experiment 1’s full images 

such as the amount of high-intensity bone) which allows more 

recise positioning and orientation of the slice. In experiment 5, 

e used three features designed to position and orientate the slice 

ithout any brain tissue information (slice orientation, number of 

ero-intensity pixels, and maximum intensity). The slice orienta- 
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Fig. 3. Histograms of the intensity values of high/low pass and low/high pass wavelet-transformed images for all patients, separated by class. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Examples of high/low pass and low/high pass wavelet-transformed images for three scans. The tumour outline is shown in red on the original image. The scales have 

been cropped at -20 0/+20 0 on the wavelet-transformed images to better highlight high intensity regions. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

5 
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ion gave the type of slice (sagittal, axial, or coronal). To find where 

he slice was located within the image (i.e. fix the final coordi- 

ate), we used the number of zero-intensity pixels and the max- 

mum intensity in the image. The number of zero-intensity pixels 

ounted the number of pixels outside the skull. This is related to 

he size of the skull and therefore the position of the slice (an ax- 

al slice near the top of a scan will not contain much of the head

o will have a large number of zero-intensity pixels). The maxi- 

um intensity of each image was in the bone in all cases (never 

n the tumour) and helped further fix the position of the slice, as 

ifferent slice positions will have different types/densities of bone 

eterson and Dechow, 2003 . Evidently there is some ambiguity us- 

ng these final two features to locate a slice (there will be several 

lice positions with the same number of zero-intensity pixels), but 

e still achieved an accuracy of 0 . 77 ± 0 . 04 . We also tried using

he mean coordinate of the tumour to position the slice, but this 

id not work, probably because the patients were not all in the ex- 

ct same position and their heads were not the same size. Finally, 

n experiment 6 we combined the feature sets from experiments 1 

nd 2. This gave a higher accuracy, again suggesting that the fea- 

ures in experiment 1 are not based on the tumour itself. 

The results in 3.2 help us to understand the high accuracy of 

xperiment 1. In Fig. 3 , we see that wavelet-transformed images 

f the different classes have different pixel value distributions, es- 

ecially at the more extreme (high and low) intensities. The two 

ost important features used in experiment 1’s models, low/high 

ass interquartile range and high/low pass robust mean absolute 

eviation, both depend on the intensity range of pixel values, cor- 

oborating what we see in the histograms. However, looking at the 

xample wavelet-transformed images ( Fig. 4 ), we see that the tu- 

our is not highlighted in any of the cases. Instead, the extreme 

alues mostly highlight the skull outline (this is unsurprising, as 

avelet transformations highlight edges in images). This is further 

vidence that the model in experiment 1 is using this skull outline 

which is indicative of slice position), rather than tumour-based in- 

ormation, to classify the images. 

These results demonstrate a clear bias in this dataset. Quoting 

rom the original study: "In clinical settings, usually only a certain 

umber of slices of brain contrast-enhanced MRI (CE-MRI) with a 

arge slice gap are acquired and available. Therefore, the develop- 

ent of a 2D image-based CBIR system for clinical applications is 

ore practical ... Representative slices that have large lesion sizes 

re selected to construct the dataset”. The selection of these repre- 

entative slices is a human-introduced prior that ML models can ex- 

loit. The original study was radiomics-based and used segmented 

umour regions, meaning the bias did not invalidate the results. 

owever, many of the subsequent deep learning-based publica- 

ions classified the tumours using whole-slice images directly in- 

ut into CNNs. None made reference to this bias. This is probably 

ecause CNNs are routinely used without segmentation, so suspi- 

ions were not raised. Using radiomic features, as in our exper- 

ments, the problem is much clearer. We cannot know whether 

he CNNs in these studies truly used information within the tu- 

our or the positional and orientational information hard-coded 

nto the images. They may have used a combination of the two. To 

tate that these models are automatically classifying the tumours 

s therefore untrue. The slices have been manually preselected by 

 radiologist, and this preselection is already sufficient to classify 

he images correctly in most cases. 

These findings do not mean that this dataset is of no use. As 

entioned, many studies used the dataset for segmentation tasks 

r classified the tumours using only the segmented regions. These 

nvestigations are still valid. In the future we expect that 3D anal- 

ses, which can exploit full volumetric information, will result in 

etter performing models. However, a lot of studies are still in 2D. 

s evidenced by our literature search, a lot of groups are actively 
6 
orking on this dataset. These groups should take care to not bias 

heir findings. 

There are some limitations to our study. We optimised our SVM 

y systematically testing different kernels and C-values. Radial ba- 

is function and polynomial kernels with C-values ranging from 

.1 to 5 were tested, but these did not significantly improve the 

esults. We also systematically tested different feature reduction 

-test and correlation thresholds, optimising the parameters for 

ach experiment separately using the training data. The optimum 

arameters were the same for each experiment. Our setup may 

till not be optimal; there are of course innumerable different ML 

nd feature reduction methods ( Fatima and Pasha, 2017 ; Cai et al., 

018 ). By using the same setup for each experiment we tried to en- 

ure that this choice did not bias the results. Additionally, as with 

ny cross-validation or holdout-based method, the standard devia- 

ion may be biased ( Bengio and Grandvalet, 2004 ). 

. Conclusions 

To conclude, this study exposes a bias in a commonly used pub- 

icly available dataset. This work demonstrates why it is important 

o understand ML models, not just blindly deploy them. We hope 

hat this work will alert others to the dangers of black box auto- 

ated models. 
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