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ABSTRACT 

Positron emission tomography (PET) radiomics applied to oncology allows the measurement of intra-

tumoral heterogeneity. This quantification can be affected by image protocols hence there is an 

increased interest in understanding how radiomic expression on PET images is affected by different 

imaging conditions. To address that, this study explores how radiomic features are affected by changes 

in 18F-FDG uptake time, image reconstruction, lesion delineation, and radiomics binning settings. 

Methods: Ten non-small cell lung cancer (NSCLC) patients underwent 18F-FDG PET scans on two 

consecutive days. On each day, scans were obtained at 60min and 90min post-injection and 

reconstructed following EARL version 1 (EARL1) and with point-spread-function resolution modelling 

(PSF-EARL2). Lesions were delineated using thresholds at SUV=4.0, 40% of SUVmax, and with a 

contrast-based isocontour. PET image intensity was discretized with both fixed bin width (FBW) and 

fixed bin number (FBN) before the calculation of the radiomic features. Repeatability of features was 

measured with intraclass correlation (ICC), and the change in feature value over time was calculated as 

a function of its repeatability. Features were then classified on use-case scenarios based on their 

repeatability and susceptibility to tracer uptake time. Results: With PSF-EARL2 reconstruction, 40% 

of SUVmax lesion delineation, and FBW intensity discretization, most features (94%) were repeatable at 

both uptake times (ICC>0.9), 39% being classified for dual-time-point use-case for being sensitive to 

changes in uptake time, 39% were classified for cross-sectional studies with unclear dependency on 

time, 20% classified for cross-sectional use while being robust to tracer uptake time changes, and 6% 

were discarded for poor repeatability. EARL1 images had one less repeatable feature than PSF-EARL2 

(Neighborhood Gray-Level Different Matrix Coarseness), the contrast-based delineation had the 

poorest repeatability of the delineation methods with 45% features being discarded, and FBN resulted 

in lower repeatability than FBW (45% and 6% features were discarded, respectively). Conclusion: 

Repeatability was maximized with PSF-EARL2 reconstruction, lesion delineation at 40% of SUVmax, 

and FBW intensity discretization. Based on their susceptibility to tracer uptake time, radiomic features 

were classified into specific NSCLC PET radiomics use-cases. 

 



4 
 

Key words: PET; Radiomics; Texture analysis; Repeatability; Dual-Time-Point 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

INTRODUCTION 

18F-2-Fluoro-2-deoxy-2-D-glucose (18F-FDG) positron emission tomography/computed tomography 

(PET/CT) is an important technique for staging and treatment response evaluation of patients with non-

small cell lung cancer (NSCLC). This evaluation can be achieved either visually or using standardized 

uptake values (SUV) and total lesion glycolysis measurements (1–5). However, these semi-quantitative 

approaches ignore possible tracer uptake heterogeneity within the tumor (6), overlooking potentially 

useful information. To address that, the field of radiomics measures textural information available in 

medical images, resulting in a more complete phenotyping of the tumor (7–9). 

PET radiomics in oncology allows the extraction of several features characterizing tumor tracer 

uptake, shape, and intra-tumoral heterogeneity (10–13). This approach showed promising results, 

including lesion histological sub-type identification, aiding automated lesion delineation, and disease-

free survival prediction (14–18). However, radiomic features are sensitive to several image settings, 

including PET acquisition and reconstruction, image noise, lesion segmentation method, and signal 

intensity discretization (11,19–26). This leads to difficulties in multi-center studies, possibly explaining 

the poor reproducibility of results that has raised skepticism on the usefulness of radiomics (9,19,27–

31). Furthermore, these issues are amplified by the lack of negative publications on the field (32). 

Strategies have been developed to mitigate this variability, improving post-reconstruction 

harmonization of textural features (33–35). 

One aspect of 18F-FDG PET radiomics that has not been extensively explored is its uptake time 

dependence. The time between tracer injection and image acquisition alters the uptake in metabolically 

active regions where 18F-FDG gradually accumulates, affecting SUV-related metrics and their 

repeatability (36–38). 18F-FDG PET/CT textural analysis from dual-time-point static scans has been 

used to differentiate benign and malignant pulmonary lesions despite features presenting a wide range 

of accuracy (39,40). Time-related PET radiomics have been also explored as dynamic features (41). 

However, neither of these studies assessed how tracer uptake time could influence textural features 

repeatability. 
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Our hypothesis is that different features have different dependence on tracer uptake time and 

that this dependence may be influenced by image settings. Therefore, we evaluate how radiomic 

features (SUV-based and textural) are affected by tracer uptake time and whether its effects are smaller 

or larger than feature repeatability. Based on each feature’s repeatability and dependence on tracer 

uptake time, features are classified for cross-sectional or single-injection dual-time-point use-cases. 

Several image settings are considered, including PET/CT image reconstruction algorithms, lesion 

delineation methods, and intensity discretization strategies. 

 

MATERIALS AND METHODS 

Dataset 

Ten patients with confirmed stage IIIB or IV NSCLC underwent double baseline 18F-FDG 

PET/CT scans on a Gemini TF scanner (Philips Healthcare, Cleveland, OH, USA), as previously 

described (5,20). Patients fasted for six hours or more, then a low-dose CT was acquired for attenuation 

correction followed by a whole-body 18F-FDG PET scan 60 min after tracer injection. Thirty minutes 

later, a second whole-body PET and low-dose CT were performed. This procedure was repeated within 

three days of the first scan for test-retest measurements. All PET data were normalized and corrected 

for scatter and random events, dead time, attenuation, and decay. Two reconstruction protocols were 

used, one following the EARL version 1 guidelines (EARL1) and another with point-spread-function 

resolution modelling (PSF-EARL2) (42–44). PET images had a final resolution of 144×144×254 with 

a voxel size of 4×4×4mm³. On the first day of scans, the average injected activity was 248MBq (range: 

194–377MBq) and was 238MBq (192–392MBq) on the second day. The average post-injection start 

times on the first day were 61min (59–67min) and 92min (90–97min), and 60min (60–63min) and 

90min (90–95min) on the second day. All patients gave written informed consent before enrolment and 

the study was approved by the Medical Ethics Review Committee of the VU University Medical Center 

(Dutch trial register [trialregister.nl] NTR3508). 

 



7 
 

Radiomic Feature Extraction 

Lesion delineation and radiomic feature extraction were performed using LIFEx (version 6.30) 

(45). All lesions were included for the analysis, namely the primary and metastatic lesions (intra- and 

extra-thoracic), yielding 1 to 10 lesions as a function of the patient. Lesions were delineated on the PSF-

EARL2 PET images using an isocontour at 40% of each lesion’s SUVmax, then radiomic features were 

extracted with intensity discretization using a fixed bin width (FBW) of 0.25g/mL ranging from 0–

60g/mL of each lesion (the 60g/mL upper bound was higher than the SUVmax of all lesions). This 

combination of image and processing settings was considered the reference settings for radiomic 

analysis as they were previously shown to optimize test-retest (19,36,46). Other image settings were 

explored, including lesion delineation and feature extraction from EARL1 images, lesion delineations 

with a fixed isocontour at an SUV threshold of 4.0 (SUV4) and a contrast-based isocontour at 

0.5×SUVpeak + SUVbackground (Contrast; SUVbackground was the mean uptake in a shell located 2cm away 

from the volume defined at 70% of SUVmax, excluding voxels with SUV>4), and intensity discretization 

with a fixed bin number (FBN) of 64 bins in a variable range of SUVmin–SUVmax. 

In total, 49 radiomic features from seven classes were extracted (full list given in Supplemental 

Table 1): six conventional PET metrics (Conventional), five shape-based (Shape), six histogram-based 

(Histogram), seven grey-level co-occurrence matrix (GLCM), eleven grey-level run-length matrix 

(GLRLM), eleven grey-level zone-length matrix (GLZLM), and three neighborhood grey-level 

difference matrix (NGLDM). Features were obtained only for lesions that included at least 64 voxels. 

LIFEx’s feature definition follows the IBSI standard results (47,48). 

 

Data Analysis 

Features calculated from images obtained at different time-points on the first day of scans were 

statistically compared using pairwise Wilcoxon signed-rank tests. P-values below 0.05 were considered 

statistically significant after Benjamini-Hochberg false discovery rate correction. Change in feature 
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value was measured as a function of tracer uptake time by using its test-retest at 60min p.i. as baseline 

(analogous to a Z-score): 

𝑍 =
(RF!" − RF#") − 𝑚𝑒𝑎𝑛(TRT#")

𝑠𝑑(TRT#")
 

RF60 and RF90 represent the radiomic feature values at 60min and 90min p.i., respectively. TRT60 is the 

test-retest difference between the feature values at the second- and first-day scans (at 60min p.i.). 

Therefore, the effects of tracer uptake time on radiomic features were contextualized with respect to its 

repeatability: Z-scores lower than 1 indicate changes with uptake time smaller than test-retest variability 

and Z-scores higher than 1 show a change larger than their repeatability.  

A feature was considered repeatable if the intraclass correlation coefficient (ICC; agreement 

type, two-way mixed-effects model, single rating) between test-retest scans (same reconstruction, 

delineation method and discretization) was higher than 0.9 at both time-points. A feature was defined 

as robust against change in tracer uptake time if it was not significantly affected by tracer uptake time 

after false discovery rate correction and if its value changed from 60-min to 90-min less than it changed 

from one day to another (i.e. mean Z-score < 1). Finally, features were assigned to a use-case based on 

their repeatability and susceptibility to tracer uptake time (Figure 1): features that were repeatable and 

susceptible to tracer uptake time were classified for Dual-Time-Point (DTP) studies; repeatable features 

with uncertain response to tracer uptake time were classified as Cross-Sectional level 1 (CS1); 

repeatable features that were robust to tracer uptake time were classified as Cross-Sectional level 2 

(CS2); features with poor repeatability at any time-point were Discarded. Statistical analysis was 

carried using R version 4.0.4. 

 

RESULTS 

Feature Dependence on Uptake Time 

All Conventional features were significantly affected by tracer uptake interval and increased in 

value with increased uptake time (Figure 2, positive mean Z-score). Shape features were not 
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significantly different between the two tracer uptake times. Half of the Histogram features were affected 

by uptake time (note that Histogram Entropy log10 and Histogram Entropy log2 are equivalent after 

re-scaling with Z-scores). 4/7 GLCM features significantly increased over time and only one decreased. 

One GLRLM, two GLZLM and two NGLDM features were not statistically significantly dependent on 

tracer uptake time (Figure 2). The features of each class with the highest Z-score and statistically 

significant dependent on tracer uptake time were (p<0.05) Conventional SUVmean (average Z-score and 

standard deviation=1.36±0.98), Histogram Entropy (1.04±0.73), GLCM Dissimilarity (1.35±1.29), 

GLRLM LRHGE (1.38±1.69), GLZLM SZLGE (-1.24±1.86), and NGLDM Contrast (1.28±2.10). 

 

Radiomic Feature Use-Case Classification 

94% (46/49) of the features had reliable repeatability (ICC>0.9, Supplemental Figure 1). In 

total, 35% (17/49) of features were classified as DTP, 39% (19/49) as CS1, 20% (10/49) as CS2, and 

6% (3/49) were discarded (Supplemental Figure 1). No Conventional feature was classified for CS2 

use-case, no Shape feature was classified for dual-time-point use, and no NGLDM feature was classified 

for CS1. The remaining feature classes had mixed use-case classification (Figure 3). 

 

Influence of Image Settings on Repeatability and Use-Case Classification 

The reference settings (PSF-EARL2 reconstruction, 40% of SUVmax delineation and fixed bin 

width discretization) had less discarded features than other image settings (Figure 4). With EARL1 (and 

recommended delineation and discretization), images had one less repeatable feature (NGLDM 

Coarseness) than PSF-EARL2 (Figure 4). With PSF-EARL2 and fixed bin width discretization, the 

Contrast-based lesion delineation method had poorer repeatability than the other methods and SUV4 

had fewer repeatable features than 40% of SUVmax (22, 6, and 3 features discarded, respectively). Lastly, 

FBN had considerably lower repeatability than FBW (22 and 3 discarded features with recommended 

reconstruction and delineation, respectively; Supplemental Figure 2). 
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Using the reference delineation and discretization, EARL1 had no Conventional feature 

classified for dual-time-point use-case (Figure 4; Supplemental Figure 3). Histogram features were only 

classified for CS1 use-case (or were discarded) while all Shape features were classified for CS2. In 

total, 8% (4/49) features had dual-time-point classification, 67% (33/49) had CS1, 16% (8/49) had CS2, 

and 8% (4/49) were discarded with EARL1 reconstruction when using the reference delineation and 

discretization. 

Despite using the reference reconstruction and discretization, the contrast-based approach 

resulted in 45% (22/49) of features being discarded (Figure 4; Supplemental Figure 3). With SUV4, 

12% (6/49) features were discarded, and all repeatable Conventional features had dual-time-point 

classification; other feature classes had mixed use-case classifications. 

Using FBN for discretization resulted in different use-case classifications as compared to FBW, 

even when both used the reference reconstruction and delineation methods (Figure 4). The exceptions 

to that were the Conventional and Shape features since those are not dependent on the image intensity 

discretization (Supplemental Figure 3). With PSF-EARL2, 40% of SUVmax and a fixed bin number, 

only one grey-level-based feature was classified for CS1: GLRLM RLNU. Furthermore, all GLCM and 

NGLDM features were robust to tracer uptake time with a fixed bin number discretization (CS2 use-

case) and all Histogram features were Discarded (Figure 4). 

 

DISCUSSION 

This study demonstrated that for PET image reconstructed with PSF-EARL2, lesion delineation 

with 40% of SUVmax and intensity discretization using fixed bin width, most (94%) traditional and grey-

level-based features were repeatable at both 60 min and 90 min p.i. scans. From the radiomic features 

assessed, 35% were repeatable and able to detect a change as a function of uptake time (DTP), 39% 

were repeatable but had an unclear dependency on uptake time (CS1), 20% were repeatable and robust 

against tracer uptake time changes (CS2), and 6% were not repeatable (Discarded). Additionally, 

analyses performed on PET images reconstructed using EARL1, lesion delineation using a contrast-
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based approach or a fixed threshold method, and intensity discretization using a fixed number of bins 

decreased repeatability and led to different use-case classification of radiomic features.  

Overall, more features significantly increased (22/49) with time than decreased (12/49), as 

found previously (49). Conventional features increased over time, as expected (50,51), and Shape 

features slightly decreased in the delayed PET scan. This decrease in volume due to a higher threshold 

for lesion delineation (at 40% of SUVmax) agrees with the lower metabolic tumor volume of breast 

cancer for delayed PET scans (52). The statistically significant Histogram features affected by tracer 

uptake time were Energy (decreased) and Entropy (increased). The first is related to the uniformity of 

the distribution and the second to its randomness, therefore reflecting an increase in tumor heterogeneity 

at delayed 18F-FDG PET scans (52). Yet, these features were not significantly affected by uptake time 

on peripheral nerve sheath tumors with relatively low 18F-FDG uptake (49), emphasizing that translation 

of radiomic results between different tumor types must be carried with caution even with first-order 

features. 

The increase of GLRLM RP, GLZLM ZP, and NGLDM Contrast over time reflects an increased 

heterogeneity, as RP and ZP are low for highly uniform VOIs (47) and Contrast is related to the intensity 

difference between neighboring regions. However, there was a decrease in GLRLM and GLZLM non-

uniformity, which suggests a reduction in heterogeneity over time. These non-uniformity features have 

been previously reported as being dependent on time (49,52), but with a small effect size and a direction 

of change that was not uniform across studies. Therefore, more features suggest an increase in tumor 

heterogeneity over time than decrease, agreeing with previous findings for advanced breast cancer (52) 

but disagreeing with peripheral nerve sheath tumors results (49). This incompatibility may come from 

the tracer uptake levels in the tumors. The present study and Garcia-Vicente et al. (52) assessed tumor 

with relatively high 18F-FDG uptake and found increasing heterogeneity over time, while Lovat et al. 

(49) studied low tracer uptake lesions. 

Radiomic features classified for CS1 use-case were repeatable at both tracer uptake times but 

did not have any clear relationship with tracer uptake time, i.e., were neither robust nor sensitive. These 

features may be suitable for cross-sectional studies if all images are acquired with similar post-injection 
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times. The dependence of the CS1 features on time could explain some of their variability and range 

previously found on lung cancer assessment (15,25,46). Other repeatable features were robust against 

changes in tracer uptake time (CS2) and are recommended for studies with inconsistent post-injection 

scanning time. In contrast, repeatable features statistically significantly and substantially affected by 

tracer uptake time were classified for dual-time-point use-case. Like CS1 features, dual-time-point 

features may be used on images acquired with similar tracer uptake time (e.g., SUVmean), but can also 

measure the effect of time on feature values. Previous studies have reported a possible added benefit of 

a dual-time-point scanning protocol for differentiation between benign and malignant pulmonary 

lesions with textural features (39,40) and for breast cancer intra-tumoral heterogeneity assessment (52). 

Unfortunately, given the different nature of the lesions and analysis settings in those previous studies, 

it is not possible to directly compare the radiomic features found useful by these authors with the ones 

we identified as appropriate for dual-time-point studies.  

As shown previously (19), EARL1 reconstructions resulted in worse repeatability than PSF-

EARL2. Additionally, PSF-EARL2 reconstructions also display higher heterogeneity (20) and are 

recommended for textural analysis. Concerning the lesion delineation method, a fixed isocontour lesion 

delineation (SUV4) yielded poorer repeatability than an adaptive threshold based on 40% of SUVmax as 

expected from the literature (36). The contrast-based delineation had the poorest repeatability of all 

methods and is thus not recommended for radiomics. Furthermore, previous findings that an FBW 

intensity discretization has a superior repeatability for PET radiomics than FBN were reproduced 

(19,46,47). For historical cohorts where only EARL1 reconstruction is available, few features are viable 

for dual-time-point studies (Figure 4). With lesion delineation at 40% of SUVmax and discretization with 

FBW, EARL1 protocol still provides several repeatable radiomic features. 

The analysis of data from a single scanner vendor and the inclusion of a single tumor type 

(NSCLC, including intra- and extra-thoracic lesions), especially given that features have different 

expression for different cancer types, are some limitations of our study and multi-center studies are 

needed to verify our findings. Furthermore, lesion delineation is affected by differences in voxel size, 

which impacts radiomic feature values, but not necessarily the use-case classification of features, 
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although this would need to be explored. Data from static scans 30min apart was evaluated. 

Nevertheless, it is possible that additional radiomic information could be obtained from scans acquired 

further apart in uptake time. Finally, several features were analyzed under different image conditions 

on only 10 subjects. This study may thus be subject to type 1 errors although a false discovery rate 

correction was applied to the statistical analysis. 

In summary, EARL1 reconstruction led to fewer features being classified for dual-time-point 

use-case than PSF-EARL2. Textural features were not robust against changes in tracer uptake interval 

when SUV4 was used for lesion delineation, showing that for NSCLC radiomics, this method should 

only be applied to PET images acquired with a similar uptake time. Furthermore, most features were 

discarded when using the contrast-based delineation method or the FBN intensity discretization and 

their use is not recommended for NSCLC 18F-FDG PET radiomic studies. 

 

CONCLUSION 

This study demonstrated that PET radiomics can be repeatable, summarized the features’ 

susceptibility to post-injection PET scanning time, and classified the features into reliable use-cases for 

NSCLC radiomics: dual-time-point and cross-sectional studies. Repeatability and use-case of radiomic 

features depended on PET image reconstruction, lesion delineation and intensity discretization, and 

recommendations were provided accordingly. 

 

KEY POINTS 

Question: Is the change of radiomic features with 18F-FDG uptake time larger than their repeatability 

and can that be used for temporal textural analysis? 

Pertinent findings: PET image reconstruction with PSF modelling, lesion delineation at 40% of 

SUVmax and intensity discretization with fixed bin width resulted in repeatable radiomic features at 
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60min and 90min post-injection scans and provided reliable information for cross-sectional and dual-

time-point studies. 

Implications for patient care: Radiomic features were identified and classified for potential use-cases in 

cross-sectional and dual-time-point protocols, providing reliable information about tumor heterogeneity 

for non-small cell lung cancer assessment. 
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Figures 

 

 

Figure 1: Flow chart for use-case classification of radiomic features. TRT: test-retest, ICC: intraclass correlation 

coefficient. 
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Figure 2: Effect of tracer uptake time on radiomic features. Left: distribution of Z-scores for each feature. Z-

scores were calculated using the test-retest at 60 min post-injection scan as the baseline. Right: mean Z-score of 

each feature (dot indicates statistical significance). Analysis of images with reference settings. 
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Figure 3: Percentage of radiomic features with each use-case classification for each feature class. Classifications 

are: Cross-Sectional level 1 (CS1), Dual-Time-Point (DTP), Cross-Sectional level 2 (CS2), and Discarded. 

Analysis of images with reference settings. 
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Figure 4: Percentage of radiomic features with each use-case classification for each feature class in all image 

settings configurations. Columns of panels show different lesion delineation methods and rows show different 

image reconstructions and intensity discretization strategies. Classifications are: Cross-Sectional level 1 (CS1), 

Dual-Time-Point (DTP), Cross-Sectional level 2 (CS2), and Discarded. Analysis of images with reference settings 

are shown in the top left. 


