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Abstract
Objective. In clinical positron emission tomography (PET) imaging, quantification of radiotracer
uptake in tumours is often performed using semi-quantitativemeasurements such as the standardised
uptake value (SUV). For small objects, the accuracy of SUV estimates is limited by the noise properties
of PET images and the partial volume effect. There is need formethods that providemore accurate
and reproducible quantification of radiotracer uptake.Approach. In this work, we present a deep
learning approachwith the aimof improving quantification of lung tumour radiotracer uptake and
tumour shape definition. A set of simulated tumours, assignedwith ‘ground truth’ radiotracer
distributions, are used to generate realistic PET rawdatawhich are then reconstructed into PET
images. In this work, the ground truth images are generated by placing simulated tumours
characterised by different sizes and activity distributions in the left lung of an anthropomorphic
phantom. These images are then used as input to an analytical simulator to simulate realistic rawPET
data. The PET images reconstructed from the simulated raw data and the corresponding ground truth
images are used to train a 3D convolutional neural network.Results.When tested on an unseen set of
reconstructed PETphantom images, the network yields improved estimates of the corresponding
ground truth. The same network is then applied to reconstructed PETdata generatedwith different
point spread functions. Overall the network is able to recover better defined tumour shapes and
improved estimates of tumourmaximumandmedian activities. Significance.Our results suggest that
the proposed approach, trained on data simulatedwith one scanner geometry, has the potential to
restore PETdata acquiredwith different scanners.

Introduction

Positron emission tomography (PET) is an imagingmodality which is extensively used in oncology to detect and
stage tumours, and tomonitor response to treatment. In clinical routine, image interpretation is usually
performed by visual inspection of PET images, which leads to inter- and intra-observer variability. Although in
many cases visual assessmentmay be sufficient,more challenging tasks such as the evaluation of the response to
therapy of solid tumours require some formof quantification (Boellaard et al 2004). In PET, uptake
quantification is usually performed using semi-quantitativemeasurements of tumour radiotracer uptake, such
as the standardised uptake value (SUV). The SUV is defined as the ratio of the radioactivity concentration in a
region of interest (ROI) to the average radioactivity concentration in thewhole body and can be calculated as
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follows:

SUV
Activity Concentration kBq ml

Injected Activity MBq Body Weight kg
. 1ROI

1

=
-( )

( ) ( )
( )

Usually a normalisation by amass density of 1 (g ml−1) is assumed, and SUV is presented as a dimensionless
metric. Different SUVmetrics, such as SUVmax, SUVmean and SUVpeak can be defined. These semi-quantitative
metrics are affected by the noise properties of PET images aswell as partial volume effects (PVE), which
compromise the accuracy and reproducibility of themeasurements (Boellaard et al 2004, Zaidi and
Karakatsanis 2017). The PVE,which results from the poor spatial resolution of PET scanners and from image
sampling, degrades the quantitative accuracy of PET images and it can result in large biases onmeasures of tracer
uptake in small tumours (Soret et al 2007, Cysouw et al 2017).Most commonly SUVmax, which is calculated
using themost intense tumour voxel within the ROI, is reported. SUVmax is widely used as it is user-
independent, but it is also affected by noise. Ametric that is less dependent on noise is SUVmean, but its
disadvantage is that it depends on the delineation of the volume of interest (VOI) inwhich themeasurement is
performed. SUVpeakmeasures the average activity concentrationwithin aVOI. Various definitions of SUVpeak

using different VOI shapes, sizes and locations can be found in literature (Vanderhoek et al 2012). In this paper,
themaximumSUVpeak valuemeasured in a 1 cm3 spherical VOIwithin the tumour is reported. SUVpeak is less
affected by image noise than SUVmax, but it presents some issues when applied to small tumours, especially if
they are smaller than theVOI inwhich the peak ismeasured.

In this paper, PET images are reconstructed using the ordered subsets expectationmaximisation (OSEM)
algorithm. To improve PET image quality amodel of the system resolution can be integrated in the
reconstruction algorithm. Resolutionmodelling typically results in enhanced images where small lesions and
narrow structures are characterised by a better contrast. Although resolutionmodelling can significantly
improve image resolution and contrast it can also introduce artefacts near sharp edges in the PET image. These
artefacts resemble the familiar Gibbs artefact and can lead to overestimation of quantitative indices—this is a
particular issue for small lesionswhere PSF-reconstruction can lead to enhanced detectability but poor
quantitative accuracy including overestimation of SUVmax and peak indices.

There is need for reproduciblemethods that allow formore accurate quantification of tumour radiotracer
uptake. Improved uptake quantificationwould lead to amore accurate assessment of response to treatment,
especially at the early stages.

The use of artificial intelligence in the field ofmedical imaging has increased dramatically over the last
decade. In PET imaging,machine learning and deep learningmethods have been successfully applied to tumour
segmentation, classification, automatic detection and image reconstruction (Gong et al 2020, Kim et al 2018,
Litjens et al 2017, ShiyamSundar et al 2021). In recent years, deep learningmethods have been used to denoise
static PET images, and they have demonstrated better performance than traditional denoising approaches for
various tracers and tasks. The twomain deep learning architectures that have been used for denoising are
convolutional neural networks (CNNs) (Gong et al 2019) and generative adversarial networks (Wang et al 2018).
In previousworkwe developed a deep learning algorithmusing a 3DCNNwith the aim to improve
quantification of tumour radiotracer uptake in simulated PET images (Dal Toso et al 2019). The networkwas
trained on simulated ‘ground truth’ images that presented 3D shapes with typical tumour activity distributions
found in clinical FDG images and on a corresponding set of simulated PET images. The networkwas able to
robustly estimate the original activity, yielding improved images in terms of shape, activity distribution and
quantification of activity. Themain limitation of our previous workwas that the PET imageswere simulated in a
simplistic way, which did not take into accountmany of the effects that degrade the image quality in PET images.

Superviseddeep learningmethods require large amounts of labelleddata,which are hard to obtain inPET
imaging.Usually PET studies only comprise a relatively small number of patients. Furthermore, the true radionuclide
distribution,whichwould correspond to the ‘label’of thePET images, is verydifficult to obtain and rarely known.
This limitation affects not onlydeep learning-basedmethods, but all thePETdata processingmethods (i.e. image
reconstruction)which cannever be fully evaluated in vivo. Theuse of phantoms and realistic PET simulators partially
overcomes the lackof large labelleddatasets.MonteCarlo simulation is themost commonlyused technique to
generate realistic PETdata, but it has thedisadvantage of being computationally verydemanding.Anumber of
analytical simulators havebeendeveloped to generate simulatedPET images in a shorter time (Berthon et al2015,
Pfaehler et al2018).While analytical simulators are not as accurate asMonteCarlo based simulators, they enable fast
generationofPETdatawith realistic noiseproperties,whichmakes themparticularly useful for creating large
numbers of datasets. The simulationof realistic tumours also has some limitations. Real tumours are often
characterisedby inter- and intra- tumourheterogeneity, andby complex spatial structures. Themathematical and
computationalmodels of cancer that have been implemented so farmainly focusondescribing a few specific aspects
of the disease (Bekisz andGeris 2020). Thesemodels are not able to capture all the characteristics of tumourbiology.
In clinical practice, biopsies are performed toobtain ground truth informationon tumour composition, but this
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methodonlyprovides limited information as the samples are extracted froma small region, and they cannot provide
adescriptionof thewhole tumour. In thiswork,we generated adataset of tumours assignedwith three different
activity patterns.The simulateddataset offers awide variety of tumour activity values and tumour shapes, located at
different positionswithin the left lungof an anthropomorphic phantom.This dataset is thenused to train and test a
3DCNNthat can recover the real activity distribution fromthe signal seenon thePET image.Webuild onour
previousdeep learning approachdescribed inDalToso et al (2019)by significantly enhancing the simulationofPET
imagesusing an analytical simulator developedby Stute et al (2015) andby testing theproposed approachon three
datasets simulatedwithdifferent characteristics.

Material andmethods

Anoverview of the proposed deep learning approach in presented infigure 1. Tumourswith different sizes,
shapes and activity distributions were simulated and subsequently placed in the left lung of an anthropomorphic
phantom (Segars et al 2010). Different activities were assigned to each organ to create the ‘ground truth’ images.
Additionally, the corresponding attenuationmapswere created. These twowere used as input to an analytical
PET simulator to generate PET rawdata, whichwere subsequently reconstructed to provide the simulated PET
images. The ground truth images and simulated PET images were used to train a 3DCNN.

Simulation of ground truth images
Atfirst, tumour-like 3D shapeswithdifferent volumes, spanning0.01–200ml,were simulated.This set of tumours
was composedof three groups, each corresponding to adifferent activity pattern: tumoursfilledwithuniform
activity, tumours split intohalves (each assignedwith adifferent activity), andhollow tumourswithbackground
activity in the inner part, tomimicnecrotic regions. The ratio between the activities assigned to the twohalves of the
heterogeneous tumourswas variable, and the tumour activities ranged from6 to35kBqml−1. The same activity
rangewasused for theuniform tumours and for thehollow tumours.The thickness of the external layer of hollow
tumourswas set to half the radius of the tumour, and the inner coreof the tumourwas assignedwithbackground
activity. Thebackgroundactivitywas set to 1/10thof themaximumtumour activity, so in each image the tumour to
background ratiowas equal to 10.The choice of this specific set of activity patternswas basedon theworkof Pfaehler
et al (2018), inwhich realistic phantom insertswere designed according tonon-small cell lung cancer tumours
extracted frompatient studies. The simulated tumourswere subsequently placed in randompositions into the left
lung regionof theXCATphantom (Segars et al2010). In order to shorten the simulation times, theXCATphantom
was reduced to344× 344× 127 voxels includingonly the torso.The voxel size of the cropped imagewas [2.09, 2.09,
2.03]mm3.Realistic activity values drawn froma rangeof radioactivity concentrationsmeasured fromreal patients
PET imageswere assigned to each simulated tumour.Attenuationmapswere generated for eachXCAT imageusing
theXCATphantomattenuation values.

Figure 1.This figure shows an overview of the proposedmethod. Simulated tumours with various sizes and activities are simulated,
and placed in randompositions in the left lung of an anthropomorphic phantom, to generate the ground truth images. The
attenuationmaps are created, and used as input to an analytical simulator to generate the PET rawdata. PET images are then
reconstructed usingCASToR (Merlin et al 2018). 3D regions are cropped around the tumours and used to train a 3DCNN,which is
then tested on an unseen set of reconstructed PET images.
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PETdata simulation and reconstruction
To generate realistic PET raw datawe used an analytical PET simulator developed by Stute et al (2015). The
geometry, detector resolution, and sensitivity of a positron emission tomography/magnetic resonance (PET/
MR) system,more specifically the SiemensmMR scanner (Siemens BiographmMR, Erlangen, Germany), were
used in the simulation. In this work only the PET component of the simulatorwasmodelled andwe did not use
any anatomical information from theMR. PET rawdatawere generated from the ground truth images eachwith
100million total prompt counts, including scatter and randomevents. This corresponds to 12.4million noise
equivalent counts. Subsequently, image reconstructionwas performed using the open source fully quantitative
reconstruction platformCASToR (Merlin et al 2018), with an iterativeOSEMalgorithm run to 6 iterationswith
21 subsets. The reconstructed voxel sizewas [2.09, 2.09, 2.03]mm3, as in the XCATphantom images. Image
reconstructionwas performedwith image-based PSFmodelling, which is known to lead to increased SUV
measurements (i.e. SUVmax and SUVmean) especially for small lesions (Lasnon et al 2012). Nofilter was applied to
the images post reconstruction. Two different datasets were generated using the analytical simulator. The first
one, called dataset 1, was composed of 800 uniform tumours, 721 tumours split in half and 589 hollow tumours.
In this case the analytical simulator generated the PETdatawith an anisotropic, spatially invariant PSFwith
FWHM (4.5, 4.5, 4.0)mm,whichwas also used in the reconstruction of the simulated PET images. A total of
2110 simulated PET rawdatasets and imageswere generated.

One of the aims of this workwas to test if the proposed algorithm trained on a given dataset could generalise
well to data acquiredwith different scanners. Oneway to simulate the diversity between different scanners is to
generate and reconstruct PET images using a range of PSFs. As a result, a new dataset (called dataset 2) composed
of 100 images, with 33 uniform tumours, 34 tumours in halves and 33 hollow tumourswas generated using a
range of anisotropic spatially invariant PSFs. A value randomly drawn from aGaussian distribution (mean
μ= 4.5 mmand sigmaσ= 0.2mm)was assigned to the transaxial components of the PSF, both in the
simulation and in the reconstruction, with a perfectmatch. The axial component was calculated by dividing this
value by 1.125 and a constant ratio between transaxial and axial PSF components wasmaintained.

Network architecture
CNNsare among themost commonlyused algorithms formedical imaging applications (Yamashita et al2018).
Thesenetworks are composedof a series of convolutional layers,which can extract features from the input images, at
multiple levels of abstraction. In thiswork 3DCNNswithdifferent depthswere tested and a visual andquantitative
assessment suggested that a 3DCNNwith7 convolutional layers yielded thebest results onourdataset. Theproposed
3DCNN,presented infigure 2, is composedof 7 convolutional layers each followedby abatchnormalisation layer
except for thefinal layer. The convolutional layers are characterisedby 32filterswithdimensions 3× 3× 3, andby
ReLUactivation functions except for thefinal onewhichhas linear activation function.Twodropout layers,with
dropout rate 0.3,were added after thefirst and secondbatchnormalisation layers.Mean squared errorwasused as
loss functionduring training and theoptimizerwasAdam (KingmaandBa2014). The learning ratewas set to the
default value 0.001.The trainingwasperformedusing aNVIDIATeslaK40GPUand thenetwork architecturewas
implemented in theKeras FrameworkwithTensorflow (Abadi et al2016).

Figure 2.Reconstructed PET images and ground truth images,made of 50 × 50 × 50 voxels, were used as input to the 3DCNN for
training. Once tested on an unseen set of reconstructed PET images the network yielded the corresponding predicted images.
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Experiments
All the simulated PET images were cropped around the tumours to afinal dimension of 50× 50× 50 voxels,
before being processed by theCNN. The network inputs were normalised using theMinMaxScaler, which is a
function provided in the scikit-learn Python package (Pedregosa et al 2011). Using this function, the training,
testing and validation datasets were scaled in the range [0,1]. The normalisation factors were stored and
subsequently applied to the network’s predictions to rescale the resulting images, before performing any
quantitative analysis. In all experiments, a visual assessment of the predicted images was atfirst performed using
a free software tool formultimodalitymedical image analysis (AMIDE) (Loening and SamGambhir 2003).
Subsequently, the images were quantitatively assessed. In order to provide a baseline comparisonwe used
multiplemetrics for the quantitative assessment of the results. Themaximum,median and peak values were
estimated for each tumour in order to quantitatively compare the reconstructed PET images to the images
predicted by theCNN. Tumourmasks defined on the ground truth images were subsequently applied to the
reconstructed PET images and to theCNN’s predicted images tomeasure themedian and peak values. To
present the results in amore compact way, the recovery coefficients (RCs) defined as the ratio between the
observed activity and the ground truth activity, were calculated using themaximum,median and peak values as
shown in equations (2), (3) and (4) respectively

RC
Max activity

Max activity
, 2max

prediction

ground truth

= ( )

RC
Median activity

Median activity
, 3median

prediction

ground truth

= ( )

Figure 3.Transverse views of three representative volumes, belonging to experiment 1, where the reconstructed PET imageswere
generated with one PSF. Each column shows the ground truth images, the reconstructed PET images and theCNN’s predicted images
respectively. In each row the images are shownwith the same colour scale expressed in kBq ml−1.
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Peak activity

Peak activity
. 4peak

prediction

ground truth
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When testing the network on simulated data, the structural similarity indexmeasure (SSIM)was also
calculated. The structural similarity allows the comparison of two images by taking into account their luminance
l, contrast c and structure s. The SSIM is defined as:

x y l x y c x y s x ySSIM , , , , , 5= a b g( ) [ ( )] · [ ( )] · [ ( )] ( )

where x and y are two non-negative image signals, which could be for example two image patches.α,β and γ are
used to adjust the relative importance of the three components. In this paper,α,β and γ are equal to 1. The
luminance comparison function l between two image signals depends on themean intensities of the two signals
μx andμy. After estimating the luminance, themean intensity is removed from the initial image signal. At this
point, contrast comparison between the two signals is performed bymeasuring their standard deviationsσx and
σy. Finally, each signal is normalised by its standard deviation and the structure comparison ismade on the
normalised signals. In practice, when two images (X,Y) are compared, the overall image quality can be estimated
using theMSSIM,which it is expressed as:

X Y
M

x yMSSIM ,
1

SSIM , , 6
j

M

j j
1

å=
=

( ) ( ( )) ( )

where xj and yj are the image contents at the jth local window andM is the number of local windows in the image.
In this work, theMSSIMwas used to compare the shape and texture of the reconstructed PET images and the
predicted images to the ground truth images. Thewindowused to estimate theMSSIMwere composed of
7× 7× 7 voxels.

CNN training and testing using PET data generatedwith a single PSF
This experiment was performed to optimise the network’s architecture and test its performance on the
simulated data. Dataset 1was used to train and test the network. In this dataset, the PET images were generated
and reconstructed using a spatially invariant PSFwith FWHM (4.5 mm, 4.5 mm, 4.0mm). The simulated
imageswere split into training and testing datasets, with ratio 80/20. 20%of the training data were used for
validation. The training dataset was augmented by scaling some of the bigger tumours with scaling factors
ranging from0.5 to 0.8, with the aim to increase the number of small tumours. As a result, the training dataset
was composed of 645 uniform tumours, 645 tumours split in halves (ofwhich 70were augmented) and 645
hollow tumours (ofwhich 177were augmented). In this experiment, the networkwas trained for 500 epochs
with batch size 50. The test dataset wasmade of 422 non-augmented images. This experiment is henceforth
referred to as experiment 1.

Figure 4.This figure shows 150 representativeMSSIMvalues, obtained in experiment 1, where the reconstructed PET imageswere
generated with one PSF. TheMSSIMs between reconstructed PET images and ground truth images are shown in orange, theMSSIMs
between predictions and ground truth are plotted in blue.
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Application to PET data generated with different PSFs
The second aimof this workwas to test if the proposed 3DCNNcould generalise well to PETdata generatedwith
different PSFs and restore these images accurately. In this experiment the 3DCNNwas trained on dataset 1
generatedwith one PSF, and subsequently applied to dataset 2, generatedwith a range of PSFswhichwere not
learned during training. This experiment is henceforth referred to as experiment 2.

Application to PET data generated with different noise levels
As a proof of concept, the proposed 3DCNNwas applied to two small datasets characterised by two different
noise levels. These two datasets were generated starting from the same ten ground truth hollow tumours. These
tumourswere assignedwith activity concentrations ranging from6 to 35 kBq ml−1, and they all had volumes

Figure 5.TheRCmax andRCmedian values, obtained training and testing the network on PETdata generatedwith a single PSF, are
plotted against the tumour volume in (a) and (b) respectively. The RCpeak valuesmeasured on the same dataset are shown in (c). The
coefficientsmeasured using the reconstructed PET images are shown in orange, whereas the onesmeasured using the predicted
images are shown in blue. Tumours split in halves, each assignedwith a different activity, were excluded from the calculation of the
median values.
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larger than 5 ml. Two sets of PET images were generated from the same ground truth images, using the analytical
simulator. This was done by setting the number of total prompts to 50millions and to 200millions respectively.
Both datasets were generated using a spatially invariant PSFwith FWHM (4.5, 4.5, 4.0)mm.TheCNN, trained
on PET images simulatedwith 100million total prompt counts, was applied to the two small datasets generated
with different statistics. This experiment is henceforth referred to as experiment 3.

Results

In this section, the results obtained training and testing the 3DCNNondata generatedwith a single PSF are
presented. Subsequently, the same network is applied to PETdata generatedwith a range of PSFs and the results
are qualitatively and quantitatively compared to those obtained in thefirst experiment.

CNN training and testing using PETdata generatedwith a single PSF
Thefirst experiment was performed using the simulated training and test datasets generatedwith a single PSF.
Three representative volumes, each characterised by a different activity pattern, are presented infigure 3. The
CNNyielded better defined tumour shapes and denoised images in all three cases. This visual assessmentwas
followed by a quantitative analysis. Infigure 4, 150 randomly selectedMSSIMvalues are shown. The average
MSSIMvaluemeasured using the ground truth images and the reconstructed PET images is 0.33± 0.06. An
improved averageMSSIMvalue equal to 0.47± 0.06 ismeasured using theCNNpredictions and the ground
truth images. The predicted images are overall characterised by higherMSSIMvalues. To further assess the
performance of the network, we thenmeasured themaximum,median and peak RCs. Themedian valuewas
only estimated for the tumours with uniformuptake and for the hollow tumours, which also had uniform
uptake. Infigure 5 the RCs are plotted against the tumour volume expressed inml. Themaximum,median and
peak RCwere notwell recovered for tumours that have a volume smaller than around 5 ml, sowe performed a
detailed investigation of the small tumours. Out of all the test images, the network did not recover any increased
uptake for 5 tumours, which had a volume smaller than 0.18 ml (20 voxels). In these predicted images no
tumour could be detected. The tumour activities were not accurately recovered for tumours with volumes
between 0.18 and 1.33 ml thatwere located close to other structures (ribs, heart) and that were characterised by a
low ground truth activity. To better describe the RC curves we present two separatemeasurements, one
describing the recovery of bigger volumes and the secondmeasured for smaller volumes. Thefirstmetric we
used is the average RC value,measured only for tumourswith volume exceeding 5 ml. These average RCmax,
RCmedian andRCpeak valuesmeasured on the reconstructed PET images and on theCNNpredictions are
summarised in table 1. All the RCsmeasured for the predicted images are approaching 1,meaning that the CNN
yields improved estimates of themaximumandmedian activity within the tumours. In order to quantitatively
assess the performance of theCNNon tumours split into halves, wemeasured the ratio between themedian
activity valuesmeasured in each tumour half and compared the results. TheCNNunderestimated the activity
ratio between the two tumour halves in 85%of the test cases.When tumours smaller than 5 mlwere excluded
from the analysis, the ratio between themedian activitiesmeasured in the two tumour halveswas
underestimated by theCNN in 90%of the cases.

To describe the smaller volumeswe performed an average RCmeasurement using tumours with volume
spanning 1 to 2 ml. To calculate this value the chosen 1 ml interval is split in four smaller segments. The average

Table 1.Average RCmax, RCmedian andRCpeak values relative to
experiment 1, where the reconstructed PET imageswere generated with
one PSF. These values aremeasured only for tumours larger than 5 ml.

Volume� 5ml RCmax RCmedian RCpeak

Reconstructed PET 1.87± 0.22 0.86± 0.07 1.08± 0.05

CNN’s predictions 1.06± 0.07 0.91± 0.05 0.96± 0.04

Table 2.Average RCmax, RCmedian andRCpeak values relative to experiment
1, where the reconstructed PET imageswere generatedwith one PSF. These
values aremeasured only for tumour volumes between 1 and 2 ml.

1ml� volume� 2ml RCmax RCmedian RCpeak

Reconstructed PET 1.46± 0.17 0.55± 0.06 0.68± 0.09

CNN’s predictions 0.81± 0.11 0.67± 0.13 0.73± 0.08
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RC ismeasured for each segment and subsequently an overall value is obtained by averaging these four RCs. The
maximum,median and peak average RCs aremeasured both using the reconstructed PET images and theCNN
predictions, and the results are summarised in table 2.

Although theRC values predicted by theCNN for small tumours are lower than 1, the CNNyields improved
estimates for all RC.We further investigatedwhich factors affected the recovery of radiotracer activity in the
simulated tumours. As the simulated tumoursmay be characterised by elongated shapes, one parameter that we
chose for the analysis of small tumourswas the sphericity, a dimensionlessmetric defined as:

Figure 6.Analysis of tumour volumes smaller than 5 ml predicted by the CNN.TheRCmax, RCmedian andRCpeak values, obtained
training and testing the network onPETdata generatedwith a single PSF, are plotted against the tumour volume in (a), (b) and (c)
respectively. The tumour sphericity is colour coded using the diverging colour scale shown on the right.
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Figure 7.This figure shows all theMSSIMvalues,measured in the test dataset generatedwithmultiple PSFs. TheMSSIMs between
reconstructed PET images and ground truth images are shown in orange, theMSSIMs between predictions and ground truth are
plotted in blue.

Figure 8.Transverse views of three representative volumes, generated eachwith a different PSF. The PET imageswere generatedwith
a PSFwith FWHM (4.7, 4.7, 4.2)mm in thefirst row, a PSFwith FWHM (4.0, 4.0, 3.6)mm in the second row and PSFwith FWHM
(4.5, 4.5, 4.0)mm in the third row. Each column shows the ground truth images, the reconstructed PET images and theCNN’s
predicted images respectively. In each row the images are shownwith the same colour scale, expressed in kBq ml−1.
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Phys.Med. Biol. 67 (2022) 095013 LDal Toso et al



V

A
sphericity

36
, 7

23 p
=

· ( )

whereV is the tumour volume andA the tumour surface area. The sphericity describes the roundness of the
tumour shape relative to a sphere and its values range from0 to 1. A sphericity value of 1 indicates that the
tumour has a perfect spherical shape, a low sphericity valuemeans that the tumour shape ismore elongated. In
figure 6 theRC values are colour coded based on the sphericity of the corresponding tumour volumes. In these
plots, spherical tumours are shown in yellowwhereasmore elongated tumours are shown in blue. The plots
show that higher RCs are often associatedwith a higher sphericity. Thismay be due to the fact that elongated

Figure 9.TheRCmax andRCmedian values, obtained training and testing the network on PETdata generatedwith a range of PSFs, are
plotted against the tumour volume in (a) and (b) respectively. The RCpeak valuesmeasured on the same dataset are plotted in (c). The
coefficientsmeasured using the reconstructed PET images are shown in orange, whereas the onesmeasured using the predicted
images are shown in blue. Tumours split in halves, each assignedwith a different activity, were excluded from the calculation of the
median values.
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tumours aremore affected by PVE as a larger fraction of tumour voxels is located closer to the tumour edges and
is thusmore prone to spilling-in and spilling-out (Soret et al 2007). For this reason, itmay bemore difficult for
theCNN to recover the ground truth tumour shape and uptake.

Application to PETdata generatedwith different PSFs
The network previously trained in experiment 1, where the reconstructed PET imageswere generatedwith one
PSF, was then applied to PETdata generatedwith different PSFs. TheMSSIMvaluesmeasured using the
reconstructed PET images and the images predicted by theCNNare shown infigure 7. The averageMSSIM
measure between the reconstructed PET images and the ground truth images is 0.34± 0.07whereas the average
MSSIMbetween theCNNpredictions and the ground truth images is 0.43± 0.07. This value is comparable to
theMSSIMobtained in the previous experiment. Infigure 8, three volumes belonging to the test dataset are
presented. The PSFs used to simulate the PET raw data and to reconstruct the PET images had FWHM (4.7, 4.7,
4.2)mmfor the images in thefirst row, FWHM (4.0, 4.0, 3.6)mmfor the images in the second row and FWHM
(4.5, 4.5, 4.0)mm in the third row. Even though the PSFs used in the first and second rowdid notmatch the PSF
used to generate and reconstruct the PET images used for training, the networkwas still able to predict improved
tumour shapes and activities. Infigure 9 theRCmax, RCmedian andRCpeak are plotted against the tumour volume
expressed inml. The recovery curves show similar behaviours as in the previous experiment and improved
values are obtainedwhen estimating the RCs on the images predicted by theCNNs. The average RC
measurements calculated for tumour volumes larger than 5 ml are presented in table 3. TheCNNyields
improved RCs. The RC estimates shown in this table are comparable to the ones obtained in the previous
experiment, showing that the network can successfully recover themaximum,median and peak activity in the
tumours evenwhen tested on images generatedwith different PSF values. A separate analysis was performed for
tumour volumes smaller than 5 ml. Average RCsweremeasured for tumour volumes between 1 and 2 ml as in
the previous experiment, and the results are presented in table 4. Although the recovery of small tumours was
less accurate, the CNNalways yielded improved RC estimates. Again, wemeasured the sphericity of the small
tumours comprised between 1 and 2 ml and figure 10 shows the RCmax, RCmedian andRCpeakmeasurements
which are colour coded based on the tumour sphericity. Looking at the plots we can observe that in this dataset a
lower RC is often associatedwith lower sphericity, similarly towhat we found in the previous experiment.

Application to PETdata generatedwith different noise levels
As a proof of concept, we performed an experiment using simulated PET images generatedwith different
number of counts. In this case, a small dataset composed of 10 hollow tumours was used as ground truth. The
two datasets were generated by setting the number of total prompts to 50millions and to 200millions
respectively. TheCNN that was trained in experiment 1, using PET images generatedwith 100million total
prompt events, was then applied to the two datasets.

A representative example of a hollow tumour simulatedwith different number of counts is presented in
figure 11.When theCNNwas applied to the reconstructed PET images generatedwith high statistics andwith
low statistics, it yielded a denoised imagewith a better defined tumour shape and amore uniform tumour
activity distribution.

To quantitatively assess our results, the RCsweremeasured using the reconstructed PET images and the
CNNpredictions. As shown in table 5, when applied to the PET images generatedwith low statistics, the CNN

Table 3.Average RCmax, RCmedian andRCpeak values relative to PET data
generatedwith different PSFs. These values are averaged over tumours
with volume larger than 5 ml.

Volume� 5ml RCmax RCmedian RCpeak

Reconstructed PET 1.94± 0.26 0.84± 0.08 1.07± 0.08

CNN’s predictions 1.07± 0.08 0.90± 0.05 0.95± 0.05

Table 4.Average RCmax, RCmedian andRCpeak values obtained testing the
network on the reconstructed PET images generated with a range of PSFs.
These values aremeasured only for tumour volumes between 1 and 2 ml.

1ml� volume�
2ml RCmax RCmedian RCpeak

Reconstructed PET 2.03 ± 0.21 0.59 ± 0.05 0.87 ± 0.07

CNN’s predictions 1.15 ± 0.12 0.84 ± 0.13 0.89 ± 0.06
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yielded improved RCs. The RCsmeasured using the reconstructed PET images generatedwith a high number of
counts are presented in table 6. Again, theCNNwas able to recover improved RCs. In both cases, the CNN’s
performance is comparable to the one obtained in experiment 1, when theCNNwas trained and tested on data
generatedwith the same noise level.

Discussion and conclusion

In this paper we propose a deep learning approach to improve quantification of radiotracer uptake and tumour
shape definition in PET images. A 3DCNNwas successfully trained and tested on simulated data generatedwith

Figure 10.Analysis of tumour volumes smaller than 5 ml predicted by theCNN. TheRCmax, RCmedian andRCpeak values, obtained
testing the network onPETdata generated with a range of PSFs, are plotted against the tumour volume in (a), (b) and (c) respectively.
The tumour sphericity is colour coded using the diverging colour scale shown on the right.

13

Phys.Med. Biol. 67 (2022) 095013 LDal Toso et al



a single PSF and applied to reconstructed PET images generatedwith a range of PSFs. The results indicate that
the network is able to improve the definition of the tumour shapes and to denoise reconstructed PET images. A
quantitative analysis of the results obtained using simulated data has shown that the images predicted by the 3D
CNNyield improved estimates of themaximum tumour activities.We observed that the peak,maximumand
median activities were not accurately recovered for tumours with volumes smaller than 5 ml, so amore detailed
analysis was performed on small tumours. Only tumour volumes smaller than 0.18 ml presented critical issues.
Bigger volumes located close to other background structures and characterised by a low ground truth activity
were generally associatedwith an inaccurate prediction of the peak,maximumandmedian activity.We
measured the average RCs for tumourswith volumes between 1 and 2 ml and theCNNyielded improved
estimates for all RCs.We additionallymeasured the sphericity for each of these tumours andwe observed that

Figure 11.Transverse views of a hollow tumour. The reconstructed PET images in the top rowwere generated by setting the number
of prompt counts to 200million, the ones in the bottom rowwere generated using 50million prompt counts. TheCNNpredictions
are shown in the third column. All the images are shownwith the same colour scale, expressed in kBq ml−1.

Table 5.Average RCmax, RCmedian andRCpeak values obtained testing the
network on the reconstructed PET images generatedwith 50million
counts.

V� 5ml RCmax RCmedian RCpeak

Reconstructed PET 2.28± 0.32 0.79± 0.05 1.08± 0.09

CNN’s predictions 1.16± 0.07 0.93± 0.04 1.00± 0.07

Table 6.Average RCmax, RCmedian andRCpeak values obtained testing the
network on the reconstructed PET images generatedwith 200million
counts.

V� 5ml RCmax RCmedian RCpeak

Reconstructed PET 1.73± 0.14 0.82± 0.06 1.04± 0.08

CNN’s predictions 1.06± 0.05 0.91± 0.04 0.96± 0.04
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lower RCswere often related to a lower tumour sphericity. In future work, we plan to train the network on a
bigger dataset and to further augment the training dataset, thus addingmore small volumes to the training
dataset. Thismight improve the performance of the network for this class of tumours, as the networkwould be
able to learn frommore small tumours during training. A secondary effect that we noticed in our experiments
was an improvement in the recovery of background structures. This effect will be further investigated in future
work.Our approach proved successful when the networkwas applied to a set of reconstructed PET images
generatedwith a range of PSFs that did notmatch the PSF used to generate the training dataset. Preliminary
results suggest that the proposed approachwould be able to restore PET images acquiredwith different scanners
and spatially varying PSF. Finally, a proof of concept experiment was performed applying theCNNon
reconstructed PET images generatedwith two different noise levels. In both cases, the CNN’s performance is
comparable to the one obtainedwhen theCNNwas trained and tested on data generate with the same noise
levels. This work has the potential to be extended to larger areas of the body, in order to improve the estimation
of the total tumour burden. The proposed approach has been tested on images generatedwith two specific noise
levels, the robustness of thismethod to data generatedwith other noise levels remains to be evaluated. Before this
algorithm can be appliedwidely, it will be necessary to evaluate its performance on PET images reconstructed
with awider range of number ofOSEM iterations and imaging situations in order to determine the range of
acquisition, reconstruction and imaging conditions under which it remains valid. In this work the same spatially
invariant PSFwas used for the simulation of the PET rawdata and for the reconstruction of PET images. On the
contrary, in a clinical setting PET images would be characterised by spatially variant and non stationary PSFs and
theremay be amismatch between the system’s PSF and the onemodelled in the reconstruction algorithm. These
aspects will be investigated in futurework. Further experimentation is also needed to assess the robustness of the
proposed deep learning approach to data generated using PSFs characterised by a different anisotropy and to
more complex tumour shapes associatedwith heterogeneous activities. In future work, we plan to extend the
proposed approach so that it can be applied to awider region of the torso.
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