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Abstract

Objective. In clinical positron emission tomography (PET) imaging, quantification of radiotracer
uptake in tumours is often performed using semi-quantitative measurements such as the standardised
uptake value (SUV). For small objects, the accuracy of SUV estimates is limited by the noise properties
of PET images and the partial volume effect. There is need for methods that provide more accurate
and reproducible quantification of radiotracer uptake. Approach. In this work, we present a deep
learning approach with the aim of improving quantification of lung tumour radiotracer uptake and
tumour shape definition. A set of simulated tumours, assigned with ‘ground truth’ radiotracer
distributions, are used to generate realistic PET raw data which are then reconstructed into PET
images. In this work, the ground truth images are generated by placing simulated tumours
characterised by different sizes and activity distributions in the left lung of an anthropomorphic
phantom. These images are then used as input to an analytical simulator to simulate realistic raw PET
data. The PET images reconstructed from the simulated raw data and the corresponding ground truth
images are used to train a 3D convolutional neural network. Results. When tested on an unseen set of
reconstructed PET phantom images, the network yields improved estimates of the corresponding
ground truth. The same network is then applied to reconstructed PET data generated with different
point spread functions. Overall the network is able to recover better defined tumour shapes and
improved estimates of tumour maximum and median activities. Significance. Our results suggest that
the proposed approach, trained on data simulated with one scanner geometry, has the potential to
restore PET data acquired with different scanners.

Introduction

Positron emission tomography (PET) is an imaging modality which is extensively used in oncology to detect and
stage tumours, and to monitor response to treatment. In clinical routine, image interpretation is usually
performed by visual inspection of PET images, which leads to inter- and intra-observer variability. Although in
many cases visual assessment may be sufficient, more challenging tasks such as the evaluation of the response to
therapy of solid tumours require some form of quantification (Boellaard et al 2004). In PET, uptake
quantification is usually performed using semi-quantitative measurements of tumour radiotracer uptake, such
as the standardised uptake value (SUV). The SUV is defined as the ratio of the radioactivity concentration in a
region of interest (ROI) to the average radioactivity concentration in the whole body and can be calculated as

© 2022 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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follows:

SUV = Activity Concentrationgo; (kBq ml™})
" Injected Activity (MBq) / Body Weight (kg)"

@

Usually a normalisation by a mass density of 1 (g ml~ ') is assumed, and SUV is presented as a dimensionless
metric. Different SUV metrics, such as SUV 55, SUV ean and SUV i can be defined. These semi-quantitative
metrics are affected by the noise properties of PET images as well as partial volume effects (PVE), which
compromise the accuracy and reproducibility of the measurements (Boellaard et al 2004, Zaidi and
Karakatsanis 2017). The PVE, which results from the poor spatial resolution of PET scanners and from image
sampling, degrades the quantitative accuracy of PET images and it can result in large biases on measures of tracer
uptake in small tumours (Soret et al 2007, Cysouw et al 2017). Most commonly SUV ..., which is calculated
using the most intense tumour voxel within the ROL, is reported. SUV ., is widely used as it is user-
independent, but it is also affected by noise. A metric that is less dependent on noise is SUV ,can, but its
disadvantage is that it depends on the delineation of the volume of interest (VOI) in which the measurement is
performed. SUV ., measures the average activity concentration within a VOI. Various definitions of SUV pcax
using different VOI shapes, sizes and locations can be found in literature (Vanderhoek et al 2012). In this paper,
the maximum SUV ¢, value measured ina 1 cm’ spherical VOI within the tumour is reported. SUV,cak is less
affected by image noise than SUV ,,, but it presents some issues when applied to small tumours, especially if
they are smaller than the VOI in which the peak is measured.

In this paper, PET images are reconstructed using the ordered subsets expectation maximisation (OSEM)
algorithm. To improve PET image quality a model of the system resolution can be integrated in the
reconstruction algorithm. Resolution modelling typically results in enhanced images where small lesions and
narrow structures are characterised by a better contrast. Although resolution modelling can significantly
improve image resolution and contrast it can also introduce artefacts near sharp edges in the PET image. These
artefacts resemble the familiar Gibbs artefact and can lead to overestimation of quantitative indices—this is a
particular issue for small lesions where PSF-reconstruction can lead to enhanced detectability but poor
quantitative accuracy including overestimation of SUV max and peak indices.

There is need for reproducible methods that allow for more accurate quantification of tumour radiotracer
uptake. Improved uptake quantification would lead to a more accurate assessment of response to treatment,
especially at the early stages.

The use of artificial intelligence in the field of medical imaging has increased dramatically over the last
decade. In PET imaging, machine learning and deep learning methods have been successfully applied to tumour
segmentation, classification, automatic detection and image reconstruction (Gong et al 2020, Kim et al 2018,
Litjens et al 2017, Shiyam Sundar et al 2021). In recent years, deep learning methods have been used to denoise
static PET images, and they have demonstrated better performance than traditional denoising approaches for
various tracers and tasks. The two main deep learning architectures that have been used for denoising are
convolutional neural networks (CNNs) (Gong et al 2019) and generative adversarial networks (Wang et al 2018).
In previous work we developed a deep learning algorithm using a 3D CNN with the aim to improve
quantification of tumour radiotracer uptake in simulated PET images (Dal Toso et al 2019). The network was
trained on simulated ‘ground truth’ images that presented 3D shapes with typical tumour activity distributions
found in clinical FDG images and on a corresponding set of simulated PET images. The network was able to
robustly estimate the original activity, yielding improved images in terms of shape, activity distribution and
quantification of activity. The main limitation of our previous work was that the PET images were simulated in a
simplistic way, which did not take into account many of the effects that degrade the image quality in PET images.

Supervised deep learning methods require large amounts of labelled data, which are hard to obtain in PET
imaging. Usually PET studies only comprise a relatively small number of patients. Furthermore, the true radionuclide
distribution, which would correspond to the ‘label’ of the PET images, is very difficult to obtain and rarely known.
This limitation affects not only deep learning-based methods, but all the PET data processing methods (i.e. image
reconstruction) which can never be fully evaluated in vivo. The use of phantoms and realistic PET simulators partially
overcomes the lack of large labelled datasets. Monte Carlo simulation is the most commonly used technique to
generate realistic PET data, but it has the disadvantage of being computationally very demanding. A number of
analytical simulators have been developed to generate simulated PET images in a shorter time (Berthon et al 2015,
Pfaehler et al 2018). While analytical simulators are not as accurate as Monte Carlo based simulators, they enable fast
generation of PET data with realistic noise properties, which makes them particularly useful for creating large
numbers of datasets. The simulation of realistic tumours also has some limitations. Real tumours are often
characterised by inter- and intra- tumour heterogeneity, and by complex spatial structures. The mathematical and
computational models of cancer that have been implemented so far mainly focus on describing a few specific aspects
of the disease (Bekisz and Geris 2020). These models are not able to capture all the characteristics of tumour biology.
In clinical practice, biopsies are performed to obtain ground truth information on tumour composition, but this
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Figure 1. This figure shows an overview of the proposed method. Simulated tumours with various sizes and activities are simulated,
and placed in random positions in the left lung of an anthropomorphic phantom, to generate the ground truth images. The
attenuation maps are created, and used as input to an analytical simulator to generate the PET raw data. PET images are then
reconstructed using CASToR (Merlin et al 2018). 3D regions are cropped around the tumours and used to train a 3D CNN, which is
then tested on an unseen set of reconstructed PET images.

method only provides limited information as the samples are extracted from a small region, and they cannot provide
adescription of the whole tumour. In this work, we generated a dataset of tumours assigned with three different
activity patterns. The simulated dataset offers a wide variety of tumour activity values and tumour shapes, located at
different positions within the left lung of an anthropomorphic phantom. This dataset is then used to train and test a
3D CNN that can recover the real activity distribution from the signal seen on the PET image. We build on our
previous deep learning approach described in Dal Toso et al (2019) by significantly enhancing the simulation of PET
images using an analytical simulator developed by Stute et al (2015) and by testing the proposed approach on three
datasets simulated with different characteristics.

Material and methods

An overview of the proposed deep learning approach in presented in figure 1. Tumours with different sizes,
shapes and activity distributions were simulated and subsequently placed in the left lung of an anthropomorphic
phantom (Segars et al 2010). Different activities were assigned to each organ to create the ‘ground truth’ images.
Additionally, the corresponding attenuation maps were created. These two were used as input to an analytical
PET simulator to generate PET raw data, which were subsequently reconstructed to provide the simulated PET
images. The ground truth images and simulated PET images were used to train a 3D CNN.

Simulation of ground truth images

At first, tumour-like 3D shapes with different volumes, spanning 0.01-200 ml, were simulated. This set of tumours
was composed of three groups, each corresponding to a different activity pattern: tumours filled with uniform
activity, tumours split into halves (each assigned with a different activity), and hollow tumours with background
activity in the inner part, to mimic necrotic regions. The ratio between the activities assigned to the two halves of the
heterogeneous tumours was variable, and the tumour activities ranged from 6 to 35 kBq ml ™. The same activity
range was used for the uniform tumours and for the hollow tumours. The thickness of the external layer of hollow
tumours was set to half the radius of the tumour, and the inner core of the tumour was assigned with background
activity. The background activity was set to 1/10th of the maximum tumour activity, so in each image the tumour to
background ratio was equal to 10. The choice of this specific set of activity patterns was based on the work of Pfaehler
et al (2018), in which realistic phantom inserts were designed according to non-small cell lung cancer tumours
extracted from patient studies. The simulated tumours were subsequently placed in random positions into the left
lung region of the XCAT phantom (Segars et al 2010). In order to shorten the simulation times, the XCAT phantom
was reduced to 344 x 344 x 127 voxels including only the torso. The voxel size of the cropped image was [2.09, 2.09,
2.03] mm”. Realistic activity values drawn from a range of radioactivity concentrations measured from real patients
PET images were assigned to each simulated tumour. Attenuation maps were generated for each XCAT image using
the XCAT phantom attenuation values.
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Figure 2. Reconstructed PET images and ground truth images, made of 50 x 50 x 50 voxels, were used as input to the 3D CNN for
training. Once tested on an unseen set of reconstructed PET images the network yielded the corresponding predicted images.

PET data simulation and reconstruction

To generate realistic PET raw data we used an analytical PET simulator developed by Stute et al (2015). The
geometry, detector resolution, and sensitivity of a positron emission tomography/magnetic resonance (PET/
MR) system, more specifically the Siemens mMR scanner (Siemens Biograph mMR, Erlangen, Germany), were
used in the simulation. In this work only the PET component of the simulator was modelled and we did not use
any anatomical information from the MR. PET raw data were generated from the ground truth images each with
100 million total prompt counts, including scatter and random events. This corresponds to 12.4 million noise
equivalent counts. Subsequently, image reconstruction was performed using the open source fully quantitative
reconstruction platform CASToR (Merlin et al 2018), with an iterative OSEM algorithm run to 6 iterations with
21 subsets. The reconstructed voxel size was [2.09, 2.09, 2.03] mm?, as in the XCAT phantom images. Image
reconstruction was performed with image-based PSF modelling, which is known to lead to increased SUV
measurements (i.e. SUVp,y and SUV ,..,) especially for small lesions (Lasnon et al 2012). No filter was applied to
the images post reconstruction. Two different datasets were generated using the analytical simulator. The first
one, called dataset 1, was composed of 800 uniform tumours, 721 tumours split in halfand 589 hollow tumours.
In this case the analytical simulator generated the PET data with an anisotropic, spatially invariant PSF with
FWHM (4.5, 4.5, 4.0) mm, which was also used in the reconstruction of the simulated PET images. A total of
2110 simulated PET raw datasets and images were generated.

One of the aims of this work was to test if the proposed algorithm trained on a given dataset could generalise
well to data acquired with different scanners. One way to simulate the diversity between different scanners is to
generate and reconstruct PET images using a range of PSFs. As a result, a new dataset (called dataset 2) composed
of 100 images, with 33 uniform tumours, 34 tumours in halves and 33 hollow tumours was generated using a
range of anisotropic spatially invariant PSFs. A value randomly drawn from a Gaussian distribution (mean
1= 4.5 mm and sigma ¢ = 0.2 mm) was assigned to the transaxial components of the PSF, both in the
simulation and in the reconstruction, with a perfect match. The axial component was calculated by dividing this
value by 1.125 and a constant ratio between transaxial and axial PSF components was maintained.

Network architecture

CNNs are among the most commonly used algorithms for medical imaging applications (Yamashita et al 2018).
These networks are composed of a series of convolutional layers, which can extract features from the input images, at
multiple levels of abstraction. In this work 3D CNNs with different depths were tested and a visual and quantitative
assessment suggested that a 3D CNN with 7 convolutional layers yielded the best results on our dataset. The proposed
3D CNN, presented in figure 2, is composed of 7 convolutional layers each followed by a batch normalisation layer
except for the final layer. The convolutional layers are characterised by 32 filters with dimensions 3 x 3 x 3,and by
ReLU activation functions except for the final one which has linear activation function. Two dropout layers, with
dropout rate 0.3, were added after the first and second batch normalisation layers. Mean squared error was used as
loss function during training and the optimizer was Adam (Kingma and Ba 2014). The learning rate was set to the
default value 0.001. The training was performed using a NVIDIA Tesla K40 GPU and the network architecture was
implemented in the Keras Framework with Tensorflow (Abadi et al 2016).
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Figure 3. Transverse views of three representative volumes, belonging to experiment 1, where the reconstructed PET images were
generated with one PSF. Each column shows the ground truth images, the reconstructed PET images and the CNN’s predicted images
respectively. In each row the images are shown with the same colour scale expressed in kBq ml ™.

Experiments

All the simulated PET images were cropped around the tumours to a final dimension of 50 x 50 x 50 voxels,
before being processed by the CNN. The network inputs were normalised using the MinMaxScaler, which isa
function provided in the scikit-learn Python package (Pedregosa et al 2011). Using this function, the training,
testing and validation datasets were scaled in the range [0,1]. The normalisation factors were stored and
subsequently applied to the network’s predictions to rescale the resulting images, before performing any
quantitative analysis. In all experiments, a visual assessment of the predicted images was at first performed using
a free software tool for multimodality medical image analysis (AMIDE) (Loening and Sam Gambhir 2003).
Subsequently, the images were quantitatively assessed. In order to provide a baseline comparison we used
multiple metrics for the quantitative assessment of the results. The maximum, median and peak values were
estimated for each tumour in order to quantitatively compare the reconstructed PET images to the images
predicted by the CNN. Tumour masks defined on the ground truth images were subsequently applied to the
reconstructed PET images and to the CNN’s predicted images to measure the median and peak values. To
present the results in a more compact way, the recovery coefficients (RCs) defined as the ratio between the
observed activity and the ground truth activity, were calculated using the maximum, median and peak values as
shown in equations (2), (3) and (4) respectively

Max aCthltyprediction
RCmax - . >
Max aACtiVItY, o nd truth

(@)

Median activity,, . giction

RCedian = , 3
median Median activityg 3

round truth
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Figure 4. This figure shows 150 representative MSSIM values, obtained in experiment 1, where the reconstructed PET images were
generated with one PSF. The MSSIMs between reconstructed PET images and ground truth images are shown in orange, the MSSIMs
between predictions and ground truth are plotted in blue.
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Peak acUVIthround truth

When testing the network on simulated data, the structural similarity index measure (SSIM) was also
calculated. The structural similarity allows the comparison of two images by taking into account their luminance
I, contrast cand structure s. The SSIM is defined as:

SSIM(x, y) = [I(x, »I* - [c(x, NI° - [s(x, Y, (5

where x and y are two non-negative image signals, which could be for example two image patches. o, Gand yare
used to adjust the relative importance of the three components. In this paper, o, Gand yare equal to 1. The
luminance comparison function / between two image signals depends on the mean intensities of the two signals
pxand p1,. After estimating the luminance, the mean intensity is removed from the initial image signal. At this
point, contrast comparison between the two signals is performed by measuring their standard deviations o, and
o,. Finally, each signal is normalised by its standard deviation and the structure comparison is made on the
normalised signals. In practice, when two images (X,Y) are compared, the overall image quality can be estimated
using the MSSIM, which it is expressed as:
1M
MSSIM(X, Y) = M; (SSIM(x;, ), (6)

where xjand y;are the image contents at the jth local window and M is the number of local windows in the image.
In this work, the MSSIM was used to compare the shape and texture of the reconstructed PET images and the
predicted images to the ground truth images. The window used to estimate the MSSIM were composed of

7 x 7 x 7voxels.

CNN training and testing using PET data generated with a single PSF

This experiment was performed to optimise the network’s architecture and test its performance on the
simulated data. Dataset 1 was used to train and test the network. In this dataset, the PET images were generated
and reconstructed using a spatially invariant PSF with FWHM (4.5 mm, 4.5 mm, 4.0 mm). The simulated
images were split into training and testing datasets, with ratio 80/20. 20 % of the training data were used for
validation. The training dataset was augmented by scaling some of the bigger tumours with scaling factors
ranging from 0.5 to 0.8, with the aim to increase the number of small tumours. As a result, the training dataset
was composed of 645 uniform tumours, 645 tumours split in halves (of which 70 were augmented) and 645
hollow tumours (of which 177 were augmented). In this experiment, the network was trained for 500 epochs
with batch size 50. The test dataset was made of 422 non-augmented images. This experiment is henceforth
referred to as experiment 1.
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Figure 5. The RC,a and RC e dian Values, obtained training and testing the network on PET data generated with a single PSF, are
plotted against the tumour volume in (a) and (b) respectively. The RCqi values measured on the same dataset are shown in (c). The
coefficients measured using the reconstructed PET images are shown in orange, whereas the ones measured using the predicted
images are shown in blue. Tumours split in halves, each assigned with a different activity, were excluded from the calculation of the

Application to PET data generated with different PSFs

The second aim of this work was to test if the proposed 3D CNN could generalise well to PET data generated with
different PSFs and restore these images accurately. In this experiment the 3D CNN was trained on dataset 1
generated with one PSF, and subsequently applied to dataset 2, generated with a range of PSFs which were not
learned during training. This experiment is henceforth referred to as experiment 2.

Application to PET data generated with different noise levels

As a proof of concept, the proposed 3D CNN was applied to two small datasets characterised by two different
noise levels. These two datasets were generated starting from the same ten ground truth hollow tumours. These
tumours were assigned with activity concentrations ranging from 6 to 35 kBq ml~ ', and they all had volumes
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Table 1. Average RC oy, RCedian and RCpycqi Values relative to
experiment 1, where the reconstructed PET images were generated with
one PSF. These values are measured only for tumours larger than 5 ml.

Volume =5 ml Rcmax Rcmedian cheak

Reconstructed PET 1.87£0.22 0.86 £0.07 1.08 +0.05
CNN’s predictions 1.06 £0.07 0.91+0.05 0.96 £ 0.04

Table 2. Average RCpax RCiedian and RCeqi Values relative to experiment
1, where the reconstructed PET images were generated with one PSF. These
values are measured only for tumour volumes between 1 and 2 ml.

1 ml > volume > 2 ml RCpnax RCnedian RCpeak
Reconstructed PET 1.46 £0.17 0.55£0.06 0.68£0.09
CNN’s predictions 0.81+0.11 0.67 £0.13 0.73+£0.08

larger than 5 ml. Two sets of PET images were generated from the same ground truth images, using the analytical
simulator. This was done by setting the number of total prompts to 50 millions and to 200 millions respectively.
Both datasets were generated using a spatially invariant PSF with FWHM (4.5, 4.5, 4.0) mm. The CNN, trained
on PET images simulated with 100 million total prompt counts, was applied to the two small datasets generated
with different statistics. This experiment is henceforth referred to as experiment 3.

Results

In this section, the results obtained training and testing the 3D CNN on data generated with a single PSF are
presented. Subsequently, the same network is applied to PET data generated with a range of PSFs and the results
are qualitatively and quantitatively compared to those obtained in the first experiment.

CNN training and testing using PET data generated with a single PSF
The first experiment was performed using the simulated training and test datasets generated with a single PSF.
Three representative volumes, each characterised by a different activity pattern, are presented in figure 3. The
CNN yielded better defined tumour shapes and denoised images in all three cases. This visual assessment was
followed by a quantitative analysis. In figure 4, 150 randomly selected MSSIM values are shown. The average
MSSIM value measured using the ground truth images and the reconstructed PET images is 0.33 & 0.06. An
improved average MSSIM value equal to 0.47 £ 0.06 is measured using the CNN predictions and the ground
truth images. The predicted images are overall characterised by higher MSSIM values. To further assess the
performance of the network, we then measured the maximum, median and peak RCs. The median value was
only estimated for the tumours with uniform uptake and for the hollow tumours, which also had uniform
uptake. In figure 5 the RCs are plotted against the tumour volume expressed in ml. The maximum, median and
peak RC were not well recovered for tumours that have a volume smaller than around 5 ml, so we performed a
detailed investigation of the small tumours. Out of all the test images, the network did not recover any increased
uptake for 5 tumours, which had a volume smaller than 0.18 ml (20 voxels). In these predicted images no
tumour could be detected. The tumour activities were not accurately recovered for tumours with volumes
between 0.18 and 1.33 ml that were located close to other structures (ribs, heart) and that were characterised by a
low ground truth activity. To better describe the RC curves we present two separate measurements, one
describing the recovery of bigger volumes and the second measured for smaller volumes. The first metric we
used is the average RC value, measured only for tumours with volume exceeding 5 ml. These average RC .y,
RCpedian and RC,ycqk values measured on the reconstructed PET images and on the CNN predictions are
summarised in table 1. All the RCs measured for the predicted images are approaching 1, meaning that the CNN
yields improved estimates of the maximum and median activity within the tumours. In order to quantitatively
assess the performance of the CNN on tumours split into halves, we measured the ratio between the median
activity values measured in each tumour halfand compared the results. The CNN underestimated the activity
ratio between the two tumour halves in 85% of the test cases. When tumours smaller than 5 ml were excluded
from the analysis, the ratio between the median activities measured in the two tumour halves was
underestimated by the CNN in 90% of the cases.

To describe the smaller volumes we performed an average RC measurement using tumours with volume
spanning 1 to 2 ml. To calculate this value the chosen 1 ml interval is split in four smaller segments. The average
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Figure 6. Analysis of tumour volumes smaller than 5 ml predicted by the CNN. The RC a5, RCrnedian and RCpycqx Values, obtained
training and testing the network on PET data generated with a single PSF, are plotted against the tumour volume in (a), (b) and (c)
respectively. The tumour sphericity is colour coded using the diverging colour scale shown on the right.
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RCis measured for each segment and subsequently an overall value is obtained by averaging these four RCs. The
maximum, median and peak average RCs are measured both using the reconstructed PET images and the CNN

predictions, and the results are summarised in table 2.

Although the RC values predicted by the CNN for small tumours are lower than 1, the CNN yields improved
estimates for all RC. We further investigated which factors affected the recovery of radiotracer activity in the
simulated tumours. As the simulated tumours may be characterised by elongated shapes, one parameter that we
chose for the analysis of small tumours was the sphericity, a dimensionless metric defined as:




I0OP Publishing Phys. Med. Biol. 67 (2022) 095013 LDal Toso etal

1.0

e  Prediction
Reconstructed PET
0.8 1

s L]
a . L] [ ] L] ..0 ° . [ ]
= = ™ ® ® °
.' o.. P ..: t..:‘. . ... . i . = ..
0-0 T T T T T T T T
0 20 40 60 80 100 120 140

Volume (ml)

Figure 7. This figure shows all the MSSIM values, measured in the test dataset generated with multiple PSFs. The MSSIMs between
reconstructed PET images and ground truth images are shown in orange, the MSSIMs between predictions and ground truth are
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Figure 8. Transverse views of three representative volumes, generated each with a different PSF. The PET images were generated with
a PSF with FWHM (4.7, 4.7, 4.2) mm in the first row, a PSF with FWHM (4.0, 4.0, 3.6) mm in the second row and PSF with FWHM
(4.5,4.5,4.0) mm in the third row. Each column shows the ground truth images, the reconstructed PET images and the CNN’s
predicted images respectively. In each row the images are shown with the same colour scale, expressed in kBq ml ™",
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Figure 9. The RC,,,, and RC,,gian Values, obtained training and testing the network on PET data generated with a range of PSFs, are
plotted against the tumour volume in (a) and (b) respectively. The RCy,c, values measured on the same dataset are plotted in (c). The
coefficients measured using the reconstructed PET images are shown in orange, whereas the ones measured using the predicted
images are shown in blue. Tumours split in halves, each assigned with a different activity, were excluded from the calculation of the
median values.
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where Vis the tumour volume and A the tumour surface area. The sphericity describes the roundness of the
tumour shape relative to a sphere and its values range from 0 to 1. A sphericity value of 1 indicates that the
tumour has a perfect spherical shape, alow sphericity value means that the tumour shape is more elongated. In
figure 6 the RC values are colour coded based on the sphericity of the corresponding tumour volumes. In these
plots, spherical tumours are shown in yellow whereas more elongated tumours are shown in blue. The plots
show that higher RCs are often associated with a higher sphericity. This may be due to the fact that elongated
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Table 3. Average RC .5, RCpedian and RC,,cqx Values relative to PET data
generated with different PSFs. These values are averaged over tumours
with volume larger than 5 ml.

Volume 25 ml Rcmax Rcmedian RCpeak

Reconstructed PET 1.94£0.26 0.84 £0.08 1.07 £0.08
CNN’s predictions 1.07 £0.08 0.90 £ 0.05 0.95+0.05

Table 4. Average RC a5, RCpedian and RC,cqi values obtained testing the
network on the reconstructed PET images generated with a range of PSFs.
These values are measured only for tumour volumes between 1 and 2 ml.

1 ml > volume >

2ml RCpnax RCredian RCpeak
Reconstructed PET 2.03 +0.21 0.59 £+ 0.05 0.87 + 0.07
CNN’s predictions 1.15 £+ 0.12 0.84 £ 0.13 0.89 £ 0.06

tumours are more affected by PVE as a larger fraction of tumour voxels is located closer to the tumour edges and
is thus more prone to spilling-in and spilling-out (Soret et al 2007). For this reason, it may be more difficult for
the CNN to recover the ground truth tumour shape and uptake.

Application to PET data generated with different PSFs

The network previously trained in experiment 1, where the reconstructed PET images were generated with one
PSF, was then applied to PET data generated with different PSFs. The MSSIM values measured using the
reconstructed PET images and the images predicted by the CNN are shown in figure 7. The average MSSIM
measure between the reconstructed PET images and the ground truth images is 0.34 + 0.07 whereas the average
MSSIM between the CNN predictions and the ground truth images is 0.43 £ 0.07. This value is comparable to
the MSSIM obtained in the previous experiment. In figure 8, three volumes belonging to the test dataset are
presented. The PSFs used to simulate the PET raw data and to reconstruct the PET images had FWHM (4.7, 4.7,
4.2) mm for the images in the first row, FWHM (4.0, 4.0, 3.6) mm for the images in the second row and FWHM
(4.5,4.5,4.0) mm in the third row. Even though the PSFs used in the first and second row did not match the PSF
used to generate and reconstruct the PET images used for training, the network was still able to predict improved
tumour shapes and activities. In figure 9 the RC .5, RC nedian and RCeqi are plotted against the tumour volume
expressed in ml. The recovery curves show similar behaviours as in the previous experiment and improved
values are obtained when estimating the RCs on the images predicted by the CNNs. The average RC
measurements calculated for tumour volumes larger than 5 ml are presented in table 3. The CNN yields
improved RCs. The RC estimates shown in this table are comparable to the ones obtained in the previous
experiment, showing that the network can successfully recover the maximum, median and peak activity in the
tumours even when tested on images generated with different PSF values. A separate analysis was performed for
tumour volumes smaller than 5 ml. Average RCs were measured for tumour volumes between 1 and 2 ml as in
the previous experiment, and the results are presented in table 4. Although the recovery of small tumours was
less accurate, the CNN always yielded improved RC estimates. Again, we measured the sphericity of the small
tumours comprised between 1 and 2 ml and figure 10 shows the RC,,, RCpedian and RC e, measurements
which are colour coded based on the tumour sphericity. Looking at the plots we can observe that in this dataset a
lower RC is often associated with lower sphericity, similarly to what we found in the previous experiment.

Application to PET data generated with different noise levels

Asaproof of concept, we performed an experiment using simulated PET images generated with different
number of counts. In this case, a small dataset composed of 10 hollow tumours was used as ground truth. The
two datasets were generated by setting the number of total prompts to 50 millions and to 200 millions
respectively. The CNN that was trained in experiment 1, using PET images generated with 100 million total
prompt events, was then applied to the two datasets.

A representative example of a hollow tumour simulated with different number of counts is presented in
figure 11. When the CNN was applied to the reconstructed PET images generated with high statistics and with
low statistics, it yielded a denoised image with a better defined tumour shape and a more uniform tumour
activity distribution.

To quantitatively assess our results, the RCs were measured using the reconstructed PET images and the
CNN predictions. As shown in table 5, when applied to the PET images generated with low statistics, the CNN
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yielded improved RCs. The RCs measured using the reconstructed PET images generated with a high number of
counts are presented in table 6. Again, the CNN was able to recover improved RCs. In both cases, the CNN’s
performance is comparable to the one obtained in experiment 1, when the CNN was trained and tested on data

generated with the same noise level.

Discussion and conclusion

In this paper we propose a deep learning approach to improve quantification of radiotracer uptake and tumour
shape definition in PET images. A 3D CNN was successfully trained and tested on simulated data generated with
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Reconstrijcted PET
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Figure 11. Transverse views of a hollow tumour. The reconstructed PET images in the top row were generated by setting the number
of prompt counts to 200 million, the ones in the bottom row were generated using 50 million prompt counts. The CNN predictions
are shown in the third column. All the images are shown with the same colour scale, expressed in kBq ml ™"

Table 5. Average RC a5, RCppedian and RC,c.i values obtained testing the
network on the reconstructed PET images generated with 50 million
counts.

V>5ml RCpnax RCpedian RCpeak

Reconstructed PET 2.284+0.32 0.79+0.05 1.08 +0.09
CNN’s predictions 1.16 £0.07 0.93 £0.04 1.00 £0.07

Table 6. Average RC,,ax; RCpnedian and RCpeqx values obtained testing the
network on the reconstructed PET images generated with 200 million
counts.

V=5 ml RCmax RCmedian cheak

Reconstructed PET 1.73+£0.14 0.82+0.06 1.04+0.08
CNN’s predictions 1.06 £ 0.05 0.91 £0.04 0.96 +0.04

asingle PSFand applied to reconstructed PET images generated with a range of PSFs. The results indicate that
the network is able to improve the definition of the tumour shapes and to denoise reconstructed PET images. A
quantitative analysis of the results obtained using simulated data has shown that the images predicted by the 3D
CNN yield improved estimates of the maximum tumour activities. We observed that the peak, maximum and
median activities were not accurately recovered for tumours with volumes smaller than 5 ml, so a more detailed
analysis was performed on small tumours. Only tumour volumes smaller than 0.18 ml presented critical issues.
Bigger volumes located close to other background structures and characterised by alow ground truth activity
were generally associated with an inaccurate prediction of the peak, maximum and median activity. We
measured the average RCs for tumours with volumes between 1 and 2 ml and the CNN yielded improved
estimates for all RCs. We additionally measured the sphericity for each of these tumours and we observed that
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lower RCs were often related to alower tumour sphericity. In future work, we plan to train the network on a
bigger dataset and to further augment the training dataset, thus adding more small volumes to the training
dataset. This might improve the performance of the network for this class of tumours, as the network would be
able to learn from more small tumours during training. A secondary effect that we noticed in our experiments
was an improvement in the recovery of background structures. This effect will be further investigated in future
work. Our approach proved successful when the network was applied to a set of reconstructed PET images
generated with a range of PSFs that did not match the PSF used to generate the training dataset. Preliminary
results suggest that the proposed approach would be able to restore PET images acquired with different scanners
and spatially varying PSF. Finally, a proof of concept experiment was performed applying the CNN on
reconstructed PET images generated with two different noise levels. In both cases, the CNN’s performance is
comparable to the one obtained when the CNN was trained and tested on data generate with the same noise
levels. This work has the potential to be extended to larger areas of the body, in order to improve the estimation
of the total tumour burden. The proposed approach has been tested on images generated with two specific noise
levels, the robustness of this method to data generated with other noise levels remains to be evaluated. Before this
algorithm can be applied widely, it will be necessary to evaluate its performance on PET images reconstructed
with a wider range of number of OSEM iterations and imaging situations in order to determine the range of
acquisition, reconstruction and imaging conditions under which it remains valid. In this work the same spatially
invariant PSF was used for the simulation of the PET raw data and for the reconstruction of PET images. On the
contrary, in a clinical setting PET images would be characterised by spatially variant and non stationary PSFs and
there may be a mismatch between the system’s PSF and the one modelled in the reconstruction algorithm. These
aspects will be investigated in future work. Further experimentation is also needed to assess the robustness of the
proposed deep learning approach to data generated using PSFs characterised by a different anisotropy and to
more complex tumour shapes associated with heterogeneous activities. In future work, we plan to extend the
proposed approach so that it can be applied to a wider region of the torso.
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