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Noteworthy: 

• We propose a four-class framework to evaluate AI algorithms for nuclear-medicine imaging.  
• We provide the RELAINCE (Recommendations for Evaluation of AI for Nuclear Medicine) guidelines to 

evaluate promise, technical efficacy, clinical utility, and post-deployment efficacy of AI algorithms.  
• We outline key elements that should be specified as the output of an AI-algorithm evaluation study. 



 
Abstract: 
An important need exists for strategies for rigorous objective evaluation of artificial intelligence (AI) algorithms 
for nuclear medicine. To address this need, we propose a four-class framework to evaluate AI algorithms for 
nuclear medicine. The framework provides a mechanism to evaluate AI algorithms for promise, technical 
efficacy, clinical utility, and post-deployment efficacy. We provide best practices to evaluate AI algorithms for 
each of these classes. These best practices are tabulated as a set of RELAINCE (Recommendations 
for Evaluation of AI for Nuclear Medicine) guidelines. We recommend that an AI evaluation study should yield 
a claim and define the key elements of this claim. The report was prepared by the Society of Nuclear Medicine 
and Molecular Imaging AI taskforce Evaluation team, which consisted of nuclear-medicine physicians, 
physicists, computational imaging scientists, and representatives from industry and regulatory agencies.   
 
A. Introduction 
 
Artificial intelligence (AI)-based algorithms are showing tremendous promise across multiple aspects of nuclear 
medicine (NM) imaging, including image acquisition, reconstruction, post-processing, diagnostics, prognostics, 
and clinical decision making. Translating this promise to clinical reality requires rigorous evaluations of these 
algorithms. Insufficient evaluation of AI algorithms may have multiple adverse consequences, including 
reducing credibility of research findings, misdirection of future research, and, most importantly, producing tools 
that are useless or even harmful to patients[1]. The goal of this report is to provide best practices to evaluate AI 
algorithms in the specific context of NM imaging. We provide these practices in the context of evaluating 
methods that use artificial neural network (ANN)-based architectures, including deep learning (DL), although 
many principles are broadly applicable. In the rest of the report, AI-based methods specifically refer to those 
that use ANNs. 
 Evaluation has a well-established and essential role in the translation of any imaging technology but is 
even more critical for AI methods due to their working principles. AI-based methods are typically not 
programmed with user-defined rules, but instead learn rules via analysis of training data. These rules are 
typically not explicit and thus not easily interpretable. Thus, the output of these algorithms can be 
unpredictable. This leads to multiple unique challenges, First, AI algorithms, similar to other imaging methods, 
may malfunction. For example, AI-based reconstruction may introduce spurious lesions[2] and AI-based lesion 
segmentation may incorrectly include healthy tissue[3]. Such malfunctioning can adversely impact clinical task 
performance. Evaluations are thus crucial to assess the algorithm’s clinical suitability. A second challenge is 
that of generalizability. DL-based architectures are highly complicated models with millions of tunable 
parameters. These methods may perform perfectly in training sets, but not generalize to new data, such as 
from a different institution[4], different population groups[5, 6] or different scanners[7]. Possible reasons for this 
include that the algorithm may use data features that correlate with the target outcome only within the training 
set, or that the training dataset may not be sufficiently representative of a broader patient population. 
Evaluations are needed to assess the generalizability of these algorithms. A third challenge is that of data drift 
during clinical deployment. When using AI systems in clinical settings, the input data distribution may drift from 
the training-data distribution over time due to changes in patient demographics, hardware, image-acquisition 
and analysis protocols[8]. Evaluation in post-deployment settings can help identify this data drift. Rigorous 
evaluation of AI algorithms is also necessary because AI is being explored to support decisions in high-risk 
applications, such as guiding treatment.  

In summary, there is an important need for carefully defined strategies to evaluate AI methods, and 
such strategies should be able to address the unique challenges associated with AI techniques.  To address 
this need, the Society of Nuclear Medicine and Molecular Imaging (SNMMI) put together an Evaluation team in 
the AI taskforce. The team consisted of computational imaging scientists, nuclear-medicine physicians, 
nuclear-medicine physicists, biostatisticians, and representatives from industry and regulatory agencies. The 



team was tasked with outlining best practices for evaluation of AI methods for nuclear-medicine imaging. This 
report has been prepared by this team.   

In medical imaging, images are acquired for specific clinical tasks. These tasks can be broadly 
classified into three categories: classification, quantification, or a combination of both. An oncological PET 
image may be acquired for the task of tumor-stage classification or for quantification of tracer uptake in tumor. 
However, current Al-algorithm evaluation strategies are often task agnostic. For example, AI algorithms for 
reconstruction and post-processing are often evaluated by measuring image fidelity to a reference standard 
using figures of merit (FoMs) such as root mean square error. Similarly, AI-based segmentation algorithms are 
evaluated using FoMs such as Dice scores. However, recent studies show that these evaluation strategies 
may not correlate with clinical task performance[2, 9-12]. One study observed that a reconstruction algorithm 
for whole-body FDG-PET using fidelity-based FoMs indicated excellent performance, but on the lesion-
detection task, the algorithm was yielding both false negatives and positives due to blurring and pseudo-low-
uptake patterns, respectively[2]. Similarly, Yu et al. observed that evaluation of an AI-based denoising method 
for cardiac SPECT using fidelity-based FoMs suggested significantly improved performance compared to 
without denoising. However, when evaluated on the task of detecting cardiac perfusion defects, the 
performance of the AI-based denoising method was equivalent, if not worse, to that obtained without applying 
denoising[9]. Such findings demonstrate that task-agnostic approaches to evaluate AI methods have major 
limitations. Thus, evaluation strategies that measure performance on clinical tasks are needed.  

Evaluation studies should also quantitatively describe the generalizability of the AI algorithm to different 
population groups and to different technical factors, such as scanners, acquisition, and analysis protocols. 
Finally, evaluations should yield quantitative measures of performance to enable clear comparison with 
standard-of-care approaches and other methods and provide guidance for clinical utility. To account for these 
factors, we recommend that an evaluation strategy for an AI algorithm should always produce a claim 
consisting of the following components (Fig. 1): 

- A clear definition of the task 
- Patient population(s) for whom the task is defined 
- Exact definition of the imaging process (acquisition, reconstruction and analysis protocols) 
- The process to extract task-specific information 
- Figure of merit to describe task performance, including process to define reference standard 

We describe each component in Sec. B. To produce such a claim, we propose an evaluation framework in 
Sec. C. The framework categorizes the evaluation strategies into four classes: proof-of-concept, technical, 
clinical and post-deployment evaluation. This framework will guide AI-developers to conduct the evaluation 
study that provides evidence to support their intended claim. In Sec. C, we also provide the best practices for 
conducting evaluations for each class. The report finally provides the RELAINCE (Recommendations for 
Evaluation of AI for Nuclear Medicine) guidelines, that enlist these best practices.  

In this paper, the terms “training”, “validation” and “testing” will be used according to their usual 
meaning in the AI literature. More specifically, training, validation and testing will denote the building of a model 
on a specific dataset, the tuning/optimization of the model parameters, and the evaluation of the optimized 
model. The focus of this paper is on evaluation. The development of AI-based algorithms using the training and 
validation procedures is described in a companion paper[13].  
 
B. Components of the claim  
 
The claim provides a clear and descriptive characterization of the performance of the AI algorithm. The 
components of a claim are shown in Fig. 1 and described below.  
 
B.1. Definition of the clinical task: In this paper, the term “task” refers to the clinical goal for which the image 
was acquired. Broadly, in NM imaging, tasks can be grouped into three categories: classification (which can 
include lesion detection), quantification, or a combination of both. In the classification task, the patient image is 



used to classify the patient into a category. For example, identifying if cancer is present or absent, or the 
cancer stage from an oncological PET image. Similarly, using an AI algorithm to predict whether a patient is 
expected to respond to therapy or not would be a classification task.  In a quantification task, the patient image 
is used to quantify some parameter, for example, quantifying standardized uptake value (SUV) in an 
oncological PET image.  
 
B.2: Patient population for whom the task is defined: The performance of an imaging method can be 
affected by the physical and statistical properties of the imaged patient population. Results for one population 
may not necessarily translate to others[4, 6]. Thus, the patient population should be clearly defined in the 
claim. This includes aspects such as sex, ethnicity, age group, geographic location, disease stage, social 
determinants of health, and other disease and application-relevant biological variables. Providing these 
elements in the claim will inform the generalizability of the method.    
 
B.3. Definition of imaging process: The imaging system, acquisition protocol, and reconstruction and 
analysis parameters may affect task performance. For example, an AI algorithm evaluated for a high-resolution 
PET system may not apply to systems with lower resolution, since the method may rely on high-frequency 
features captured by the high-resolution system[7]. Depending on the method, specific acquisition-protocol 
parameters may need to be specified or the requirement to comply with a certain accreditation standard, such 
as SNMMI-Clinical Trial Network, RSNA QIBA profile, and the European Association of Nuclear Medicine 
Research Ltd (EARL) standards. For example, an AI-based denoising approach for ordered subsets 
expectation maximization (OSEM)-based reconstructed images may not apply to images reconstructed using 
filtered-backprojection or even for a different number of OSEM iterations since noise properties change with 
the number of iterations. Thus, depending on the application, these parameters should be specified in the 
claim. Further, if the algorithm was evaluated across multiple scanners, or with multiple protocols, that should 
be specified. This would strengthen confidence in generalizability of the algorithm.  

 
B.4. The process to extract task-specific information: Task-based evaluation of an AI imaging algorithm 
requires a strategy that extracts task-specific information from the images. For classification tasks, a typical 
strategy is to have human observer(s) read the images, detect lesions and classify the patient or each detected 
lesion into a certain class (e.g., malignant or benign). Here, the competency of the observer (multiple trained 
radiologists/one trained radiologist/resident/untrained reader) will impact task performance. Further, the choice 
of the strategy may provide more confidence about the validity of the algorithm. This is also true for 
quantification and joint classification/quantification tasks. Thus, this strategy should be specified in the claim.  
 
B.5. Figure of merit (FoM) to evaluate task performance: FoMs quantitatively describe a method’s 
performance on the clinical task, enabling comparison of different methods, comparison to standard of care, 
and helping define quantitative metrics of success. FoMs should be accompanied by confidence intervals 

 
Fig. 1: The components of a claim 
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(CIs), which provide a measure of uncertainty in the performance. To obtain the FoM, a reference standard is 
needed. The process to define the reference standard should be stated.  
 
By providing all the components of a claim, developers will describe the generalizability of the method. Figure 2 
presents a schematic that shows how different levels of generalizability can be established. Some key points 
from this figure are as listed below: 
- Providing evidence for generalizability requires external validation. This is defined as validation where 

some portion of the testing study, such as the data (patient population demographics) or the process to 
acquire the data, is different from that in the development cohort. Depending on the level of external 
validation, the claim can be appropriately defined.  

- For a study that claims to be generalizable across populations, scanners, and readers, the external cohort 
would be from different patient demographics, with different scanners, and analyzed by different readers 
than the development cohort, respectively.  

- Multi-center studies provide higher confidence about generalizability compared to single-center studies 
since they typically include some level of external validation (patients from different geographical 
locations/different scanners/different readers).  

 
C. Methods for evaluation:  
The evaluation framework for AI algorithms is provided in Fig. 3. The four classes of this framework are 
differentiated based on their objectives, as briefly described below, with details provided in Sec. C.1-C.4. An 
example for an AI low-dose PET reconstruction algorithm is provided. Fig. 3 contains another example for an 
AI-based automated segmentation algorithm. A detailed example of using this framework to evaluate a 
hypothetical AI-based transmission-less attenuation compensation method for SPECT[14] is provided in 
Supplemental section A. 

- Class 1: Proof-of-concept (POC) evaluation: Shows the novelty and promise of an algorithm 
proposed using task-agnostic metrics. Suitable for method-development studies. Provides promise for 
further clinical task-specific evaluation.  
Example: Evaluating the AI PET reconstruction algorithm using root mean square error. 

- Class 2: Technical evaluation: Quantifies technical performance of an algorithm on a clinical task 
using measures such as accuracy, repeatability, and reproducibility.  

 
Fig. 2: increasing levels of rigor of evaluation, and how they in turn provide increased 

confidence in the generalizability 
 



Example: Evaluating performance on the task of lesion detection with the AI low-dose PET 
reconstructed images using a realistic simulation study. 

- Class 3: Clinical evaluation: Quantifies the efficacy of the algorithm to assist in making clinical 
decisions. AI algorithms that claim improvements in making diagnostic, predictive, prognostic, or 
therapeutic decisions require clinical evaluation.  
Example: Evaluating the AI PET reconstruction algorithm on the task of clinically diagnosing patients 
referred with the suspicion of recurrence of cancer. 

- Class 4: Post-deployment evaluation: Monitor algorithm performance in dynamic real-world settings 
after clinical deployment. This may also assess off-label use, such as the utility of the method in 
populations and diseases beyond the original claim. It could also include the use of the algorithm with 
improved imaging cameras and reconstructions which were not used in the original training. 
Example: Evaluating whether the AI PET reconstruction algorithm remains effective over time.  

 
In the subsections below, for each class of evaluation, we provide the key objectives, the best practices 

for study design, including determining study type, data collection including sample-size considerations, 

 
Fig. 4: Elements of study design for each class of evaluation 

 

 
Fig. 3: Framework for evaluation of AI-based algorithms. The left of the pyramid provides a brief description 
of the phase, and the right provides an example of evaluating an AI-based segmentation algorithm on the 

task of evaluating metabolic tumor volume (MTV) using this framework. 
 



defining a reference standard, and choosing FoMs (Fig. 4), and finally a generic structure for the claim.   
 
C.1 Proof-of-concept (POC) evaluation  
 
Objective: Quantitatively demonstrate the technological innovations of newly developed AI algorithms using 
task-agnostic FoMs and provide evidence that motivates further clinical task-specific evaluation. Clinical or 
task-specific technical claims should not be put forth based on POC evaluation.  
 
Rationale for task-agnostic objective: A newly developed AI method may be suitable for multiple clinical 
tasks. For example, a segmentation algorithm may be applicable to radiation-therapy planning, estimating 
volumetric (e.g., metabolic tumor volume (MTV)) or radiomic features, or monitoring therapy response. 
Evaluating the algorithm on all these tasks would require multiple studies. Further, the developer may not have 
the necessary resources (such as a large, representative dataset) to conduct these studies. Thus, a task-
agnostic objective facilitates timely dissemination and widens the scope of newly developed AI methods.   
 
Study design:  
The following are recommended best practices to conduct POC evaluation of an AI algorithm. Best practices to 
develop the algorithm are covered in the companion paper[13].  

a. Data collection: In POC evaluation, the study can use realistic simulations, physical phantoms, and/or 
retrospective clinical or research data, usually collected for a different purpose, e.g., routine diagnosis. 
The data used for evaluation may come from the development cohort, i.e., the same overall cohort that 
the training and validation cohorts were drawn from. However, it is important that there is no overlap 
between these data. Public databases, such as those available at TCIA[15] and from challenges* can 
also be used. 

b. Defining reference standard: For POC evaluations conducted with simulation and physical phantoms, 
the ground truth is known. For clinical data, curation by readers may be used. The curation quality need 
not be of the highest quality. For example, curations by single reader may be sufficient.  

c. Testing procedure: The testing procedure should be designed to demonstrate promising technological 
innovation. The algorithm should thus also be compared against a reference or standard of care, and 
preferably other state-of-the-art algorithms.  

d. Figures of merit: While the evaluation is task-agnostic, the FoMs should be carefully chosen to show 
promise for progression to clinical task evaluation. For example, evaluating a new denoising algorithm 
that overly smooths the image at the cost of resolution using the FoM of contrast-to-noise ratio may be 
misleading. In those cases, a FoM such as structural similarity index may be more relevant. For this 
reason, we recommend evaluation of the algorithms using multiple FoMs. The list of these FoMs is 
provided in supplemental table 1.  

 
Output claim of the POC study: The claim should state the following: 

- The application (e.g., segmentation, reconstruction) for which the method is proposed.  
- The patient population. 
- The imaging and image-analysis protocol(s).  
- Process to define reference standard  
- Performance as quantified with a task-agnostic evaluation metric.  

We re-emphasize that since this is a POC study, the claim should not be interpreted as an indication of the 
algorithm’s expected performance in a clinical setting. 
Example claim: Consider the evaluation of a new segmentation algorithm. The claim could read as follows: 

 
* https://grand-challenge.org/challenges/ 



“An AI-based PET segmentation algorithm evaluated on 50 patients with locally advanced breast cancer 
acquired on a single scanner with single-reader evaluation yielded mean Dice scores of 0.78 (95% CI 0.71-
0.85).” 
 
C.2 Technical efficacy evaluation  
 
Objective: To evaluate the technical performance of an AI algorithm on specific clinically relevant tasks such 
as those of detection and quantification using FoMs that quantify aspects such as accuracy (discrimination 
accuracy for detection task and measurement bias for quantification task) and precision (reproducibility and 
repeatability). The objective is not to assess the utility of the method in clinical-decision making, since clinical-
decision making is a combination of factors beyond technical aspects, such as prior clinical history, patient 
biology, other patient characteristics (age/sex/ethnicity) and results of other clinical tests.  
 
Study design: Given the goal of evaluating technical performance, the evaluation should be performed in 
controlled settings. Practices for designing such studies are outlined below. A framework and summary of tools 
to conduct these studies is provided in Jha et 
al[16].  

a. Study type: A technical evaluation study 
can be conducted through the following 
mechanisms:  

1) Realistic simulations are studies 
conducted with anthropomorphic 
digital phantoms simulating patient 
populations, where measurements 
corresponding to these phantoms are 
generated using accurately simulated 
scanners. A specific class referred to 
as virtual clinical trials (VCTs) can be 
used to obtain population-based 
inferences[17, 18].  

2) Anthropomorphic physical-
phantom studies are conducted on 
the scanners with devices that mimic 
the human anatomy and physiology.  

3) Clinical-data-based studies where 
clinical data is used to evaluate the 
technical performance of an AI 
algorithm. For example, repeatability 
study of an AI algorithm measuring 
MTV in test-retest PET scans.  

The tradeoffs with these three study types are listed in Table 1. Each study type can be single or multi-
scanner/center studies, depending on the claim: 

- Single-center/single-scanner studies are typically performed with a specific system, image 
acquisition and reconstruction protocols. In these studies, the algorithm performance can be evaluated 
for variability in patients, including different demographics, habitus, or disease characteristics, while 
keeping the technical aspects of the imaging procedures constant. These studies can measure the 
sensitivity of the algorithm to patient characteristics. They can also study the repeatability of the AI 
algorithm. Reproducibility may be explored by varying technical factors such as reconstruction settings. 

 
Table 1: Comparison of different data types and associated trade-

offs and evaluation criteria to evaluate technical efficacy  
 

Simulation 
studies

Physical 
phantoms

Clinical 
studies

Advantage

Known ground truth Y Y Rarely
Scanner-based Y Y

Model patient biology Yes, but 
limited Y

Model population 
variability Y Y

Evaluation 
criterion

Accuracy Y Y
Repeatability/ 

reproducibility/noise 
sensitivity with multiple 

replicates

Y Y

Repeatability/ 
reproducibility/noise 

sensitivity with test-retest 
replicates

Y
Yes and 

recommen
ded

Biological repeatability/ 
reproducibility/noise 

sensitivity
Y

Other 
factors

Costs Low Medium High
Time Low Medium High

Confidence about clinical 
realism Low Medium High



- Multi-center/multi-scanner studies are mainly suitable to explore the sensitivity of the AI algorithm to 
acquisition variabilities, including variability in imaging procedures, systems, reconstruction methods 
and settings, and patient demographics if using clinical data. Typically, multi-center studies are 
performed to improve patient accrual in trials and therefore the same in- and exclusion criteria are 
applied to all centers. These studies can identify AI algorithms that are sensitive to variations in scanner 
performance and reconstruction protocols. Further, multicenter studies can help assess the need for 
harmonization of imaging procedures and system performances.  

 
b. Data collection:   

• Realistic simulation studies: To conduct realistic simulations, multiple digital anthropomorphic 
phantoms are available[19]. In virtual clinical trial-based studies, the distribution of simulated image 
data should be similar to that observed in clinical populations. For this purpose, parameters derived 
directly from clinical data can be used during simulations[3]. Expert reader-based studies can be 
used to validate realism of simulations[20].  
Next, to simulate the imaging systems, tools such as GATE[21], SIMIND[22], SimSET[23], 
PeneloPET[24], and other tools[16] can be used. Different system configurations, including those 
replicating multi-center settings, can be simulated. If the methods use reconstruction, then clinically 
used reconstruction protocols should be simulated.  
Simulation studies should not use data that was used for training/validation of the algorithm. 

• Anthropomorphic physical-phantoms studies: For clinical relevance, the tracer uptake and 
acquisition parameters when imaging these phantoms should be similar to that in clinical settings. To 
claim generalizable performance across different scanner protocols, different clinical acquisition and 
reconstruction protocols should be used. A phantom used during training should not be used during 
evaluation irrespective of changes in acquisition conditions between training and test phases. 

• Clinical data: Technical evaluation studies will typically be retrospective. Use of external datasets, 
such as those from an institution or scanner not used for method training/validation, is 
recommended. Public databases such as TCIA may also be used. Selection criteria should be 
defined.  

 
c. Process to extract task-specific information:  

• Classification task: Performance of AI-based reconstruction or post-reconstruction algorithms 
should ideally be evaluated using psychophysical studies by expert readers. Methods such as two 
alternative forced choice (2-AFC) tests and ratings-scale approaches could be used. When human-
observer studies are infeasible, numerical observers, such as the channelized Hotelling observer, 
could be used[25-27]. This is a better choice than using human observers with limited training, who 
may yield misleading measures of task performance. AI algorithms for optimizing 
instrumentation/acquisition can be evaluated directly on projection data, which provides the benefit 
that the evaluation would be agnostic to the choice of the reconstruction and analysis method[28, 
29]. In this case, observers that are optimal in some sense, such as the ideal observer (which yields 
the maximum possible area under the receiver operating characteristics (ROC) curve (AUC) of all 
observers) should be used[25]. The ideal observer can be computationally challenging to obtain in 
clinical settings, and to address this, different strategies are being developed[30, 31]. An example of 
evaluating a hypothetical AI method for improving timing resolution in a time-of-flight PET system is 
presented in Jha et al[16].  

• Quantification task: The task should be performed using optimal quantification procedures to 
ensure that the algorithm evaluation is not biased due to a poor quantification process. Often, 
performing quantification requires an intermediate manual step. For example, the task of regional 
uptake quantification from reconstructed images may require manual delineation of regions of 
interest. Expert readers should perform these steps. NM images are noisy and corrupted by image-



degrading processes. Thus, the process of quantification should account for the physics and 
statistical properties of the measured data. For example, if evaluating a segmentation algorithm on 
the task of quantifying a certain feature from the image, the process of estimating that feature should 
account for the image-degrading processes and noise[16]. If only using the measurements and not 
incorporating any prior information on the parameters that are quantified, maximum-likelihood 
estimation methods are an excellent choice[32]. If using prior information, estimators that yield 
maximum-a-posteriori[33] and posterior-mean[34] estimates could be used. In several cases, 
measuring quantitative features directly from projection data may yield more reliable 
quantification[32] and can be considered.  

• Joint classification/quantification task: These tasks should again be performed optimally. If 
manual inputs are needed for the classification or quantification component of the task, these should 
be provided by expert readers. Numerical observers such as channelized scanning linear 
observers[35] and those based on deep learning[36] can also be used.  

 
d. Defining a reference standard: For simulation studies, the ground-truth is accurately and precisely 

known. Experimental errors may arise when obtaining ground truth from physical-phantom studies, and 
preferably, these should be modeled during the statistical analysis. For clinical studies, ground truth is 
commonly unavailable. A common workaround is to define a reference standard. The quality of curation 
to define this standard should be high. When the reference standard is expert defined, multi-reader 
studies are preferred where the readers have not participated in the training of the algorithm, and where 
each reader independently interprets images, blinded to the results of the AI algorithm and the other 
readers[37]. In other cases, the reference standard may be the current clinical practice. Finally, another 
approach is to use no-gold-standard evaluation techniques, which have shown ability to evaluate 
algorithm performance on quantification tasks even without any ground truth[38-40]. 
 

e. Figures of merit: A list of FoMs for different tasks is provided in Supplemental Table 2. Example FoMs 
include AUC to quantify accuracy on classification tasks, bias, variance and ensemble mean square 
error to quantify accuracy, precision and overall reliability on quantification tasks, and area under the 
estimation ROC (EROC) curve for joint detection/classification tasks.  For a multicenter study, variability 
of these FoMs across centers, systems and/or observers should be reported.  

 
Output claim from evaluation study: The claim will consist of the following components: 

- The clinical task (detection/quantification/combination of both) for which the algorithm is evaluated.  
- The study type (simulation/physical phantom/clinical).  
- If applicable, the imaging and image-analysis protocol or accreditation standards that need to be 

adhered to for this claim to hold.  
- If clinical data, process to define ground truth.  
- Performance, as quantified with task specific FoMs. 

 
Example claim: Consider the same automated segmentation algorithm as mentioned in Sec. C.1, being 
evaluated to estimate MTV. The claim could be: 
“An AI-based fully automated PET segmentation algorithm yielded MTV values with a normalized bias of X% 
(provide 95% confidence intervals) as evaluated using physical-phantom studies with an anthropomorphic 
thoracic phantom conducted on a single scanner in a single center.”  
 
C.3 Clinical utility evaluation  
 
Objective: Evaluate the utility of an AI algorithm on making clinical decisions, including diagnostic, prognostic, 
predictive and therapeutic decisions. While technical evaluation was geared towards quantifying the 



performance of a technique in controlled settings, clinical evaluation investigates clinical utility in a practical 
setting.  
 
Study design: 

a. Study type: Following study types can be used: 
- Retrospective study: A retrospective study employs existing data sources. In a blinded retrospective 

study, readers analyzing the study data are blinded to the relevant clinical outcome. Retrospective 
studies are the most common mechanism to evaluate AI algorithms. Advantages of these studies 
include low costs and quicker execution. These studies can provide considerations for designing 
prospective studies. With rare diseases, these may be the only viable mechanism for evaluation. 
However, these studies cannot conclusively demonstrate causality between the algorithm output and 
the clinical outcome. Also, these studies may be affected by different biases such as bias in patient 
selection.   

- Prospective observational study: In this study, the consequential outcomes of interest occur after 
study commencement, but the decision to assign participants to an intervention is not influenced by 
the algorithm[41]. These studies are often secondary objectives of a clinical trial. 

- Prospective interventional study: In a prospective interventional study of an AI algorithm, the 
decision to assign the participant to an intervention depends on the AI-algorithm output. These 
studies can provide stronger evidence for causation of the AI-algorithm output to clinical outcome. 
The most common and strongest prospective interventional study design are randomized control trial 
(RCTs), although other designs such as non-randomized trials and quasi-experiments are 
possible[42]. RCTs are considered the gold standard of clinical evaluation but are typically logistically 
challenging, expensive, and time consuming, and should not be considered as the only means to 
ascertain and establish effective algorithms. 

- Real-world post-deployment evaluation studies: These studies make use of real-world data 
(RWD) from AI algorithms that have received regulatory clearance43. Such studies have the potential 
to provide information on a wider patient population that may be difficult to obtain through the 
prospective interventional study. Moreover, the RWD can not only be leveraged to improve upon the 
performance of the initially cleared AI device but also be used to evaluate new AI medical 
applications that require the same/similar data as the initially cleared AI-module, thus saving time and 
cost. However, critical to 
this type of study is that its 
study design be carefully 
crafted with a study protocol 
and analysis plan defined 
prior to retrieving/analyzing 
the RWD[43, 44]. Special 
attention should be paid 
while designing these 
studies to negate bias[45].  

 
Choosing the study type: 
This is a multi-factorial 
decision (Fig. 5). To decide 
on the appropriate study type, 
we make a distinction 
between AI algorithms that 
make direct interventional 
recommendations (prescriptive AI) and those that do not (descriptive AI):  

 
Fig. 5: Flowchart to determine the clinical evaluation strategy 

 



- A purely descriptive AI algorithm does not make any direct interventional recommendations but may 
alter clinical decision making. The algorithms can be further categorized into those that provide a 
description about the present (e.g., for diagnosis, staging, therapy response assessment) vs. those 
that predict the future (e.g., prognosis of therapy outcome, disease progression, overall survival). 
There are close links between these two categories, and the line between them will likely be 
increasingly blurred in the era of AI: e.g., more-refined AI-derived cancer staging that is trained with 
outcome data and therefore becomes highly predictive of outcome. A well-designed blinded 
retrospective study is sufficient to evaluate a purely descriptive AI system. However, if clinical data 
for a retrospective study do not exist, a prospective observational or real-world study is required.  

- A prescriptive AI algorithm makes direct interventional recommendation(s). It may have no 
autonomy (i.e., only making a recommendation to a physician) or full autonomy (no supervision), or 
grades in between. For a prescriptive AI algorithm that is not autonomous, a prospective 
interventional study is recommended. A well-designed real-world study may be used as a 
substitute. However, for a fully autonomous prescriptive AI system of the future (e.g., fully 
automated therapy delivery), such a study may be required. Future studies and recommendations 
are needed for autonomous prescriptive AI systems, as the field is not mature enough. Thus, we 
limit the scope of this section to only those systems that have expert physician supervision.  
 

b. Data collection 
An AI algorithm yielding strong performance using data from one institution may perform poorly on data 
from other institutions[4]. Thus, we recommend that for clinical evaluation, test data should be collected 
from different, and preferably multiple, institutions. Results from external institutions can be compared 
with internal hold-out samples (data from the same institution not used for training) to evaluate 
generalizability. To avoid variation due to site selection used for the external validation, or random bias 
in internal sample selection, leave-one-site repeated hold-out (for example 10-fold cross-validation) 
strategy can be used with a dataset that is completely independent from the training and validation 
dataset.  

To demonstrate applicability over a certain target population, the collected data should be 
representative of that population in terms of demographics. When the goal is studying performance on 
a specific population subset (e.g., patients with large body mass indices) or check sensitivity of the 
method to certain factors (e.g., patients with metallic implants), the other criteria for patient selection 
should be unbiased. This ensures that the evaluation specifically studies the effect of that factor.  

In studies that are retrospective or based on real-world data, once a database has been set up 
corresponding to a target population using existing datasets, patients should be randomly selected from 
this database to avoid selection bias.   
Sample-size considerations: The study must have a predefined statistical analysis plan[46]. The 
sample size is task dependent. For example, if the claim of improved AUC with the use of the AI 
method vs. a non-AI approach or standard clinical analysis is studied, then the sample size will be 
dictated by the detection of the expected change between the two ROC areas. Inputs required for the 
power-analysis to compute sample size may be obtained from the POC and technical evaluation 
studies.  Pilot studies could also be conducted to estimate sample sizes.  
 

c. Defining reference standard: For clinical evaluation, the reference standard should be carefully 
defined. This requires in-depth clinical and imaging knowledge of the data. Thus, medical experts 
should be involved in defining task-specific standard. Some reference standards are listed below: 
- Clinical outcomes: Eventually the goal of imaging is to improve clinical outcomes. Outcomes such as 

overall survival, progression-free survival, major clinical events, and hospitalization, could thus serve 
as gold standards, especially for demonstrating clinical utility in predictive and prognostic tasks. A 



decrease in the use of resources as a result of the AI tool with comparable outcomes could also be a 
relevant and improved outcome (e.g., fewer non-essential call back tests with AI). 

- External standard: For disease diagnosis tasks, when available, an external standard such as 
invasive findings, e.g., biopsy-pathology or invasive coronary angiography, or some other definitive 
diagnosis (derived from other means than the images utilized) should be considered.  

- Trained-reader-defined clinical diagnosis: For diagnostic tasks, expert reader(s) can be used to 
assess the presence/absence of the disease. Similar best practices as outlined in Sec. C.2 should 
be followed to design these studies. However, note that, unlike technical evaluation, where the goal 
was restricted to defect detection, here the goal is disease diagnosis. Thus, the readers should also 
be provided other factors that are used to make a clinical decision, such as the patient age, sex, 
ethnicity, other clinical factors that may impact disease diagnosis, and results from other clinical tests. 
Note that if the reference standard is defined using a standard-of-care clinical protocol, it may not be 
possible to claim improvement over with this protocol. In such a case, agreement-based studies can 
be performed and concordance with this protocol results could be claimed within certain confidence 
limits. For example, to evaluate the ability of an AI-based transmission-less attenuation compensation 
algorithm for SPECT/PET, we may evaluate agreement of the estimates yielded by this algorithm 
with that obtained when a CT is used for attenuation compensation[47]. 
 

d. Figure of merit: These are summarized in supplemental table 2. To evaluate performance on diagnosis 
tasks, the FoMs of sensitivity, specificity, ROC curves, and AUC can be used. In well-defined populations 
with known disease prevalence, parameters such at the PPV and NPV may be operationally significant, 
as well.   Since the goal is to demonstrate clinical utility, sensitivity and specificity may be clinically more 
relevant than ROC analysis. To demonstrate clinical utility in predictive and prognostic tasks, in addition 
to AUC, FoMs that quantify performance in predicting future events such as Kaplan-Meier estimators, 
prediction risk score and median time of future events can be used.   

Output claim from clinical evaluation study: The claim will state the following: 
- The clinical task for which the algorithm is evaluated. 
- The patient population over which the algorithm was evaluated.  
- The specific imaging and image-analysis protocol(s) or standards followed.  
- Brief description of study design: Blinded/non-blinded, randomized/non-randomized, 

retrospective/prospective/post-deployment, observational/interventional, number of readers.  
- Process to define reference standard and figure of merit to quantify clinical utility.  

Example claims:  
i.Retrospective study: The average AUC of 3 experienced readers on the task of detecting obstructive 
coronary artery disease from myocardial perfusion imaging (MPI) PET scans improved from X to Y, 
representing an estimated difference of 𝛥  (95% CI for 𝛥), when using an AI-based computer aided 
diagnosis (CAD) tool compared to not using this tool, as evaluated using a blinded retrospective study. 

ii.Prospective observational study: Early change in MTV measured from FDG-PET images using an AI-
based segmentation algorithm yielded an increase in AUC from X to Y, representing an estimated 
difference of 𝛥  (95% CI for 𝛥) in predicting pathological complete response in patients with stage II/III 
breast cancer, as evaluated using a non-randomized prospective observational study.  

iii.Prospective interventional study: Changes in PET-derived quantitative features using an AI algorithm 
during the interim stage of therapy were used to guide treatment decisions in patients with stage III 
NSCLC. This led to an X% increase (95% CI) in responders than when the AI algorithm was not used to 
guide treatment decisions, as evaluated using a randomized prospective interventional study.  

 
C.4. Post-deployment evaluation 
 



Objective: Post-deployment evaluation has multiple objectives including monitoring algorithm performance 
post clinical deployment, off-label evaluation, and collecting feedback for proactive development (Fig. 6).  
 
Evaluation strategies: 
a. Monitoring: Critically important in post-deployment monitoring of an AI method is quality and patient 

safety. It is imperative to monitor devices and follow reporting guidelines (such as adverse events), recalls 
and corrective actions. Fortunately, applicable laws and regulations require efficient processes in place. 
Often, logging is used to identify root causes for equipment failure. However, the concept of logging can be 
expanded: advanced logging mechanisms could be employed to better understand use of a particular AI 
method. A simple use case is logging the frequency with which an AI algorithm is used in clinical workflow. 
Measuring manual intervention for a workflow step that was designed for automation could provide a first 
impression of the performance in a clinical environment. However, more complex use cases may include 
the aggregation of data on AI-method performance and how this impacted patient and disease 
management. For wider monitoring, developers should also seek feedback from customers, including focus 
groups, customer complaint and inquiry tracking, and ongoing technical performance benchmarking[48]. 
This approach may provide additional evidence on algorithm performance and could assist in finding areas 
of improvements, clinical needs not yet well served or even deriving a hypothesis for further development. 
Advanced data logging and sharing must be compliant with applicable patient privacy and data protection 
laws and regulations. 

Routinely conducted image-quality phantom studies provide a mechanism for post-deployment 
evaluation, in particular as sanity checks to assess that the AI algorithm was not affected by a maintenance 
operation such as a software update. These studies could include assessing contrast or SUV recovery, 
absence of non-uniformities or artifacts, and cold-spot recovery, and other specialized tests depending on 
the AI algorithm. Also, tests can be conducted to assure that there is a minimal or harmonized image 
quality as required by the AI tool for the configurations as stated in the claim.  

AI systems likely will operate on data that is generated in non-stationary environments with shifting 
patient populations and where clinical and operational practices change over time[8]. Post-deployment 
studies may be needed to identify these dataset shifts and assess if recalibration or retraining of the AI 
method may be necessary to maintain performance[49] [50]. Monitoring the distribution of various 
descriptors of the patient population, including the demographics and the prevalence of the disease can 
provide cues for detection of dataset shifts. In case of changes in these demographics, the output of the AI 
algorithm can be verified by 
physicians for randomly selected 
test cases. A possible solution to 
data shift is continuous learning of 
the AI method[51]. In supplemental 
section B, we discuss strategies[52-
54] to evaluate continuous-learning-
based methods.  

 
b. Off-label evaluation:  Typically, an 

AI algorithm is trained and tested 
using a well-defined cohort of 
patients, in terms of patient 
demographics, applicable 
guidelines, practice preferences, 
reader expertise, imaging 
instrumentation, and acquisition and 
analysis protocols. However, the 

 
Fig. 6: An eye chart showing the different objectives of post-deployment 

monitoring, grouped as a function of the scope and goal of the study 
 



design of the algorithm may suggest that an algorithm may exhibit acceptable performance in patient 
groups outside of the intended scope of the algorithm. Here, a series of cases is appropriate to collect 
preliminary data that may suggest a more thorough trial. An example is a study where an AI algorithm that 
was trained on patients with lymphoma and lung cancer[55] showed reliable performance in patients with 
breast cancer[56]. Evaluation of AI algorithms in off-label cohorts can provide evidence of clinical utility 
beyond the settings initially targeted. 
 

c. Collecting feedback for proactive development: Medical products typically have a lifetime longer than a 
decade. This motivates proactive development and maintenance to ensure that a product represents state 
of the art throughout its lifetime. This may be imperative for AI where technological innovations are 
expected to evolve at a fast pace in the coming years. A deployed AI algorithm offers the opportunity to 
pool data from several users. Specifically, registry approaches enable cost efficient pooling of uniform data, 
multi-center observational studies, and POC studies that can be used to develop a new clinical hypothesis 
or evaluate specific outcomes or particular disease.  

 
Figures of merit: We provide the FoMs for the studies where quantitative metrics of success are defined.  

● Monitoring study with clinical data: Frequency of clinical usage of the AI algorithm, number of times the 
AI-based method changed clinical decisions or affected patient management. 

● Monitoring study with routine physical-phantom studies: Since these are mostly sanity checks, similar 
FoMs as when evaluating POC studies (Sec. C.1) may be considered. However, in case task-based 
evaluation is required, FoMs as provided in Sec. C.2 may be used.     

● Off-label evaluation: Similar FoMs as when evaluating technical efficacy and clinical utility.  
 
D. Discussions and Summary  
The key recommendations from this manuscript are summarized in Table 2. These are referred to as the 
RELAINCE (Recommendations for Evaluation of AI for Nuclear Medicine) guidelines, with the goal of 
improving the reliance of AI for clinical applications. Unlike other guidelines for the use of AI in radiology[57-
59], these guidelines are exclusively focused on best practices for AI-algorithm evaluation.  

This report advocates that an evaluation study should be geared towards putting forth a claim. The 
objective of the claim can be guided by factors such as the degree of impact on patient management, level of 
autonomy, and the risk that the method poses to patients. Risk categories have been proposed for medical 
software by the International Medical Device Regulators Forum (IMDRF) and subsequently adopted by the 
FDA[60]. The proposed risk categories range from 1 (low risk) to 4 (highest risk) depending on the vulnerability 
of the patient and the degree of control that the software has in patient management. The pathway that a 
developing technology will take to reach clinical adoption will ultimately depend on which risk category it 
belongs to, and investigators should assess risk early during algorithm development and plan accordingly[61].  

In this report, we have proposed a four-class framework for evaluation. For clinical adoption, an 
algorithm may not need to pass through all classes. Further, not all these classes may be fully relevant to all 
algorithms. For example, an AI segmentation algorithm may require technical but not necessarily clinical 



evaluation. The types of studies required for an algorithm will depend on the claim. A developer may choose to 
report POC, technical, and clinical evaluation in the same multi-part study.  

These evaluation studies should be multidisciplinary, and include computational imaging scientists, 
physicians, physicists, and statisticians right from the study-conception stage. In particular, physicians should 
be closely involved since they are the end users of these algorithms. Previous publications have outlined the 
important role of physicians in evaluation of AI algorithms[62], including for task-based evaluation of AI 
algorithms for nuclear medicine[16]. 

Class of evaluation Recommendation 

Proof of concept 
evaluation 

Ensure no overlap between development and testing cohort. 

Check that ground-truth quality is reasonable. 

Provide comparison with conventional and state-of-the-art methods. 

Choose figures of merit that motivate further clinical evaluation. 

Technical 
evaluation 

Choose clinically relevant tasks: Detection/quantification/combination of both. 

Determine the right study type: Simulation/phantom/clinical. 

Ensure that simulation studies are realistic and account for population variability. 

Testing cohort should be external. 

Ground truth should be high quality and correspond to the task 

Define an optimal strategy to extract task-specific information 

Choose figures of merit that quantify task performance. 

Clinical evaluation 

Determine study type: Retrospective, prospective observational, prospective 
interventional, or post-deployment real-world studies 

Testing cohort must be external. 

Collected data should represent the target population as stated in the claim. 

Reference standard should be high quality and be representative of clinical utility. 

Figure of merit should reflect performance on clinical decision making. 

Post-deployment 
evaluation 

Monitor devices and follow reporting guidelines. 

Consider designing phantom studies as sanity checks to assess routine performance. 

Periodically monitor data drift. 

For off-label evaluation, follow recommendations as in clinical/technical evaluation 
depending on objective. 

Table 2: RELAINCE guidelines 
 
 



In summary, AI-based technologies present an exciting toolset for advancing nuclear medicine. We 
envision that following these best practices for evaluation will assess suitability and provide confidence for 
clinical translation of these methods, and provide trust for clinical application, ultimately leading to 
improvements in quality of healthcare.  
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