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ABSTRACT 

Purpose: To evaluate whether radiomics from [18F]-FDG PET and/or MRI before re-irradiation (reRT) of 

recurrent head and neck cancer (HNC) could predict the occurrence and the location “in-field” or “outside” of a 

second locoregional recurrence (LR).  

Methods: Among the 55 patients re-irradiated at curative intend for HNC from 2012 to 2019, 48 had an MRI 

and/or PET before the start of the reRT. Thirty-nine radiomic features (RF) were extracted from the reirradiated 

GTV (rGTV) using LIFEx software. Student t-tests and Spearman Correlation Coefficient were used to select the 

RF that best separate patients who recurred from those who did not, and “in-field” from “outside” recurrences. 

Principal component analysis involving these features only was used to create a prediction model. Leave-one-

out cross-validation was performed to evaluate the models.  

Results: After a median follow-up of 17 months, 40/55 patients had developed a second LR, including 18 “in-field” 

and 22 “outside” recurrences. From pre-reRT MRI, a model based on three RF (GLSZM_SZHGLE, GLSZM_LGLZE 

and skewness) predicted whether patients would recur with a balanced accuracy (BA) of 83.5%. Another model 

from pre-reRT MRI based on three other RF (GLSZM_ LZHGE, NGLDM_Busyness and GLZLM_SZE) predicted 

whether patients would recur “in-field” or “outside” with a BA of 78.5%. From pre-reRT PET, a model based on 

four RF (Kurtosis, SUVbwmin, GLCM_Correlation and GLCM_Contrast) predicted the LR location with a BA of 

84.5%.  

Conclusion: RF characterizing tumor heterogeneity extracted from pre-reRT PET and MRI predicted whether 

patients would recur, and whether they would recur "in-field" or "outside".  

Keywords: re-irradiation; head and neck cancer; radiomics; multimodal imaging. 
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1. INTRODUCTION 

Despite the numerous innovations in radiation therapy (RT) in the last few years, in particular the development of 

intensity-modulated radiation therapy (IMRT) and the use of new targeted therapies in combination with RT [1], 

the risk of local recurrence after a first irradiation for head and neck cancer (HNC), particularly in the skull base, 

remains high [2,3]. The therapeutic modality most frequently used for the management of these local recurrences 

is surgery whenever possible [4–6]. Nevertheless, in some cases, surgery is not possible, either because the tumor 

infiltrates adjacent structures, especially vessels, and becomes unresectable, or because the patient is not 

operable due to comorbidities. In this case, the indication of a re-irradiation (reRT), with or without chemotherapy, 

is increasingly discussed in multidisciplinary staff. However, the risk of a second recurrence after reRT remains also 

very high. In a recent meta-analysis that reported the outcomes of 1635 patients reirradiated for recurrent HNC, 

more than half of the patients developed a second recurrence within two years of the end of the reRT [7]. 

Furthermore, in a recent pattern-of-failure study, Margalit et al reported that approximately half of these second 

local recurrences occurred within the re-irradiated GTV (rGTV), while the other half occurred outside the field 

(34%) or at the margin (14%) of the isodose line of prescription [8].  

The selection of patients for reRT is complex, especially considering the high risk of severe toxicities occurring 

within the two years following radiotherapy (up to 50%) [9]. Thus, a prediction of the risk of a second recurrence 

would allow the selection of patients for whom this treatment modality is the best option or to consider an 

alternative treatment. Several nomograms have been proposed to help the radiation oncologist for this patients 

selection but have not been widely adopted [10–13]. Moreover, none of these nomograms has included radiomic 

analysis of pre-reRT images. In addition, prior knowledge of whether the recurrence is likely to occur in field or 

outside could enable adapting the treatment of these patients. For patients at high risk of in-field recurrence, the 

dose could be escalated in the areas at highest risk of recurrence [14,15]. For patients at high risk of recurrence 

outside the GTV, their surveillance could be adapted. In addition, predicting the location of this second recurrence 

would be useful to define the target volume, as there is currently no consensus on the CTV margins to be applied 

around the rGTV [16].  

Several recent studies have shown that multimodal imaging, especially PET and MRI, and radiomics, could be 

useful to predict the risk of recurrence and to discriminate the regions with the highest and lowest risks of 

recurrence. In a recent study, Zhao et al. identified in a large cohort of recurrent nasopharyngeal carcinomas deep 

learning signatures from pre-reRT PET associated with overall survival [17]. Furthermore, in a small series of 

fourteen patients irradiated for nasopharyngeal carcinoma, Akram et al. have shown that several radiomic 

features extracted from pre-treatment MRI were significantly different between recurrent and non-recurrent 

regions [18]. Moreover, Yan et al. showed in a study including 28 patients that the maximum standardized uptake 

value (SUVmax) and a dose response matrix from multiple FDG-PET/CT images obtained before and during the 

first weeks of chemotherapy for head and neck squamous cell carcinomas could predict local recurrence [19].  

The objective of our study was to determine whether multimodal imaging, including [18F]-FDG PET and MRI, 

together with radiomics, could be useful to predict the risk of second recurrence of HNC and the “in-field” or 
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“outside” location of this second recurrence, with the objective of selecting recurrent HNC patients that would 

most benefit from reRT and to optimize treatment plans in this setting. 

2. MATERIAL AND METHODS 

2.1. Patients 

From August, 2012 to April, 2019, 55 patients received reRT at Institut Curie for a recurrent HNC. The diagnosis of 

local relapse after the initial RT was proven by biopsy or surgical specimen. The reRT was delivered after surgery 

when complete resection was not obtained or without surgery when lesions appeared to be unresectable. The 

treatment of each patient was discussed by a multidisciplinary team. After the end of the reRT, MRI, CT, and/or 

PET/CT scans of the neck were performed every six months during the first five years, and every 12 months 

thereafter or until death. Locoregional failure (LRF) was detected within the head and neck by either clinical 

examination, and/or imaging, and/or biopsy. This study was approved by the Ethics Committee of Institut Curie on 

07/07/20. Re-irradiation parameters were reported in a previous study[20]. 

2.2. Image acquisition 

All patients included in this study had [18F]-FDG PET and/or MRI before the reRT and at the time of local 

recurrence. Several different devices were used for [18F]-FDG PET imaging: DISCOVERY STE, DISCOVERY IQ, 

DISCOVERY MI, DISCOVERY 610 ELITE, DISCOVERY  710, DISCOVERY 690 from GE Healthcare and GEMINI, GEMINI 

GXL from Philips. Median blood glucose level was 5.2 mmol/l (IQR: 5.1 – 6.1). Median time after FDG injection was 

60 min (IQR: 60 – 63.8). [18F]-FDG PET characteristics are summarized in Sup. Table 1. MRI were acquired on 

Siemens Symphony Tim, Siemens Aera, Siemens AVANTO FIT, GE Optima MR450 scanners. Gadopentetate 

dimeglumine at 0.1 mmol/kg of body weight was administered for contrast enhanced scans. Out of the various 

MRI sequences that were acquired for each patient, we selected the contrast-enhanced fat-suppressed T1-

weighted spin echo sequence for analysis [21]. The median voxel size was 0.74 mm3 (IQR: 0.45 – 1.01). The N4 

parametric bias field correction (Slicer software [22]) was used for correcting the nonuniform intensity in MRI [23]. 

2.3. Image analysis 

The pre-reRT [18F]-FDG PET and/or MRI were fused with CT simulation images using rigid registration with Eclipse 

treatment planning system (Varian Medical Systems, Palo Alto, California). All reirradiated GTV (rGTV) were 

delineated at the time of recurrence diagnosis. Using the PET images, the rGTV was segmented based on the 

hypermetabolism defined as SUV > 3. Using the MRI images, the rGTV was segmented based on the contrast 

enhancement. These fused pre-treatment MRI and/or PET and CT images together with the rGTV contours and 

95% isodose lines were retrieved from Eclipse Treatment Planning System.  

Thirty-nine radiomic features were extracted from rGTV using LIFEx software v 7.0.10 [24] after 2x2x2mm3 spatial 

resampling and a fixed bin size of 0.157 SUV units between 0 and 20 SUV for PET images, and 1x1x1mm3 spatial 

resampling and a relative intensity rescaling with 128 grey levels between the minimum and maximum value in 

the rGTV for MRI. In the PET images, these 39 radiomic features included three SUVs (SUVmin, SUVmax and 

SUVpeak), five first order statistics derived from the gray-level histogram: mean, variance, skewness, kurtosis, 



 5 

excess kurtosis and 31 textural features. Sup.Figure 1 summarized the radiomics workflow for [18F]-FDG PET 

imaging analysis. In the MRI images, the same features were calculated, except that the three SUVs were replaced 

by three MR intensity values: minimum intensity in the rGTV, maximum intensity in the rGTV, and mean intensity 

in the 1 mL sphere that contained the largest mean value in the rGTV. Sup. Table 2 summarized the 31 extracted 

textural features. 

2.4. Pattern of failure study 

For all patients with locoregional relapse or second primary HNC after reRT, the recurrent tumor volume (Vrecur) 

was identified in the MRI and/or PET images obtained at the time of diagnosis of second recurrence. The contours 

of this volume were validated for each patient by at least a nuclear physician (LC) and/or a radiologist (CAE) expert 

in this pathology. The exact site and extent of each recurrent tumor were then compared to the pretreatment 

planning CT datasets, focusing on the 95% isodose lines. The recurrences were categorized according to previously 

published criteria [25] as occurring inside or outside the irradiated targets: the Vrecur was deemed “in-field” if the 

majority of Vrecur was within the 95% isodose; “marginal” if > 20 % and ≤ 50% of Vrecur was within the 95% 

isodose; or “outside” if less than 20% of the Vrecur was inside the 95% isodose (Figure 1). 

2.5. Statistical analysis 

Follow-up duration was calculated from the date of the end of reRT to the last clinical follow-up. Baseline 

characteristics were summarized as numbers and percentages for qualitative data, and as means and standard 

deviations or medians with the minimum and maximum (or inter-quartile range) for continuous variables. Overall 

survival (OS) was defined as the time between the date of the end of reRT and the date of death for deceased 

patients. Patients still alive were censored at the date of their last news. Locoregional failure-free survival (LFFS), 

including local and nodal progression, was calculated from the date of the end of reRT until the date of LRF. In the 

absence of any event, patients were censored at the date of their last news. Survival distributions were estimated 

by the Kaplan – Meier method.  

This radiomics analysis was divided in two parts. A first study aimed at separating patients who developed 

recurrence from patients who did not relapse based on the PET and/or MR radiomic features measured before 

reRT. A second study investigated whether we could distinguish between patients who developed recurrence in-

field from patients whose recurrence was outside the rGTV based on the PET and/or MR radiomic features 

measured before reRT. For both studies, Shapiro-Wilk normality tests were carried out on the differences 

observed between the groups (group recurrence vs. group no recurrence on one hand, group in-field vs. group 

outside on the other hand) for the 39 features, and p-values < 0.05 were considered significantly different. Paired 

t-tests were performed on the features and Wilcoxon signed-rank tests were carried out on the features that 

violated the normality assumption. Spearman Correlation Coefficient values with p-values and correlograms were 

computed for the features that were significantly different between groups, to identify features reflecting similar 

information. Principal component analysis (PCA) was then performed on features that were significantly different 

between the groups to reduce dimensionality and determine whether patients from the two groups could be 

linearly separated in that space. Wilks’s test was applied to test whether the barycenter of the two groups had 
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significantly different coordinates in the two-dimensional (2D) space built using the first two principal components, 

a p <0.05 indicating that the barycenter had significantly different coordinates.  

Given the small number of patients, leave-one-out cross-validation was performed to validate the prediction 

model established from the PCA projections. In brief, PCA space generated by the first 2 principal components was 

created on N-1 patients. Based on the analysis of the data in this 2D space, an optimal cut-off was determined on 

the first dimension only (the second dimension had no separating power) to maximize the Youden index 

(sensitivity + specificity -1) for separating the 2 groups. Then, the Nth patient was projected in the PCA space and 

was assigned to one of the 2 groups as a function of its position with respect to the cut-off. This assignment was 

compared to the true patient classification. The process was repeated for all the N patients. A confusion matrix 

was then constructed to determine the performance of the model. Balanced accuracy (optimal value = 100%), 

Sensitivity (optimal value = 100%), and Specificity (optimal value = 100%) were reported to assess the performance 

of the prediction model. A permutation test was then performed (100 repetitions) for each situation in order to 

assess the significance of the results.  

In addition, for each classification task, Receiver Operator Characteristic (ROC) analysis were performed on the 

whole cohorts (without any leave-one-out strategy) to compute Area Under the Curve (AUC) and 95% CI were 

estimated by 2000 boostraps [26]. Similarly, using the whole cohort, Harrell’s concordance index (C-index) was 

used to assess the performance of the prediction model using pre-reRT MRI to predict the recurrence time. 

All statistical analyses were performed using R software [27]. 

3. RESULTS 

3.1. Population 

The basal characteristics of these 55 patients are summarized in Table 1. The majority of patients were males 

(70.9%) and the median age was 51 (IQR: 47.5 – 61). The main sites of recurrence were the nasopharynx (N=13), 

the nasal cavity and paranasal sinus (N=11), the oropharynx (N=8), and the regional lymph nodes (upper jugular 

group, retropharyngeal, retrostyloid, N=7).  Half of these patients were re-irradiated with proton while the other 

half were re-irradiated using X-rays (mainly intensity-modulated radiation therapy [IMRT]). The median follow-up 

for the entire cohort was 17 months (IQR: 7 – 41), and the median OS was 32 months (IQR: 17 – 46). The one- and 

two-years OS were 71% [95% CI: 60%-84.7%] and 56% [43%-72%], respectively (Figure 2A). Over the follow-up 

period, 40/55 (72%) patients have developed a second locoregional recurrence, including 18 “in-field” and 22 

“outside” recurrences. None of the recurrences was “marginal”. Histological verification of second recurrent 

tumor was available in 18/40 cases. The one- and two-years LFFS were 53% [95% CI: 41%-69%] and 29% [18%-

45%], respectively (Figure 2B). The OS and the LFFS were not significantly different between the “on-field” and 

“outside” groups (p = 0.56, Sup Figure 2A and p=0.43, Sup Figure 2B, respectively).  

Among the 55 included patients, 87.3% had pre-re-irradiation imaging and could be included in the radiomic 

analysis (Figure 3). Among the 33 patients with MR imaging before reRT, 21 developed a second locoregional 

recurrence, including 9”in-field” and 12 “outside” recurrences. Among the 30 patients with PET imaging before 
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reRT, 23 developed locoregional recurrences, including 9 “in-field” and 14 “outside” recurrences. There was no 

“marginal” recurrence. Among the 40 patients with locoregional recurrences, 10 had PET and MRI before the reRT. 

3.2. Prediction of the recurrence 

Among the 39 extracted features from the reirradiated GTV segmented on MRI, eight were significantly different 

(p < 0.05) between the patients who developed recurrences and the patients who did not: Skewness from the 

gray-level histogram, three features calculated from the Gray-Level Run Length Matrix (GLRLM): High Grey Level 

Run Emphasis (HGLRE), Short Run High Grey Level Emphasis (SRHGLE), and Long Run High Grey Level Emphasis 

(LRHGLE), and 4 features calculated from the Gray Level Size Zone Matrix (GLSZM): Low Gray Level Zone Emphasis 

(LGLZE), High Gray Level Zone Emphasis (HGLZE), Small Zone Low Grey Level Emphasis (SZLGLE), and Small Zone 

High Grey Level Emphasis (SZHGLE) (Sup Figure 3).  

The correlation analysis between these eight features (Sup. Fig. 4) showed that many of the eight selected features 

had a strong correlation (Spearman correlation coefficient rs > 0.8). For further analysis, we selected only the three 

features that were the least correlated with the others (rs ≤0.8): SZHGLE, LGLZE and skewness. Each pre-RT GTV 

was thus characterized by these three feature values. To further reduce dimensionality, a principal component 

analysis (PCA) was applied on the set of 33 vectors of three features (one vector per patient that had an MRI 

before reRT). The first two dimensions of the space spanned by the principal components (PC) expressed 88.5% 

of the total dataset variance. The group of patients with recurrence was well separated from the group of patients 

without recurrence in that 2D-space (p < 0.02) (Figure 4). “Recurrence” group corresponded to regions with high 

SZHGLE and low LGLZE and skewness (Sup. Figure 5). Leave-one-out cross-validation confirmed the excellent 

balanced accuracy of the model = 84% (Se = 91%, Spe = 76%) with only six patients misclassified (one “recurrence” 

classified as “no recurrence” and five “no recurrences” classified as “recurrences”). These results were significantly 

higher than those from the permutation experiment (p<0.05, Sup. Figure 6). The AUC from ROC analysis was 0.85 

[95%CI: 0.72-0.98]. The Harrell’s C-Index of this pre-reRT MRI radiomic signature was 64%. 

Among the 39 features extracted from the reirradiated GTV segmented on PET, only the Coarseness textural 

feature calculated from the Neighborhood Gray-Level Different Matrix (NGLDM) was significantly lower (p < 0.05) 

for the patients who developed recurrences compared to the patients who did not (Sup. Figure 7). Based on this 

feature, the leave one out cross validation found a balanced accuracy = 69% (Se = 42%, Spe = 95%) with five out 

of 30 patients misclassified (one “recurrence” classified as “no recurrence” and four “no recurrences” classified as 

“recurrences”). This result was not significantly higher than the one obtained with the permutation experiment (p 

= 0.09, Sup. Figure 8). The AUC from ROC analysis was 0.64 [95% CI: 0.30-0.97]. 

3.3. Prediction of the location of the recurrence from MRI  

Among the 39 features extracted from the reirradiated GTV segmented on MRI, ten were significantly different (p 

< 0.05) between the patients who had “in-field” and “outside” recurrences: Contrast from the Gray Level Co-

occurrence Matrix (GLCM), 3 from the GLRLM: Short Run Emphasis (SRE), Long Run Emphasis (LRE) and Run 
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Percentage (RP), 3 from the NGLDM: Contrast, Busyness and Coarseness, 3 from GLSZM: Small Zone Emphasis 

(SZE), Large Zone High Gray Emphasis (LZHGE), and Zone Percentage (ZP) (Sup. Figure 9).  

The correlation analysis between the features showed that most of these 10 selected features were strongly 

correlated (rs > 0.8). For subsequent analysis, we selected only the three features that were the least correlated 

with the others (rs ≤ 0.8): LZHGE, Busyness, and SZE (Sup. Figure 10). Principal component analysis (PCA) was 

applied on the set of 21 vectors (corresponding to the 21 patients with MR who experienced recurrence) of these 

three significant features. The first two dimensions of the PCA space expressed 89.5% of the variance. In that 2-

dimensional PCA space, the “in-field” and “outside” groups were well separated (p < 0.02) (Figure 5A). “In-field” 

group corresponded to regions with high LZHGE and Busyness, whereas “Outside” group corresponded to regions 

with high SZE (Sup. Figure 11). Leave-one-out cross-validation yielded a 79% balanced accuracy of the model (Se 

= 66%, Spe = 91%with only four patients out of 21 misclassified (three “in-field” classified as “outside” and one 

“outside” classified as “in-field”). These results were significantly higher than those from the permutation 

experiment (p<0.05, Sup. Figure 12). All the ten patients with MRI and PET before reRT were well classified with 

this MRI based predictive model. The AUC from ROC analysis was 0.85 [95% CI: 0.66-1]. 

3.4. Prediction of the location of the recurrence from PET 

Among the 39 features extracted from the reirradiated GTV segmented on PET, four were significantly different 

(p < 0.05) between the patients who had “in-field” and “outside” recurrences: Kurtosis, SUVmin, and Correlation 

and Contrast from the GLCM (Sup. Figure 13).   

The correlation analysis showed that these four features were not strongly correlated (rs ≤ 0.8) (Sup. Figure 14). 

All four were then used for further PCA analysis. The first two dimensions of PCA expressed 75.1% of the total 

variance. Again, the “in-field” and “outside” rGTV groups were well separated in a 2D-space spanned by these first 

two principal components (p < 0.02) (Figure 5B). “In-field” group corresponded to regions with high 

GLCM_Contrast and GLCM_Correlation, and low Kurtosis and SUV min (Sup. Figure 15). Leave-one-out cross-

validation yielded a 84.5% balanced accuracy of the model (Se = 77%, Spe = 92%) with only three patients 

misclassified out of 23 (two “in-field” classified as “outside” and one “outside” classified as “in-field”). These results 

were significantly higher than those obtained using the permutation experiment (p < 0.05, Sup. Figure 16). The 

AUC from ROC analysis was 0.84 [95%CI: 0.63-1]. Among the ten patients with PET and MRI before reRT, nine were 

well classified with this PET based predictive model.  

4. DISCUSSION 

In the present study, we have reported the outcomes of 55 patients with recurrent HNC reirradiated for curative 

intend with X-rays (essentially VMAT) or protontherapy (PSPT). The two-year OS observed in the present study 

(55.6% [43.2%-71.7%]) was consistent with the two-year OS reported in two recent meta-analyses that analyzed 

the outcomes of patients reirradiated with IMRT for recurrent HNC: 45.7% (95% CI: 41.4%-50.1%) (17 trials) [7] 

and 41.3% (95% CI: 37.3%–45.7%) (39 studies included 3766 patients) [28], respectively. The two-year LFFS 

observed in our study was 28.6% [18.1%-45.1%]. This is relatively low compared to the two-year LFFS reported in 
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both sub-mentioned meta-analyses: 51.9% (95% CI: [46.4%-57.3%]) and 48.8% (95% CI: [43.7%–54.5%]), 

respectively. Yet, in Dionisi’s meta-analysis, the included series were highly heterogeneous (I2=82.7%, P < 0.0001), 

with different location, histology, combination of treatment (surgery, chemotherapy). However, the two-year LFFS 

observed in our series was similar to the two-year LFFS in Popovtzer et al.’s study [29], in which the authors 

included a majority of skull base tumors. Besides, the relatively low LFFS observed in our study could be due to 

the size of the target volumes, with a median reRT CTV and PTV of 49.2 mL and 104.4 mL, respectively.  Indeed, in 

a prospective study including 21 patients reirradiated for a recurrence of HNC, Chen et al. showed that the only 

identified parameter predictive of local recurrence was the planning target volume [30]. Patients with a tumor 

volume > 27 mL had a worse prognosis. Among the 40 patients with second locoregional recurrence, we observed 

18 (45%) “in-field” and 22 (55%) “outside” recurrences. This is consistent with the results reported by Margalit et 

al. [8] who reported 48.6% “in-field” and 48.5% “outside” or “marginal” locoregional recurrences (2.9% unknown). 

In contrast to Margalit et al, we did not find any association between surgery vs. no surgery status and "in-field" 

or "outside" location of recurrence. 

In our study, we have attempted to provide as much information as possible to ensure that our data can be easily 

replicated by other teams to validate our findings. Indeed, rapid  advances  in  automated  methods  for  extracting  

large  numbers  of  quantitative  features  from  medical  images  have  led  to  an  explosion  of  publications  

exploring  combinations  of  features  as  potential imaging  biomarkers  for  diagnosis, clinical prognosis, treatment 

selection, or other decision  support [31]. However, to the best of our knowledge, sophisticated radiomic 

signatures identified through a high-throughput pipeline are not used in the clinic [32]. One reason is the lack of 

independent external validation studies that could confirm the performance of the models and demonstrate their 

generalizability to different groups of patients. This lack of external validation is partly due to insufficient 

information provided in publications to allow replication of the models in external validation cohorts [33]. In 2020, 

Norgeot et al. provided a check list of the minimal information that should be completed in a radiomic original 

research to allow rapid replication and validation of radiomic and artificial intelligence based models [34]. The 

completed checklist can be found in Sup. Table 3, to encourage other teams to replicate our study and test our 

models.   

To the best of our knowledge, the present work is the first study assessing the predictive value of PET and MR 

radiomics features in the field of reirradiation for HNC. We found that before reRT, MRI radiomics features 

characterizing local grey-level intensity in the GTV to be re-irradiated had different values in patients who will 

relapse “in-field” or “outside”: “in-field” recurrences were associated with locally less uniform texture in the GTV, 

whereas “outside” relapses were associated with locally more uniform texture in the GTV. Several previously 

published studies have also reported the predictive value of intratumoral heterogeneity for patients irradiated for 

the first time for HNC. In a study involving pre-irradiation MRI, Alfieri et al.  found a signature associated with the 

patients outcomes that included three radiomics features correlated with tumor heterogeneity [35]. Akram et al. 

also performed a radiomics study in 14 patients irradiated with IMRT for nasopharyngeal carcinoma. A total of 

seven radiomics features extracted from pre-irradiation MRI and reflecting heterogeneity were significantly 

different between the recurrent and the non-recurrent regions [18].    
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We also found that before reRT, [18F]-FDG PET radiomics features characterizing the signal heterogeneity in the 

GTV to be re-irradiated had different values in patients who will relapse “in-field” or “outside”, further supporting 

the presence of biological information associated with the tumor aggressiveness captured by the images: “in-field” 

relapses were associated with higher metabolic heterogeneity in the GTV and “outside” relapses were associated 

with higher metabolic homogeneity in the GTV. In 2017, Bogowicz et al. have investigated the prognostic value of 

different radiomics features extracted from post-irradiation [18F]-PET of patients with HNC [36]. The prognostic 

model for local tumor control showed a good discriminative power with a concordance index higher than 0.7 in 

their both training and validation cohorts. This study showed that the heterogeneity of [18F]-FDG activity in the 

region of primary tumor observed 3 months post-irradiation was related to the risk of tumor recurrence. Higher 

histogram range and higher GLCM difference entropy corresponded to higher risk of tumor recurrence. This study 

therefore supports the idea that radiomic parameters related to tumor contrast could carry information on the 

risk of local recurrence. In a recent study, Zhao et al. studied the predictive value of pre-reRT PET to identify 

patients with high or low prognostic after reRT for recurrent nasopharyngeal carcinoma [17]. They showed that 

PET/CT-based deep learning signatures were associated with overall survival and could be included in a nomogram 

to guide individual treatment. We could not replicate the model proposed in this study because some information 

was missing, in particular the precise definition of the region of interest, the extraction method of the studied 

image parameters and the selection of the studied features. In addition, this study involved only recurrent 

nasopharyngeal cancers and the authors did not explicit the deep learning signatures, making it impossible to 

reproduce their nomogram. 

It should also be noted that among the ten patients with locoregional recurrences who had PET and MRI before 

reRT, nine were well classified with the two modalities based predictive models. Thus when the two modalities 

yielded the same classification, it was always correct. One patient was well classified on MRI but misclassified on 

PET. The combination of both modalities might thus be a relevant approach to increase the confidence in the 

classification. This is consistent with several recent studies that have shown that PET/MRI devices allow to precisely 

determine the pattern of failure of local recurrence of head and neck cancer after a first irradiation [37,38] and 

help the radiation oncologist in the staging and later treatment response evaluation in HNC [39]. 

The main limitations of our series are that it was retrospective, single-center and included a small number of 

patients, although our series in the largest of its kind published in the literature so far. This small number of 

patients is explained by the rigorous selection procedure: all included patients had to have been treated for an 

HNC with curative intent, and to have a minimum follow-up of 4 months. All patients included in the radiomic 

analysis were also required to have undergone PET and/or MRI imaging prior to reRT. Another limitation is the 

heterogeneity of the included patients with in particular different pathologies and different re-irradiation 

techniques (including a large portion of patients receiving protons). Preliminary studies were first performed by 

including only patients reirradiated with protons. Once the model was created, the data of patients reirradiated 

with photons were projected in the PCA plan. Sup. Figures 17-19 show that the majority of patients reirradiated 

with photons were well classified, for the status “recurrence” vs “no recurrence” and the pattern “in-field” and 

“outside”.  The same type of analysis was performed by including only patients reirradiated for squamous cell 
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carcinoma. Once the model was created, the data of patients reirradiated for other pathology subtypes were 

projected in the PCA plan. Sup. Figures 20 and 21 show that the majority of patients reirradiated for other 

pathology subtypes were well classified, both for the status “recurrence” vs “no recurrence” and the pattern “in-

field” and “outside”.  

In conclusion, the present study showed that radiomic features extracted from pre-reirradiation PET and MRI 

scans and reflecting intratumoral heterogeneity could predict the risk and the location of second recurrence for 

patients with recurrent head and neck cancer. All data were provided to allow rapid external validation based on 

a prospective cohort of a larger number of patients. 
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8. FIGURES CAPTIONS 

Figure 1: Examples of failure patterns 

This figure illustrates how “in-field” and “outside” recurrences were defined from the PET images (upper part) 

and the MRI (bottom part).  The reirradiated GTV is marked with a black star in the PET and a red star in the MRI. 

The square represents a physiological hypermetabolism. The recurrent tumor volume (red contour) was 

identified on PET or MRI at the time of diagnosis of the second recurrence. The green line represents the 95% 

isodose of the reirradiation plan, for the treatment of the first recurrence GTV segmented on pre-reirradiation 

PET and/or MRI. 

Figure 2: Kaplan-Meier Curve for overall survival (A) and locoregional-free survival (B) of the 55 patients 

Figure 3: Flow-chart 

Figure 4: Result of the principal component analysis comparing the “recurrence” vs. “no recurrence” groups 

from MRI features 

Figure 5: Result of the principal component analysis comparing the “in-field” vs. “outside” groups from MRI (A) 

and [18F]-FDG PET features (B) 
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Table 1: Characteristics of the 55 reirradiated patients 

Characteristics Nb % 
Age (median, IQR) 51 (47.5 – 61)  
   
Gender   
  Male 39 70.9 
  Female 16 29.1 
   
Retreatment disease site   
   Nasopharynx 13 23.6 
   Nasal cavity and paranasal sinus 11 20 
   Oropharynx  8 14.5 
   Nodes (upper jugular group, retropharyngeal, retrostyloid) 7 13 
   Skull base 5 9 
   Oral cavity 5 9 
   Parotid 5 9 
   Hypopharynx/larynx 1 1.9 
   
Histology   
   Squamous cell carcinoma 26 47.3 
   Undifferentiated carcinoma nasopharyngeal tumor 17 30.9 
   Adenoid Cystic Carcinoma 10 18.2 
   Other 2 3.6 
   
Previous treatment course: technique     
   3D-CRT 22 40 
   IMRT 14 25.5 
   Tomo/VMAT 17 30.9  
   Proton (PSPT) 2 3.6 
Previous treatment course: RT total dose (Gy, [median, IQR]) 68 (65.5 – 70)  
   
Time elapsed since previous irradiation (months, [median, IQR]) 35 (20 – 71)   
   
Surgery before reRT 18 32.7% 
   
reRT Volumes   
   GTV (cc, [median, IQR]) 22.5 (9.5 – 54.8)  
   CTV (cc, [median, IQR]) 49.2 (27.3 – 90.4)   
   PTV (cc, [median, IQR]) 104.4 (58.4 – 172.2)   
       
reRT techniques    
   3D-CRT 1 1.9 
   IMRT 15 27.3 
   Tomo/VMAT 12 21.8 
   Proton (PSPT) 27 49 
      
Overall treatment time during reRT (days, [median, IQR])  55 (48.8 – 58.3)  
   
Dose in target volumes   
   D95% CTV (Gy RBE, [median, IQR]) 57.2 (50.7 – 61.5)  
   D95% PTV (Gy RBE, [median, IQR]) 61.5 (56.5 – 65.3)  
   
Locoregional recurrences  40  72 
   In-field 18 45 
   Outside 22 55 
      Nodes 2 9 
      Mucosa 20 81 
   
Imaging before reirradiation 48 87.2 
   [18F]-FDG PET 30 54.5 
    Contrast Enhancement Fat Sat CUBE T1 MRI 33 60 
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