

Acute Myeloid Leukaemia following Direct Acting Antiviral drugs in HCV-infected patients: a 10 years' retrospective single-center study

Carole Scheifer, Elena Luckina, Bénédicte Lebrun-Vignes, Abdoul-Aziz Diop, Dominique Damais-Thabut, Damien Roos-Weil, Agnès Dechartres, Pascal

Lebray

► To cite this version:

Carole Scheifer, Elena Luckina, Bénédicte Lebrun-Vignes, Abdoul-Aziz Diop, Dominique Damais-Thabut, et al.. Acute Myeloid Leukaemia following Direct Acting Antiviral drugs in HCV-infected patients: a 10 years' retrospective single-center study. Clinics and Research in Hepatology and Gastroenterology, 2022, 46 (8), pp.102000. 10.1016/j.clinre.2022.102000. inserm-03868217

HAL Id: inserm-03868217 https://inserm.hal.science/inserm-03868217

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Acute Myeloid Leukaemia following Direct Acting Antiviral drugs 1

in HCV-infected patients: a 10 years' retrospective single-center 2 3 study

4 5

6

18 19

Scheifer Carole¹, Luckina Elena², Lebrun-Vignes Bénédicte^{2,3}, Diop Abdoul-Aziz⁴, Damais-

Thabut Dominique⁶, Damien Roos Weil¹, Dechartres Agnès⁵, Lebray Pascal⁶ 7

3 - EpiDermE, Univ Paris Est Créteil, Créteil, France.

20 **Corresponding author:**

- 21 Carole Scheifer, Départment d'Hématologie clinique, Assistance Publique Hôpitaux de Paris,
- 22 Hospital Pitié-Salpétrière, Paris, France
- 23 Mail: carole.scheifer@aphp.fr
- 24 Number of words:
- 25 Abstract Words: 357
- 26 Main text Words: 3632 (including figures and tables)
- 27
- 28
- 29
- 30

¹⁻ Sorbonne Université, Départment d'Hématologie clinique, Assistance Publique Hôpitaux de Paris, Hospital Pitié-Salpétrière, Paris, France 2- Sorbonne Université, Centre Régional de Pharmacovigilance, Assistance Publique Hôpitaux de Paris, Hospital Pitié-Salpétrière, Paris, France

⁴⁻ Sorbonne Université, Département d'information médicale, Assistance Publique Hôpitaux de Paris, Hospital Pitié-Salpétrière, Paris, France

⁵⁻ Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP.Sorbonne Université, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Paris, France

⁸⁹¹⁰ 11 12 13 14 15 16 17 6 Sorbonne Université, Département d'hépatogastroentérologie, Assistance Publique Hôpitaux de Paris, Hospital Pitié-Salpétrière, Paris, France

32 ABSTRACT

3	1	
\mathcal{I}		

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Background After several cases of peculiar hematological malignancies following introduction of new oral anti-hepatitis C virus (HCV) treatments in our recent practice, we aimed to systematically identify all cases of hematological malignancies (HM) in patients with chronic HCV infection and to compare them according to the prescription of oral anti-HCV Direct Acting Antivirals (DAA) treatment or not. Material/methods: In this single-center retrospective observational study, we included all patients with confirmed HM and chronic HCV infection managed between 2010 and 2019 in the Pitié-Salpêtrière hospital, Paris. Non-inclusion criteria were a benign hematological disorder, an HM preceding chronic HCV infection and HCV acute infection. We compared characteristics of patients who received DAA before HM diagnosis to those with no DAA before HM. Results: Over the 10 years, 61 cases of HM among HCV infected patients were identified (female 29%, median age of 58.0 years [IQR 17]). Twenty-one received DAA before the onset of HM (Group DAA+) and 40 did not (Group DAA-) including 22 having received DAA after HM. In the DAA+ group, oral NS5B, NS5A and NS3A inhibitors were used in 90, 76 and 29% respectively. HM developed in the two years following DAA initiation in 76%. Eight (38%)

50	had Non-Hodgkin Lymphoma, 5 (24%) had an Acute Myeloid Leukaemia (AML) including
51	two with a mixed phenotype, 2 each had Hodgkin Lymphoma, Multiple Myeloma or a
52	myeloproliferative disorder and one each had a chronic Lymphocytic Leukaemia or AL
53	Amyloidosis. In the Group DAA-, HM were NHL in 20(50%) patients, Myeloproliferative
54	neoplasms in 7 (17%), Multiple Myeloma in 5, Hodgkin Lymphoma in 3, Myelodysplastic
55	syndrome and AML in 2 (5%) each and Acute Lymphoblastic Leukaemia in one. No
56	significant difference between the groups DAA + and – was found according to age, sex, HCV
57	genotype, viral load, co-infection or type and exposition of previous HCV treatments. AML,
58	liver transplantation and cirrhosis were significantly more frequent in the DAA+ group ($p =$
59	0.020, 0.045 and 0.032, respectively).
60	Conclusion
61	AML seemed more frequent after using DAA treatments, notably in severe HCV patients
62	including cirrhotic and/or liver transplanted patients. A multicentric observational study is

63 ongoing to confirm and explore the results.

65 KEYWORDS

- 66 Hepatitis C virus
- 67 Hematological malignancies
- 68 Direct Acting Antivirals
- 69 Acute Myeloid Leukaemia
- 70 Mixed-phenotype Acute Leukaemia

- 72
- 12
- 73

74 INTRODUCTION

75	Chronic hepatitis C virus infection (HCV) remains a global public health concern affecting an
76	estimated 71.1 million (62.5–79.4) individuals worldwide with mortality four times higher
77	compared to general population (1-3).
78	The interferon-free direct antiviral agents (DAA), first used in 2011, have been a major
79	milestone in the HCV infection treatment due to their efficacy including on severe cirrhosis or
80	liver transplantation and their few side effects (4). Since 2016, the World Health Organization
81	recommends DAA as a first-line treatment without interferon for every chronic HCV infection
82	(5). DAA related viral eradication may result in a decreased risk of HCV related B-cell
83	lymphoma and possible regression of HCV related Non-Hodgkin Lymphoma (NHL) (6, 7).
84	However, several studies have suggested an increased early occurrence or recurrence of
85	hepatocellular carcinoma after DAA use, raising concerns about safety and oncogenicity (8, 9).
86	Nonetheless, these new insights have not been confirmed by other studies including meta-
87	analyses (10). Even though HCV infection and liver transplantation are known risk factors for
88	hematological malignancies (HM), predominantly of the B-cell type (4, 11, 12), some recent
89	case studies suggest a possible increase in hematological disorders secondarily to DAA
90	administration (13-17), which is consistent with our own experience.
91	This retrospective study aimed to identify and describe all cases of hematological malignancies

(HM) in patients with chronic HCV infection in hematology or hepatology units in our hospital
 <u>Abbreviations (in order of appearance)</u>: hepatitis C virus (HCV), hematological malignancies (HM), anti-HCV Direct Acting Antivirals (DAA), ⁵
 Acute Myeloid Leukaemia (AML), Non-Hodgkin Lymphoma (NHL), Mixed Phenotype Acute Leukaemia (MPAL)

- 93 and to compare characteristics of patients according to the prescription of oral anti-HCV Direct
- 94 Acting Antivirals (DAA) treatment or not.

95 MATERIALS AND METHODS

96 STUDY DESIGN AND SETTING

- 97 This is a single-center retrospective observational study.
- 98 IDENTIFICATION OF RELEVANT PATIENTS
- 99 Every adult patient with a HM and a chronic hepatitis C infection managed between
- 100 01/01/2010 and 28/03/2019 in the hematology and/or hepatology departments of the Pitié-
- 101 Salpêtrière hospital, in Paris, France was eligible. HM were defined according to WHO
- 102 classifications. Chronic HCV infection was defined as an infection lasting for at least 6 months
- 103 according to the hospital chart with at least one available HCV viral load. Patients were
- 104 identified through the list of in- and outpatients managed in the hematology or in the
- 105 hepatology departments. Non-inclusion criteria were HCV acute infection, benign
- 106 hematological disorder and HM preceding HCV. In patients with a first HM, a minimal period
- 107 of remission of 1 year before DAA administration was necessary to get included. Patients with
- 108 a diagnosis of HM < 3 months following DAA initiation were also excluded. This arbitrarily
- 109 limits the risk of including a patient with relapsing or subclinical HM at the initiation of DAA.
- 110 The retrospective analysis of anonymized data is allowed by French law and all the patients
- 111 during their medical care were informed of their right to refuse that their data may be used for
- 112 research purpose. Our study was locally registered according to the General Data Protection

113	Regulation.	All cases	s with a HM	A after a	a treatment	using	DAA	were	declared	to	the	loca	l
-----	-------------	-----------	-------------	-----------	-------------	-------	-----	------	----------	----	-----	------	---

114 pharmacovigilance centre.

115	We evaluated	whether eligible	patients had	l received DAA	and if so,	we recorded the date of	٥f
-----	--------------	------------------	--------------	----------------	------------	-------------------------	----

- 116 dispensation from the database provided by the Pitié-Salpêtrière pharmacy department.
- 117 Eligible patients were classified in 2 groups according to the sequence between DAA treatment
- and HM: Group DAA+ included patients who initiated their first DAA at least 3 months before
- 119 HM diagnosis. Group DAA- included patients with no DAA before HM.

120 DATA EXTRACTION

- 121 The following detailed information was retrospectively collected from the medical charts of
- 122 each patient:
- 123 Socio-demographic data including sex and age
- 124 Characteristics of the HCV infection: genotype, viral load at time of MH diagnosis, HIV or
- 125 HBV co-infection, severity of liver disease according to the combination of noninvasive tests
- 126 (Fibroscan[®] and/or Fibrotest[®]) or to a liver biopsy, hepatocellular carcinoma diagnosis.
- 127 Date of liver transplantation if applicable
- 128 Past HCV treatments including interferon, pegylated interferon or ribavirin use, with date and
- duration for each and DAA treatments with the type of combo drugs (NS5B, NS5A and NS3A
- 130 inhibitors).

131	- Risk factors for malignant hemopathy: hematological disease at risk, past exposure to chemo-
132	or radiotherapy, AIDS, solid organ transplantation or other immunosuppression.
133	- Hematological malignancy: type, date of diagnosis, time between the first administration of
134	DAA and occurrence of the HM, duration of follow up after HM diagnosis, treatment including
135	bone marrow transplantation, outcome (survival or death).
136	STATISTICAL ANALYSES
137	We compared baseline characteristics, types of HM and outcomes in consecutive HCV patients
138	with a HM diagnosis according to previous DAA therapy or not. As the hepatology unit
139	proposed many anti-HCV DAA protocols since 2011 and the patients could have been treated
140	with two or more DAA lines, we decided not to make a comparison by periods to limit the risk
141	of an analytic bias.
142	

143 STATISTICAL METHODS

144 All statistical analyses were done using RStudio Version 1.0.153. (R Core Team (2020). Patient

145 characteristics were described as numbers and percentages for categorical data and as medians

146 with interquartile range (IQR) for quantitative variables. Quantitative variables were compared

- 147 using the Wilcoxon-Mann-Whitney test; qualitative variables were compared by the Chi2 test
- 148 or the Fisher's exact test as appropriate. Survival times since diagnosis of HM were compared

150 was considered statistically significant. Cut-off date for data collection was 23/12/2020.

151

152 **RESULTS**

153 SELECTION PROCESS

- 154 From the 15,842 patients managed in the hematology department and the 3,499 patients
- managed in the hepatology department between 01/01/2010 to 28/03/2019, we identified 164
- 156 potentially eligible patients. From these, 103 patients were excluded mainly for a benign
- 157 hematological disorder (n = 49), or the absence of chronic HCV infection (n = 22) (Figure 1
- and Supplemental data 1). Finally, 61 patients had a history of HM and chronic VHC infection
- and were included in this study. All but four were followed in the hematology department of
- 160 our hospital.
- 161 Twenty-one patients had a history of DAA use before HM diagnosis and were included in the
- 162 DAA+ group. The DAA- group comprised 40 patients, having a history of chronic HCV
- 163 infection without any DAA prior to HM diagnosis with 18 patients that never received any
- 164 DAA and 22 having received DAA following HM diagnosis. Detailed information can be

165 found in Table 1.

166 PATIENT CHARACTERISTICS

167	Among the 61 HCV positive patients identified with HM, 29% were female with a median age
168	at diagnosis of HM of 58 years [IQR 17]. HCV genotype 1 represented 60% of the cohort.
169	Nine patients had an HIV infection, 2 an HBV co-infection. There was no significant difference
170	between DAA + and DAA- groups, including age, sex, HCV genotype or viral load, co-
171	infection, ALT levels, F Metavir stage at baseline, except for history of cirrhosis and liver
172	transplantation which were significantly more frequent in the DAA+ group (52% vs. 30%, $p =$
173	0.032 and 38% vs. 12.5%, $p = 0.045$, respectively).
174	ANTI-HCV TREATMENTS
175	Type of previous anti-HCV treatments is detailed in Table 1. Groups were not significantly
176	different in type and exposition of first line anti-HCV treatments with interferon and/or
177	ribavirin. Five of 21 patients in the DAA+ group received at least 2 DAA treatment lines with
178	the first line combining DAA with ribavirin $(n = 2)$ or ribavirin + interferon $(n = 3)$.
179	NS5B, NS5A and NS3A inhibitors were part of the last all oral DAA combo treatments in 90,
180	76 and 29% respectively (Supplemental data 2). Median exposition time to DAA was 3 months
181	[IQR 3]. Median time between initiation of DAA and HM diagnosis was 16.5 months [IQR
182	20.5] with all HM diagnosed within 6 years after DAA exposure including 3/4 in the first 2
183	years following DAA initiation.
184	TYPE OF HEMATOLOGICAL MALIGNANCIES

185	Of the 21 patients in the DAA + group, 8 (38%) had a NHL, including 4 EBV induced Post
186	Transplantation Lymphoproliferative Disease, vs. 20 NHL (50%) in the DAA- group ($p =$
187	0.42). Surprisingly, 5 (24%) patients in the DAA+ group had acute myeloid Leukaemia (AML)
188	vs. only 2 (5%) in the DAA- group, with a significant difference ($p = 0.02$). While both DAA-
189	patients with AML had previous HM known as risk factor, 3 of 5 DAA+ patients with AML
190	had no specific risk factor including 2 with a Mixed-phenotype Acute Leukaemia (MPAL), a
191	rare and poor-prognosis Leukaemia. Finally, 4 of the 5 DAA+ AML patients developed their
192	HM in the first 3 years following successful DAA combo therapy. All five received a NS5B
193	inhibitor (sofosbuvir). One of the 2 patients with mixed-phenotype acute Leukaemia had the
194	highest number of DAA treatment lines (3) and the largest total duration of sofosbuvir (9
195	months).
196	RISK FACTORS FOR HEMATOLOGICAL MALIGNANCIES
197	In the DAA+ group, only 2 of the 21 cases were associated with a delayed recurrence of a NHL
198	at 4 years and a multiple myeloma at eight years. Among the 19 patients with first onset HM,
199	ten patients (47%) had at least one risk factor for developing HM including:
200	- Long term immunosuppressive treatments for renal (n = 1, tacrolimus) or liver transplantation
201	(n = 6), for a mean duration of 6 years before HM.

	202	- HIV infection in 2	patients who develop	ed Hodgkin Ly	mphoma,	with a CD4	count of 168 and
--	-----	----------------------	----------------------	---------------	---------	------------	------------------

203	1121/m3 re	espectively.
-----	------------	--------------

204	- Predisposing	hematologic	condition	prior to DAA	(cf. Table 1	Part B) $(n=5)$
	1 0	0		1	\[/ / /

- 205 Comparing patients with and without DAA, as described in the Table 1, Part A, proportion of
- 206 previous hemopathy at risk (benign or malignant) or past chemo or radiotherapy were not
- 207 different between groups. Concerning patients on chronic immunosuppressive treatments,
- 208 although proportions of transplanted patients were similar between groups, we found that liver
- 209 transplanted patients were more frequently found in the DAA group of patients. To note, no
- 210 congenital risk factor was described in both groups.

211 OUTCOME

As DAA were authorized only in 2012, follow up was shorter in the DAA+ group with a

213 median post HM-follow up time of 21.1 vs. 42.6 months (p = 0.024). At the cut-off date

- 214 (23/12/2020), in the DAA+ group, one patient did not require specific treatment, one was lost
- to follow up, four achieved remission, six had stabilized their HM under treatment including 2
- 216 stem-cell transplantations (allogenic, n=1 and autologous, n=1) and nine died. Four of the five
- 217 AML cases in the DAA+ group died. Nonetheless, outcomes as blood marrow transplantation
- 218 requirement and mortality according to the Kaplan-Meier curves (Figure 2) did not

219	significantly	differ between	group DAA+ or	- but it should	be noted that the	e follow-up time
	<u> </u>					

220 was shorter in the DAA+ group.

221 **DISCUSSION**

- We described a total of 61 cases of HM in patients with a chronic HCV infection including 21
- HM cases developing after the use of DAA. Our study highlights the following points for the
- 224 patients using DAA: (1) types of HM seemed to differ when comparing patients with or
- 225 without previous DAA, with a significant higher proportion of AML cases among patients
- following DAA therapy.
- (2) Of the 5 AML in the DAA+ group, three including two rare cases of Mixed-phenotype
- 228 Acute Leukaemia had no recognized risk factors.
- (3) Three quarter of HM cases in the DAA treated patients occurred within two years after the

use of DAA.

- 231 To the best of our knowledge, no AML cases after DAA treatment have been reported yet. The
- difference in frequency between the 2 groups of patients concerning the history of cirrhosis or
- 233 liver transplantation may represent a confusion bias, yet these characteristics have to date never
- been associated with a higher risk of AML in the literature. Interestingly two of the five cases
- of AML in the group DAA+ were of mixed-phenotype meaning that they present morphologic
- and/or immunophenotypic characteristics of both myeloid and lymphoid lineages. These

237	MPAL usually represent only 4 to 8% of all acute Leukaemias and present an aggressive
238	clinical course, low complete remission and high recurrence rate (13). Both cases developed in
239	liver transplanted patients, although MPAL is not currently associated with solid organ
240	transplants nor immunosuppressive therapy. Therefore, our findings are quite astonishing and
241	need to be investigated by further studies. Furthermore, it may be of interest to know, that one
242	DAA + liver-transplanted case, with a NHL following DAA therapy treated by anthracyclines
243	developed secondarily an AML not registered in our study as developed after the cut-off date.
244	Previously described cases of HM following sustained viral response with DAA treatment
245	remain spare but start to seek for awareness: To the best of our knowledge, no AML cases and
246	only six cases of either early occurrence or relapse of NHL have so far been described (14-18).
247	They occur in a time interval between $1 - 19$ months after DAA treatment. None of these
248	patients had a liver transplantation.
249	Aside from liver transplantation, chronic hepatitis C infection is also known to be associated
250	with an increased risk of developing HM predominantly of B-cell type but not AML, whatever
251	the level of liver fibrosis (4, 11, 12, 19). The underlying pathogenesis is most likely the chronic
252	and continuous antigen stimulation leading to a permanent B-cell response with subsequent
253	genetic mutation and finally clonal and malignant B-cell proliferations (20). Another possible
254	explanation could be permanent B-cell damage induced either by HCV-derived viral protein

255	production inside B-cells or the transient intracellular infection (21). Viral eradication results in
256	hematological response in NHL in about two thirds of the cases suggesting a possible causal
257	connection between the HCV infection and the occurrence of lymphoma (22). Discordant
258	results were recently highlighted according to the influence of DAA on hematological risk
259	compared to the general population. A retrospective cohort study found a prevalence of NHL
260	after HCV DAA that was still 30-fold higher, (23). Another study points out that HCV viral
261	eradication with DAA may not be associated with a reduction in NHL risk in HCV population.
262	compared to the global population (24). Another one shows the disappearance of any higher
263	risk for all hematological cancer following DAA therapy (25). We also found B-cell type
264	lymphoma in cured HCV infections with DAA but at a weaker incidence than in patients
265	without DAA, which is consistent with a potential protective effect of viral eradication at an
266	early stage of the chronic infection, limiting the chronic inflammation and the risk of
267	developing lymphoma.
268	No formal hypothesis emerged yet for the cases of HM cases described. The persistence of
269	CD4 regulatory T cells, inhibiting CD8+ T-cells may be associated with a higher risk of
270	developing HM (26). Recently a study pointed a high level of vascular endothelium growth
271	factor (VEGF) after DAA treatment, which may accelerate tumor growth (27). Unfortunately,
272	no VEGF assay was performed in our cohort to corroborate this hypothesis.

273	Our study has several strengths. Hospital distribution of DAA allows capturing all patients
274	having received DAA since its authorization. We were able to analyse both hepatology and
275	haematology medical records for each patient, assure a long follow up duration and considered
276	multiple several confusion factors. We have been careful not to omit patients who have
277	benefited from treatment outside our hospital. But our study has limitations. First, information
278	collection was retrospective and therefore missing data or incorrect data may be an issue but no
279	variable exceeded 10% missing data. The number of included patients remains extremely small
280	which could result in a possible lack of power. No multivariate analysis was performed
281	because of the limited sample size and influence of a specific DAA could not be specifically
282	evaluated. According to univariate analysis, potential confounding factors may exist in our
283	study as patients in the DAA+ group had shorter follow-up time, more severe fibrosis/cirrhosis
284	and/or liver transplantation. However, all these factors are not known to be associated with
285	AML. Finally, we compared two groups of patients from different time sequences as DAA
286	treatment was progressively used in different schemes starting end of 2011. Therefore, our
287	results need to be taken with precaution and future larger studies are needed.
288	
289	

290 CONCLUSION:

291	In this comparative, retrospective and single-center study, we found, among HM in consecutive
292	HCV patients, an unexpected proportion of AML in patients treated with DAA treatment
293	compared to patients without DAA. AML cases included two rare mixed-phenotype forms.
294	Further studies including an ongoing multicentric observational study to confirm and explore
295	the results.
296	ACKNOWLEDGEMENTS
297	None
298	FUNDING SOURCES
299	No funding sources were perceived
300	IMPLICATIONS
301	CS and PL conceived the study.
302	EL, DAA and DRW helped with the acquisition of data

- 303 AD helped with the study design
- 304 All authors helped for the critical revision for important intellectual content and have approved
- 305 the final article.

311312 Bibliography

- 313 1. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling
 314 study. (2468-1253 (Electronic)).
- 315
 2. Zaltron S, Spinetti A, Biasi L, Baiguera C, Castelli F. Chronic HCV infection: epidemiological
 316 and clinical relevance. BMC Infect Dis. 2012;12 Suppl 2:S2.
- 317 3. Hallager S, Brehm Christensen P, Ladelund S, Rye Clausen M, Lund Laursen A, Møller A, et
 318 al. Mortality Rates in Patients With Chronic Hepatitis C and Cirrhosis Compared With the General
 319 Population: A Danish Cohort Study. J Infect Dis. 2017;215(2):192-201.
- Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B
 virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol.
 2006;45(4):529-38.
- 323 5. World Health Organization. Guidelines for the Screening Care and Treatment of Persons with
 324 Chronic Hepatitis C Infection: Updated Version. 2016.
- 325 6. Spengler U. Direct antiviral agents (DAAs) A new age in the treatment of hepatitis C virus 326 infection. Pharmacol Ther. 2018;183:118-26.
- Masarone M, Persico M. Hepatitis C virus infection and non-hepatocellular malignancies in the
 DAA era: A systematic review and meta-analysis. Liver Int. 2019.
- 8. Reig M, Mariño Z, Perelló C, Iñarrairaegui M, Ribeiro A, Lens S, et al. Unexpected high rate of
 early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J
 Hepatol. 2016;65(4):719-26.
- 332 9. Kuo YH, Wang JH, Chang KC, Hung CH, Lu SN, Hu TH, et al. The influence of direct-acting
 333 antivirals in hepatitis C virus related hepatocellular carcinoma after curative treatment. Invest New
 334 Drugs. 2020;38(1):202-10.
- Waziry R, Hajarizadeh B, Grebely J, Amin J, Law M, Danta M, et al. Hepatocellular carcinoma
 risk following direct-acting antiviral HCV therapy: A systematic review, meta-analyses, and metaregression. J Hepatol. 2017;67(6):1204-12.
- Giordano TP, Henderson L, Landgren O, Chiao EY, Kramer JR, El-Serag H, et al. Risk of nonHodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus.
 JAMA. 2007;297(18):2010-7.
- Nieters A, Kallinowski B, Brennan P, Ott M, Maynadié M, Benavente Y, et al. Hepatitis C and
 risk of lymphoma: results of the European multicenter case-control study EPILYMPH.
- 343 Gastroenterology. 2006;131(6):1879-86.
- 344 13. Naeim F. Chapter 13 Acute Leukaemias of Ambiguous Lineage. In: Naeim F, Rao PN, Grody
 345 WW, editors. Hematopathology. Oxford: Academic Press; 2008. p. 279-86.
- 346 14. Samonakis DN, Psyllaki M, Pavlaki KI, Drakos E, Kehagias E, Tzardi M, et al. Aggressive
 347 recurrence of Non-Hodgkin's Lymphoma after successful clearance of hepatitis C virus with direct
 348 acting antivirals. Ann Hepatol. 2019.
- Lin RJ, Moskovits T, Diefenbach CS, Hymes KB. Development of highly aggressive mantle
 cell lymphoma after sofosbuvir treatment of hepatitis C. Blood Cancer J. 2016;6:e402.
- Andrade XA, Paz LH, Nassar M, Oramas DM, Fuentes HE, Kovarik P, et al. Primary Liver
 Diffuse Large B-Cell Lymphoma following Complete Response for Hepatitis C Infection after Direct
 Antiviral Therapy. Acta Haematol. 2018;139(2):77-80.
- Rodríguez de Santiago E, Velázquez Kennedy K, García González M, Gea Rodríguez F, Téllez
 Villajos L, Tavío Hernández E, et al. HCV-positive lymphoma after sustained virological response with
 direct-acting antiviral agents: The game is not over after HCV eradication. J Viral Hepat.
- 357 2018;25(5):614-5.
- Iwane K, Kayahara T, Takabatake H, Morimoto Y, Iseki A, Mizuno M, et al. [Recurrence of
 malignant lymphoma immediately after treatment for hepatitis C virus using direct-acting antivirals].
 Nihon Shokakibyo Gakkai Zasshi. 2019;116(2):177-83.
- 361 19. Alkrekshi A, Kassem A, Park C, Tse W. Risk of Non-Hodgkin's Lymphoma in HCV Patients in
 362 the United States Between 2013 and 2020: A Population-Based Study. Clin Lymphoma Myeloma Leuk.
 363 2021.
- 364 20. Marcucci F, Mele A. Hepatitis viruses and non-Hodgkin lymphoma: epidemiology, mechanisms
 365 of tumorigenesis, and therapeutic opportunities. Blood. 2011;117(6):1792-8.
- 366 21. Sakai H, Miwa T, Ikoma Y, Hanai T, Nakamura N, Imai K, et al. Development of diffuse large
 367 B-cell lymphoma after sofosbuvir-ledipasvir treatment for chronic hepatitis C: A case report and
 368 literature review. Mol Clin Oncol. 2020;13(3):1.

- Arcaini L, Besson C, Frigeni M, Fontaine H, Goldaniga M, Casato M, et al. Interferon-free
 antiviral treatment in B-cell lymphoproliferative disorders associated with hepatitis C virus infection.
 Blood. 2016;128(21):2527-32.
- Khoury J, Nassar G, Kramsky R, Saadi T. Extrahepatic Malignancies After Treatment with
 Direct Antiviral Agents for Chronic HCV Infection. J Gastrointest Cancer. 2020;51(2):584-90.
- El-Serag HB, Christie IC, Puenpatom A, Castillo D, Kanwal F, Kramer JR. The effects of
 sustained virological response to direct-acting anti-viral therapy on the risk of extrahepatic
- 376 manifestations of hepatitis C infection. Aliment Pharmacol Ther. 2019;49(11):1442-7.
- 25 Lam JO, Hurley LB, Lai JB, Saxena V, Seo S, Chamberland S, Quesenberry CP, Champsi JH,
- Ready J, Chiao EY, Marcus JM, Silverberg MJ. "Cancer in people with and without hepatitis C virus
- infection: comparison of risk before and after introduction of direct-acting antivirals." Cancer Epidemiol
 Biomarkers Prev. 2021; 30:2188-96.
- 26. Langhans B, Nischalke HD, Krämer B, Hausen A, Dold L, van Heteren P, Hüneburg R,
- 382 Nattermann J, Strassburg CP, Spengler U. Increased peripheral CD4+regulatory T cells persist after
- 383 successful direct-acting antiviral treatment of chronic hepatitis C. J Hepatol. 2017 May;66(5):888-896.
- 384 Albanian, English. doi: 10.1016/j.jhep.2016.12.019. Epub 2016 Dec 29. PMID: 28040549.
- 385 27. Villani R, Facciorusso A, Bellanti F, Tamborra R, Piscazzi A, Landriscina M, et al. DAAs
- 386 Rapidly Reduce Inflammation but Increase Serum VEGF Level: A Rationale for Tumor Risk during 387 Anti HCV Treatment PLoS One 2016;11(12):e0167934
- 387 Anti-HCV Treatment. PLoS One. 2016;11(12):e0167934.388
- 389

390 Figure 1: Flow Chart Diagram explaining the constitution of our groups

* Detailed information can be found in the appendix, **PVL Persistent viral load, ***SVR, Sustained viral remission, HM= Hematological malignancy

Table 1: Overall characteristics and per group

442 Part A

	Total (n=61)	Group DAA – $(n = 40)$	Group DAA+ $(n = 21)$	p-value
Age [*]	58.0 (17)	55.0 (14)	63.0 (17)	0.121
Female	18 (29.5%)	11 (27.5%)	7 (33.3%)	0.769
Co-infections				
HIV +	9 (14.8%)	7 (17.5%)	2 (9.5%)	0.473
HBV+	2 (3.3%)	2 (5.4%)	0 (0%)	1
Chronic hepatitis C				
All Genotypes				0.670
1	37 (60.7%)	21 (52.5%)	16 (76.5%)	
2	2 (3.3%)	1 (3%)	1 (4.8%)	
3	8 (13.1%)	6 (17%)	2 (9.5%)	
4	8 (13.1%)	6 (17%)	2 (9.5%)	
Unknown	6 (9.8%)	6 (15.0%)	0 (0%)	
Interferon treatment	34 (55.7%)	20 (50.0%)	14 (66.7%)	0.576
Time to HM diagnosis $(y)^{**}$	8.3 (7.9)	5.8 (7.7)	12.1 (8.4)	0.020
Treatment duration (m)	12.0 (9.5)	9.50 (6.8)	14.0 (17.5)	0.100
Ribavirin treatment	38 (62.3%)	23 (57%)	15 (76.2%)	0.256
Time to HM diagnosis (y) **	8.0 (8.0)	6.3 (8.1)	9.9 (7.2)	0.100
Treatment duration (m)	9.00 (10.8)	7.50 (13.5)	11.5 (6.5)	0.677
Previous cirrhosis	23 (37.7%)	12 (30%)	11 (52.4%)	0.032
Risk factors for hematological mal	ignancy			
Previous underlying hemopathy***	16 (26.2%)	9 (22.5%)	7 (33.3%)	0.376
Chemo- or radiotherapy	13 (21.0%)	9 (23%)	4 (19.0%)	1
Non-liver Transplantation	4 (6.5%)	3 (7.5%)	1 (6%)	1
Liver transplantation	13 (21.3%)	5 (12.5%)	8 (38.1%)	0.045
Time since transplant (y)	9 (5.0%)	10.8 (4.7)	6.0 (6.3)	0.604
For hepatocellular carcinoma	8 (13.1%)	4 (10.8%)	4 (19.0%)	0.576

Continuous variables are represented with their median and IQR in brackets. Binary variables are represented by their count and percentage in brackets. Fisher's test or Wilcoxon – test used. DAA = Direct Acting Agents, HM= hematological malignancy. d= days, y= years, m=month. * Age at time of HM diagnosis. **Defined as the time lapse between first specific treatment administration and diagnosis of HM, *** DAA+ group: Chronic lymphoid leukaemia or hyperlymphocytosis (n=2), plasmablastic lymphoma (n=1), chronic myelomonocytic leukaemia (n=1), multiple myeloma (n=1), myelofibrosis (n=1), AML in remission for at least 10 year with no recurrence during our study (n=1), DAA – group: Non Hodgkin lymphoma (n=3), multiple myeloma (n=2), AML (n=1, in remission for at least 10 years), myelofibrosis (n=1), myelodysplasia (n=2)

454

455 **Part B**

Hematological malignancy	Total (n=61)	Group DAA – $(n = 40)$	Group DAA+ $(n = 21)$	p-value	
Lymphoid neoplasms					
Non-Hodgkin Lymphoma	28 (45.9%)	20 (50%)	8 (38.1 %)	0.427	
Hodgkin's Lymphoma	5 (8.2%)	3 (7.5%)	2 (9.5%)	0.629	
Chronic lymphocytic Leukaemia Plasma-cell disorders	1 (1.6%)	0 (0%)	1 (4.8%)	0.298	
Multiple Myeloma	7 (11.5%)	5 (12.5%)	2 (9.5%)	1	
AL Amyloidosis	1 (1.6%)	0 (0%)	1 (4.8%)	0.298	
Myeloproliferative neoplasm	9 (14.8%)	7 (17.5%)	2 (9.5%)	0.479	
Myelodysplastic syndrome	2 (3.3%)	2 (5%)	0 (0%)	1	
Acute Leukaemia					
Acute lymphoblastic Leukaemia	1 (1.6%)	1 (2.5%)	0 (0%)	1	
Acute myeloid Leukaemia	7 (11.5%)	2 (5%)	5 (23.8%)	0.020	
Including mixed phenotype	2 (3.3%)	0 (0%)	2 (9.5%)		
Grouping MH					
Lymphoid neoplasms [†]	35 (57.4%)	24 (60.0%)	11 (52.4%)	0.866	
Plasma-cell disorders ^{††}	18 (29.5%)	11 (27.5%)	7 (33.3%)		
Myeloid neoplasm ¹¹¹ Outcome	8 (13.1%)	5 (12.5%)	3 (14.3%)		
Follow up since HM diagnosis (m)	36 (48.3)	42.6 (70.6)	21.1 (24.8)	0.024	
Bone marrow transplantation	6 (9.8%)	3 (7.5%)	3 (14.3%)	0.822	
Death	21 (34.4%)	12 (30.0%)	9 (42.9%)	0.17^{*}	

 $\begin{array}{r} 456 \\ 457 \\ 458 \\ 459 \\ 460 \\ 461 \\ 462 \\ 463 \\ 464 \end{array}$

465

Continuous variables are represented with their median and IQR in brackets. Binary variables are represented by their count and percentage in brackets. Fisher's test or Wilcoxon – test used. DAA = Direct Acting Agents, HM= hematological malignancy. d= days, y= years, m=month, * Cox test, [†] includes Non-hodgkin lymphoma, Hodgkin lymphoma, Chronic lymphocytic Leukaemia, ALL, ^{††} includes Multiple myeloma, AL amyloidosis, ^{†††} includes Myeloproliferative neoplasms, Myelodysplastic syndrome and AML

+

DAA- + DAA+

467 **DAA** – (green) using the Cox model

Table 2: Characteristics of AML

Risk factors					Malignant hemopathy HCV												
Group	Year	Sex	Age	VIH	Previous MH	CtRt	Тур	GMT	FU	Metavir	Transplant	RBV	IFN	DAA lines	La	ast DAA treatm	ient
															Туре	Duration (d)	Delay to diagnosis [*]
DAA-	2014	М	65	No	CLL	Yes	AML	No	Death	F0	No	Yes	Yes		None		
DAA-	2016	М	60	Yes	RAEB II	No	AML	No	Death	F4	No	No	No		None		
DAA+	2016	М	58	No	No	No	AML	No	Death	F4	No	No	No	1	SofDac	90	M-19
DAA+	2015	М	63	No	Myelofibrosis	Yes	AML	No	Death	F0	No	Yes	Yes	2	SofDac	80	M-30
DAA+	2015	F	79	No	Myelofibrosis	Yes	AML	No	Death	F3	No	Yes	Yes	1	SofSim	89	M-14
DAA+	2017	М	51	No	No	No	AML + T	Yes	Remission	F4	Yes	Yes	Yes	3	SofDac	180	M-72
DAA+	2016	F	48	No	No	No	AML +B	Yes	Death.	F1	Yes	No	No	1	SofLed	176	M-23

HM= Hematological malignancy, 2nd=secondary character, GMT =graft marrow transplantation, CtRt=Previous chemo – or radiotherapy, BMT =Bone marrow transplant, FU= Outcome, LT= liver transplant, RBV= exposure to ribavirin, IFN= exposure to interferon, ^{*}Delay to diagnosis= time between the beginning of DAA treatment and MH diagnosis, SofDac= Sofosbuvir+Daclatasvir, SofSim=Sofosbuvir+Simeprevir, Tel=Telaprevir, Led=Ledipasvir, RAEB II= Refractory anemia with excess blasts type II, AML=Acute myeloid Leukaemia, MPAL= Mixed phenotype acute Leukaemia

Table 3. Specific molecular characteristics of AML

Group	Precise Diagnosis	Caryotype	FLT3/NPM1	FISH	NGS mutations
DAA-	Therapy-related AML (t-AML)	47,XY,+1,der(1;7)(q10;p10),+8[13]/46,XY[7]	NA	del7q	NA
DAA-	AML-MRC	45,XY,-7[11]/46,XY[9]	NA	monosomy 7	NA
DAA+	AML with myelodysplasia-related changes (MRC)	46,XY,del(7)(q3?5)[8]/46,XY[12]	FLT3-/NPM1-	del7q	NA
DAA+	AML-MRC	48,XY,+12,+21[20]	FLT3-/NPM1-	tri12, tri21	ASXL1, GATA2, KRAS, PTPN11, SETBP1, SRSF2, STAG2
DAA+	AML, not otherwise specified (NOS)	46,XX[25]	NA	0	NA
DAA+	MPAL, T/myeloid, NOS	46,XY[20]	FLT3-ITD/NPM1-	0	0
DAA+	MPAL, B/myeloid, NOS	46,XX[20]	FLT3-ITD/NPM1-	0	FLT3-TKD, RUNX1

Abbreviations (in order of appearance): hepatitis C virus (HCV), hematological malignancies (HM), anti-HCV Direct Acting Antivirals (DAA), Acute Myeloid Leukaemia (AML), Non-Hodgkin Lymphoma (NHL), Mixed Phenotype²⁷ Acute Leukaemia (MPAL)

Supplemental data 1: Detail of Non-inclusion criteria

Benign hematological disorder or no accurate hematologic diagnosis (n=49)	Anemia of various etiologies (n=6): deficiency (n=2), unknown (n=2), inflammatory (n=1), multifactorial (n=1) Benign cytopenia (n=6): Moderate thrombocytopenia (n=2), lymphopenia (n=1), neutropenia (n=1), cytopenia linked to a viral infection (n=2) Hemolytic anemia with various etiologies (n=4): mechanic (n=1), autoimmune (n=1), unknown (n=2)					
Absence of chronic HCV infection at time of MH diagnosis (n=22)	MGUS (n=5) Porphyria (n=1) Drug related cytopenia (n=3) Benign ethnic neutropenia (n=3) Hemoglobinopathies: thalassemia (n=3), sickle-cell anemia (n=3), other (n=1) Hemochromatosis or hyperferritinemia (n=3) Benign adenopathy (n=4) Secondary polycythemia (n=5) Bleeding disorder (n=1) Multifactorial pancytopenia (n=1) Identical names (n=16) Negative HCV serology and viral load with birth dates in DAA list (n=2) Chart record error (n=1) Acute HCV infection (n=2) Seroconversion after hemopathy (n=1)					
Hemopathy related to HCV or	HCV induced cytopenia (n=4)					
HCV treatment (n=14)	Thrombocytopenia due to hepatopathy (n=4)					
	Pancytopenia due to Peginterféron alfa-2a (n=1)					
	Interferon linked Hematologic toxicity (n=2)					
	Ribavirin linked hemolytic anemia (n=1)					
	Bone marrow failure linked to protease inhibitor (n=2)					
Cured malignant MH (n=13)	Including bone marrow transplanted patients					
Other (n=5)	Absence of patient (n=1) Preventive Follow up (bone marrow transplant were the donor developed later chronic lymphoid Leukaemia, n=1) Inpatient care for family history of multiple hematologic malignancies (n=1) HIV follow up (n=2)					

<u>Supplemental data 2</u>: Last combined DAA effective therapy (n=21, group DAA +) The intersection size part represents the absolute number of combined therapy schemes and the lower part the absolute number per single molecule. Previous ligns when applicable are not represented.

Abbreviations (in order of appearance): hepatitis C virus (HCV), hematological malignancies (HM), anti-HCV Direct Acting Antivirals (DAA), Acute Myeloid Leukaemia (AML), Non-Hodgkin Lymphoma (NHL), Mixed Phenotype³⁰ Acute Leukaemia (MPAL)