Apathy in depression: An arterial spin labeling perfusion MRI study

To cite this version:

HAL Id: inserm-03866929
https://inserm.hal.science/inserm-03866929
Submitted on 1 Sep 2023
Apathy in depression: An arterial spin labeling perfusion MRI study

J.M. Batail a,b,c,*, I. Corouge b,1, B. Combès b, C. Conan a, M. Guillery-Sollier a,c,d, M. Vérin c,e, P. Sauleau c,f, F. Le Jeune c,g, J.Y. Gauvrit b,h, G. Robert a,b,c, C. Barillot b, J.C. Ferre b,h, D. Drapier a,c

a Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, F-35703, Rennes, France
b Univ Rennes, Inria, CNRS, IRISA, INSEERM, Empenn U1228 ERL, F-35042, Rennes, France
c Univ Rennes, “Comportement et noyaux gris centraux” Research Unit (EA 4712), F-35000, Rennes, France
d Univ Rennes, LPSIC (Laboratoire de Psychologie: Cognition, Comportement, Communication) - EA 1285, CC5000, Rennes, France
e CHU Rennes, Department of Neurology, F-35033, Rennes, France
f CHU Rennes, Department of Radiology, F-35033, Rennes, France
g CHU Rennes, Department of Neurophysiology, F-35033, Rennes, France
h Centre Eugène Marquis, Department of Nuclear Medicine, F-35062, Rennes, France

ARTICLE INFO

Keywords:
Depressive disorder
Arterial spin labeling
Perfusion MRI
Apathy
Neuroimaging

ABSTRACT

Introduction: Apathy, as defined as a deficit in goal-directed behaviors, is a critical clinical dimension in depression associated with chronic impairment. Little is known about its cerebral perfusion specificities in depression. To explore neurovascular mechanisms underpinning apathy in depression by pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI).

Methods: Perfusion imaging analysis was performed on 90 depressed patients included in a prospective study between November 2014 and February 2017. Imaging data included anatomical 3D T1-weighted and perfusion pCASL sequences. A multiple regression analysis relating the quantified cerebral blood flow (CBF) in different regions of interest defined from the FreeSurfer atlas, to the Apathy Evaluation Scale (AES) total score was conducted.

Results: After confound adjustment (demographics, disease and clinical characteristics) and correction for multiple comparisons, we observed a strong negative relationship between the CBF in the left anterior cingulate cortex (ACC) and the AES score (standardized beta = −0.74, corrected p value = 0.0008).

Conclusion: Our results emphasized the left ACC as a key region involved in apathy severity in a population of depressed participants. Perfusion correlates of apathy in depression evidenced in this study may contribute to characterize different phenotypes of depression.

1. Introduction

Apathy is now well recognized as an important behavioral syndrome in several neuropsychiatric disorders (Marin, 1990; 1991; 1996). It is widely agreed that apathy is a transnosographic syndrome, found in various neurological disorders, such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and other dementias, traumatic brain injury and stroke, but also in psychiatric disorders including schizophrenia and major depressive disorder (van Reekum et al., 2005). Apathy has a dramatic clinical and prognostic impact marked by impairment of activities of daily living (Freels et al., 1992), cognitive impairment with executive dysfunction (Zahodne and Tremont, 2013), increased risk of conversion to dementia (Vicini Chilovi et al., 2009), decreased response to treatment (Kos et al., 2016) and diminished quality of life (Prakash et al., 2016).

Apathy has been extensively studied in neurodegenerative disorders using several imaging modalities assessing either cerebral metabolism or brain perfusion or with different image analyses such as morphometry or functional connectivity. Regarding apathy in Parkinson’s disease (PD), neuroimaging positron emission tomography (PET) studies are contradictory, demonstrating either a negative correlation between apathy and cerebral metabolism in the striatum, cerebellum, and prefrontal,
temporal, parietal and limbic lobes or a positive correlation between apathy and prefrontal, temporal, parietal and limbic areas (Robert et al., 2012, 2014; Wen et al., 2016). Functional magnetic resonance imaging (fMRI) showed a decreased connectivity between the left striatal and frontal areas (Baggio et al., 2015) while T1 weighted imaging reported increased atrophy in the frontal and parietal lobes, insula and left nucleus accumbens in apathetic patients (Wen et al., 2016). In Alzheimer’s disease, most studies linked apathy with the anterior cingulate cortex (ACC), the medial frontal cortex and some of them also involved the orbitofrontal cortex (Theleritis et al., 2014). A recent review conceptualized the biological basis of motivation based behaviors as a coordination of three systems: (a) a “valuation system”, composed by the ventromedial prefrontal cortex and the ventral striatum, involved in cost-effort/benefit evaluation of the stimuli, (b) a “mediating system”, composed of the anterior cingulate cortex and the caudate, that uses this information to trigger a motor action towards a particular goal that is performed by (c) a “motor system” composed by the supplementary motor area (SMA), the posterior cingulate cortex (PCC) and the dentate nucleus (Le Heron et al., 2019). So, apathy affects a large mesocortico-limbic circuit (Benoit and Robert, 2011; Kos et al., 2016; Kostić and Filippi, 2011; Le Heron et al., 2019; Theleritis et al., 2014; Wen et al., 2016).

Apathy has also been investigated in late-life depression and some studies have identified the involvement of accumbens and ACC, structures belonging to reward processing (Alexopoulos et al., 2012; Yuen et al., 2014a,b). Few studies have addressed the neuroanatomical correlates of apathy in adult depression. First, a study reported that apathetic depressed patients, although they had a motivation deficit, had preserved self-reported capacity to feel pleasure compared to non-apathetic ones (Batali et al., 2018). These findings suggested the existence of different biological profiles of depression depending on the intensity of comorbid apathy, in terms of motivational dimension and sensitivity to reward. In a recent work, Robert et al. reported, in a population of depressed women, that higher levels of apathy were associated with greater connectivity between dorsolateral prefrontal cortex (DLPFC) and ACC during an fMRI task with a high attentional load (Robert et al., 2021). They discussed this result as a functional response to restore pathological imbalance related to a deficit of motivation (Hillery et al., 2015). To date, no study has explored cerebral perfusion specificities of apathy in depression which could bring another level of understanding of its neurobiological mechanism. Indeed, apathy appears to be a good candidate for the identification of relevant biomarkers to guide antidepressant therapeutics. Following the call for a personalized psychiatry to move from a one-size-fits-all psychiatry to more stratified psychiatry to move from a one-size-fits-all psychiatry to more personalized psychiatry, that is performed by (c) a “motor system” composed by the supplementary motor area (SMA), the posterior cingulate cortex (PCC) and the dorsal putamen (Le Heron et al., 2019), So, apathy affects a large mesocortico-limbic circuit (Benoit and Robert, 2011; Kos et al., 2016; Kostić and Filippi, 2011; Le Heron et al., 2019; Theleritis et al., 2014; Wen et al., 2016).

2. Methods

2.1. Participants

A prospective study was conducted. It was approved by a national ethic committee and registered at www.clinicaltrial.gov (NCT02286024). A complete description of the study was given to the subjects and their written informed consent was obtained. All patients were recruited between November 2014 and February 2017 from the adult psychiatry department of Rennes, France.

The study was proposed to patients suffering from a Mood Depressive Episode (MDE) under DSM IV criterion with or without personal history of Mood Depressive Disorder (unipolar or bipolar subtype). Exclusion criteria included other Axis I disorder (except anxious comorbidities such as post-traumatic stress disorder, social phobia, generalized anxiety disorder, panic disorder) which were explored using the Mini-International Neuropsychiatric Interview (M.I.N.I.) (Sheehan et al., 1998). Patients with severe chronic physical illnesses were not included. Other exclusion criteria were potential safety contraindications for MRI (pacemakers, metal implants, pregnancy and lactation), neurological problems or a history of significant head injury and significant circulatory conditions that could affect cerebral circulation (i.e., non-controlled hypertension). All patients underwent a neurological examination by a trained physician to ensure that no included subject had any clinical sign of dementia or abnormal neurological examination.

After clinical assessment, patients underwent an imaging protocol by a maximum of three days. Out of the 124 screened patients, 4 had to be excluded for clinical reasons, 8 for withdrawal of participation prior to the MRI evaluation, 2 for missing clinical data and 20 for radiological reasons (1 because of a frontal cyst and 19 because of dental material that caused large artifacts in the perfusion images) which results in a population sample of 90 patients (Fig. 1). The image data were anonymously stored into Shanoir, a dedicated environment to manage brain imaging research repositories (Batillot et al., 2016).

2.2. Clinical assessment

Patients were assessed by a single structured clinical interview led by a trained psychiatrist with the following scales:

- Mini-International Neuropsychiatric Interview (M.I.N.I.) (Sheehan et al., 1998)
- Apathy Evaluation Scale (AES) (Marin, 1991)
- Widlöcher Depressive Retardation Scale (WDRS) (Widlöcher, 1983)
- Montgomery and Åberg Depression Rating Scale (MADRS) (Montgomery and Asberg, 1979)
- State Trait Anxiety Inventory (STAI) (Spielberger et al., 1970)
- Snaith Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995)

Socio-demographic (age, gender) and disease characteristics (duration of disease, duration of episode, number of previous mood depressive episodes, medication status) were collected. Medication status of each patient was defined as the medication load score described by Almeida and colleagues (Almeida et al., 2009). This is a composite score reflecting both the dose and the variety of treatment (antidepressant, mood stabilizer, antipsychotic, anxiolytic). It is obtained by summing all individual medication scores for each medication category for each patient.

Table 1 describes our sample and Fig. 2 illustrates the pairwise correlations between all these variables.

The whole sample was characterized by a moderate depression in intensity with middle-aged patients, predominantly women. Overall, looking at the pairwise correlations, the demographics, disease and clinical variables correlate weakly to moderately, all coefficients being below 0.4 (except for correlation between duration of disease and number of previous MDE; Spearman $\rho = 0.64$) (Fig. 2). When focusing on AES, the most pronounced correlations were observed for the psychomotor retardation score (WDRS, $\rho = 0.25$) and the anhedonia score (SHAPS, $\rho = -0.21$) (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>n = 90</th>
<th>Whole sample (n = 90)</th>
<th>Spearman correlation coefficient (ρ) with confidence intervals at 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>38.5 [24; 59] ± 4.5</td>
<td>Median [range] ± MAD or n (%)</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>49.5 [18; 74] ± 10.5</td>
<td>-</td>
<td>0.02 [-0.19; 0.23]</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>60 (66.67%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Current MDE duration (weeks)</td>
<td>13 [0; 150] ± 9</td>
<td>-</td>
<td>-0.14 [-0.34; 0.07]</td>
</tr>
<tr>
<td>Duration of disease (years)</td>
<td>12 [0; 57] ± 8</td>
<td>-</td>
<td>0.04 [-0.17; 0.25]</td>
</tr>
<tr>
<td>Number of previous MDE</td>
<td>3 [0; 30] ± 1</td>
<td>-</td>
<td>0.13 [-0.08; 0.33]</td>
</tr>
<tr>
<td>Medication load</td>
<td>3 [1; 7] ± 1</td>
<td>-</td>
<td>-0.04 [-0.24; 0.17]</td>
</tr>
<tr>
<td>MADRS (total score)</td>
<td>27 [16; 42] ± 3.5</td>
<td>0.02 [-0.04; 0.04]</td>
<td>-0.10 [-0.30; 0.11]</td>
</tr>
<tr>
<td>WDRS (total score)</td>
<td>22 [2; 43] ± 7</td>
<td>-</td>
<td>-0.25 [-0.43; -0.04]</td>
</tr>
<tr>
<td>STAI YA (total score)</td>
<td>58 [28; 80] ± 9</td>
<td>-</td>
<td>-0.10 [-0.30; 0.11]</td>
</tr>
<tr>
<td>STAI YB (total score)</td>
<td>59.5 [30; 79] ± 8</td>
<td>0.02 [-0.19; 0.22]</td>
<td>-</td>
</tr>
<tr>
<td>SHAPS (total score)</td>
<td>5 [0; 14] ± 3</td>
<td>-</td>
<td>-0.21 [-0.40; 0.00]</td>
</tr>
</tbody>
</table>

2.3. MRI data acquisition

Patients were scanned on a 3T whole body Siemens MR scanner (Magnetom Verio, Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil. Anatomical data included a high-resolution 3D T1-weighted MPRAGE sequence (3D T1w) with the following imaging parameters: TR/TE/TI = 1900/2.26/900 ms, 256 × 256 mm² FOV and 176 sagittal slices, 1x1x1 mm³ resolution, parallel imaging with GRAPPA factor 2. Perfusion data were acquired using a pseudo-continuous ASL sequence with a total scan time of approximately 4 min (Wu et al., 2007). The imaging parameters were: TR/TE = 4000/12 ms, flip angle 90°, matrix size 64×64, labeling duration (LD)/post-labeling delay (PLD) = 1500/1500 ms, parallel imaging SENSE factor 2. The labeling plane was placed 9 cm below the center of the acquisition volume. Twenty axial slices were acquired sequentially from inferior to superior in the AC-PC plane, with 3.5 × 3.5 mm² in-plane resolution, 5 mm slice thickness and 1 mm gap. Thirty repetitions, i.e., label/control pairs, finally composed the ASL data series (overall 60 vol). Additionally, M0 images were acquired at the same dimension and resolution as
2.4. MRI data processing

Processing of the image data was performed with our AutoMRI\(^2\) in-house pipeline using MATLAB (v. R2014a, The MathWorks Inc.) and the SPM8 toolbox (Wellcome Department of Imaging Neuroscience at University College London, UK). An overview of our data pre-processing is illustrated in Fig. 3.

The anatomical 3D T1w was corrected for intensity inhomogeneity and segmented into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) probability maps using the MINC ICBM152 template tissue probability as an a priori for brain tissue classification. This was done using the unified segmentation model SPM routine, which also estimates the spatial normalization parameters (Ashburner and Friston, 2005). The latter were applied to warp the 3D T1w volume to the MNI template.

The ASL data series was motion corrected by a rigid body transformation minimizing the sum of squared differences cost function. A two-pass procedure first realigned all the control and label volumes onto the first volume of the series, then registered the series to the mean of the images aligned in the first pass. The motion-corrected ASL series was co-registered to the 3D T1w using a rigid transformation. The latter was estimated by maximizing normalized mutual information between the mean control images, i.e., the average of all the realigned control volumes, and the 3D T1w GM map. The co-registered ASL images were then pairwise subtracted (control - label images) to produce a series of perfusion-weighted maps, which could be subsequently averaged by arithmetic sample mean to produce a perfusion weighted (PW) map.

However, as the sample mean is very sensitive to outliers, we instead use Huber’s M-estimator to robustly estimate the PW map (Maumet et al., 2014). This robust PW map was eventually quantified to a CBF map by applying the standard kinetic model (Buxton et al., 1998):

\[
f = 6000 \Delta M e^{-\frac{\Delta M}{2\mu T_{1b} (1 - e^{-\frac{t}{\mu T_{1b}}})}} \text{[ml/100g/min]}
\]

where \(f\) is the CBF map, \(\Delta M\) is the perfusion weighted map, \(\Delta = 0.9\) ml g\(^{-1}\) is the blood/tissue water partition coefficient, \(\mu = 0.85\) measures the labeling efficiency, \(T_{1b} = 1650\) ms is the \(T_{1}\) of blood (Alsop et al., 2015), \(M_0\) represents the equilibrium magnetization of arterial blood, PLD = 1500 ms is the post-labeling delay of the ASL sequence, \(\tau = 1500\) ms is the labeling duration, \(i\Delta t_{si}\) is the slice index, starting from 0 for the first acquired slice, \(T_{1A} = 37\) ms is the labeling duration of one slice.

For subsequent region of interest (ROI) analysis, a set of anatomical ROIs was delineated for each patient. The ROIs were selected in reference to theoretical foundational works in the field of biology of goal directed behaviors (Berridge et al., 2009; Le Heron et al., 2019). These works emphasize that different behaviors depend on three systems involved in the valuation, mediation of reward sensitivity and motor aspect of goal-directed behavior. Also, these theories refer to the concepts of “liking” or consummatory anhedonia and “wanting” or motivational anhedonia (Berridge et al., 2009; Gaillard et al., 2013). Based on this anatomical and functional hypothesis, we a priori selected our ROIs, to explore these systems and address our scientific question. The ROIs were extracted from the Desikan-Killiany Atlas (Desikan et al., 2006) using the FreeSurfer software\(^3\) and were selected in light of the literature about apathy and neuroimaging (Berridge et al., 2009; Gaillard et al., 2013; Kang et al., 2012; Treadway and Zald, 2011). They were: thalamus, caudate, putamen, pallium, amygdala, insula, accumbens nucleus, PCC, anterior cingulate cortex, orbitofrontal cortex (OFC), frontal cortex (superior, middle and inferior parts) for the left and right hemispheres, that is 26 areas in total. The anterior cingulate cortex was defined as the union of the FreeSurfer ROIs “ctx-caudalanteriorcingulate” and “ctx-rostralantiorcingulate”, the orbitofrontal cortex as the union of “ctx-lateralorbitofrontal” and “ctx-medialorbitofrontal” and the middle frontal cortex as the union of “ctx-caudalmiddlefrontal” and “ctx-rostralmiddlefrontal”, the inferior frontal cortex as the union of “ctx-parasagalarialis” and “ctx-parsorbitalis” and “parstriangularis”.

Last, the mean CBF values were computed for each subject over each ROI in the MNI space. To discard outliers that may be present in particular at GM/LCS interface due to the low resolution of ASL, we used the modified z-score proposed by Iglewicz and Hoaglin (Iglewicz and Hoaglin, 1993) before computing the average CBF value in a given ROI:

\[
Z_i = \frac{0.6745(x_i - \bar{x})}{\text{MAD}}
\]

where \(\bar{x}\) denotes the median over the ROI and MAD the median absolute deviation.\(^4\) Voxels \(x_i\) with a \(Z_i\) score greater than 3.5 were discarded.

In addition, to account for global CBF level differences across participants in subsequent statistical analysis, the CBF values were scaled by the average CBF over grey matter, i.e., for each patient and each ROI, normalized CBF values were computed as the fraction “mean CBF value over the ROI/mean CBF over patient GM”. Henceforth, we will only consider these normalized CBF values.

2.5. Perfusion MRI data statistical analysis

The statistical analysis was performed on the 90 patients included in this perfusion study (intention-to-treat analysis) with R software

\(^2\) [http://team.inria.fr/visages/software/].

\(^3\) http://surfer.nmr.mgh.harvard.edu/fswiki/.

\(^4\) The median absolute deviation is defined as MAD = median(|x - \bar{x}|).

2.6. ROI-based description of perfusion

As explained in section 2.4, the normalized CBF values were computed from the ASL data for each subject and averaged over each ROI.

In order to explore the spatial perfusion patterns between the anatomical ROIs and to visualize the relationships between their respective CBFs, we compute the dendrogram of the Spearman correlations (function `varclus` from R-Hmisc package\(^5\)). This intended to give a comprehensive description of our ROIs brain perfusion data set at the group level and how ROIs correlated to each other. The dendrogram is a “tree-like” diagram built by hierarchical clustering using in this case, the Spearman coefficient as the similarity measure. At the leaf level, it can be seen as a summary of the ROI-CBFs correlation matrix.

2.6.1. Explanatory ASL modeling of apathy

To assess the perfusion correlates of apathy in depression, we investigated the effect of CBF patterns in the different ROIs on the associated apathy score.

For this purpose, we performed a stepwise variable selection on a linear model with apathy, i.e., the AES score, as the dependent variable. We included as linear predictor candidates (or intersect, for categorical variables) the normalized CBF values in the 26 different ROIs, the mean CBF value over the grey matter as well as the patients demographic variables (age, gender) and disease and clinical characteristics (actual MDE duration, duration of disease, number of previous MDE, medication load, MADRS total score, WDRS total score, SHAPS total score, STAI YA and STAI YB total scores). Akaike’s information criterion was used as the inclusion and rejection rule. Then, for each independent variable in the resulting reduced model, the associated standardized beta coefficients along with their 95% confidence intervals and p-values associated to “beta coefficient = 0” were computed. Moreover, we also reported p-values adjusted for multiple comparisons using a Bonferroni correction accounting for the overall number of initial parameters of interest (38 in our case). Effects associated with p-values lower than 0.05 after this Bonferroni correction were considered as significant.

3. Results

3.1. ROI-based description of perfusion

The raw and normalized CBF values in the 26 ROIs as well as their pairwise correlations are presented in supplementary material.

The dendrogram in Fig. 4 shows that most of the time, the highest correlated area for a given ROI is its contralateral part. This is for instance the case for ACC left and right (\(\rho = 0.65\)) and for OFC left and right (\(\rho = 0.65\) also).

3.2. Explanatory ASL modeling of apathy

Table 2 summarizes the linear fitting of apathy, i.e., the AES score, by the ROI-CBFs variables while accounting for demographic, disease and clinical variables.

This table lists the regressors corresponding to the selected variables from the stepwise regression and presents their standardized beta estimates along with their associated 95% confidence intervals as well as both uncorrected and Bonferroni corrected p-values.

To assess the reliability of our analysis, we visually checked residuals and Q-Q plots, scale-location plots and residual versus leverage plots. Moreover, to assess the reliability of our multivariate regression model, we visually checked residuals and Q-Q plots, scale-location, residual versus leverage and series residuals plots. Moreover, the absence of strong collinearity between independent variables was checked using variance inflation factors. These additional analyses are in Figs. 3 and 4 of supplemental material.

From Table 2, we observe evidence of:

- a negative regression slope for left anterior cingulate cortex, left orbito-frontal cortex (OFC), right putamen, left thalamus, right inferior frontal gyrus (IFG)
- a positive regression slope for left caudate nucleus, right anterior cingulate cortex, right insula, left medial frontal gyrus, left accum-bens nucleus.

Moreover, after correction for multiple comparisons, the left ACC CBF remains significant with standardized beta = −0.74, (−1.07, −0.42)) and corrected p-value < 0.001 (Table 2 and Fig. 5).
Fig. 4. Dendrogram of the Spearman correlations coefficients between the normalized CBFs of the 26 ROIs. accum: accumbens nucleus; amy: amygdala; caud: caudate nucleus; inffront: inferior frontal gyrus; ins: insula; midfront: middle frontal gyrus; pal: pallidum; put: putamen; supfront: superior frontal gyrus; thal: thalamus.

Table 2
ROI-CBFs, demographics, disease and clinical variables effects on apathy (AES score) from a linear regression using a stepwise variable selection. The left column lists the selected variables, the second column gives their standardized beta estimates along with their associated 95% confidence intervals while the third and fourth columns show associated uncorrected and Bonferroni corrected p-values for “standardized beta = 0”. ACC: anterior cingulate cortex; accum: accumbens nucleus; caud: caudate nucleus; inffront: inferior frontal gyrus; ins: insula; mean_gm: mean grey matter cerebral blood flow; MDE.dur: duration of current depressive episode; MDE.num: number of previous MDE; midfront: middle frontal gyrus; OFC: orbito-frontal cortex; pal: pallidum; put: putamen; thal: thalamus; WDRS: Widlacker depressive retardation scale.

<table>
<thead>
<tr>
<th>ROI</th>
<th>Standardized beta</th>
<th>p-value for standardized beta at 95%</th>
<th>Adjusted p-value (Bonferroni correction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC_left</td>
<td>-0.74 [-1.07; -0.42]</td>
<td><0.0001</td>
<td>0.0008</td>
</tr>
<tr>
<td>ACC_right</td>
<td>0.38 [0.08; 0.68]</td>
<td>0.013</td>
<td>0.51</td>
</tr>
<tr>
<td>caud_left</td>
<td>0.36 [0.10; 0.63]</td>
<td>0.008</td>
<td>0.29</td>
</tr>
<tr>
<td>ins_right</td>
<td>0.35 [0.07; 0.63]</td>
<td>0.014</td>
<td>0.55</td>
</tr>
<tr>
<td>put_right</td>
<td>-0.31 [-0.61; -0.02]</td>
<td>0.037</td>
<td>1</td>
</tr>
<tr>
<td>midfront_left</td>
<td>0.30 [0.06; 0.55]</td>
<td>0.017</td>
<td>0.65</td>
</tr>
<tr>
<td>put_left</td>
<td>0.28 [-0.02; 0.58]</td>
<td>0.069</td>
<td>1</td>
</tr>
<tr>
<td>WDRS</td>
<td>-0.27 [-0.47; -0.08]</td>
<td>0.007</td>
<td>0.26</td>
</tr>
<tr>
<td>OFC_left</td>
<td>-0.27 [-0.48; -0.05]</td>
<td>0.014</td>
<td>0.55</td>
</tr>
<tr>
<td>age</td>
<td>0.23 [0.00; 0.45]</td>
<td>0.048</td>
<td>1</td>
</tr>
<tr>
<td>inffront_right</td>
<td>-0.22 [-0.47; 0.03]</td>
<td>0.082</td>
<td>1</td>
</tr>
<tr>
<td>mean_gm</td>
<td>0.21 [-0.01; 0.44]</td>
<td>0.066</td>
<td>1</td>
</tr>
<tr>
<td>thal_left</td>
<td>-0.20 [-0.43; 0.02]</td>
<td>0.078</td>
<td>1</td>
</tr>
<tr>
<td>MDE.dur</td>
<td>-0.16 [-0.35; 0.03]</td>
<td>0.088</td>
<td>1</td>
</tr>
<tr>
<td>accum_left</td>
<td>0.15 [0.04; 0.35]</td>
<td>0.127</td>
<td>1</td>
</tr>
<tr>
<td>MDE.num</td>
<td>0.13 [-0.05; 0.32]</td>
<td>0.158</td>
<td>1</td>
</tr>
</tbody>
</table>

4. Discussion

Our results from 90 depressed participants evidenced significant associations between apathy intensity and ASL perfusion in some regions, once accounting for confounding variables (age, gender, number of MDE, MDE duration, mean grey matter CBF and psychomotor retardation).

After adjustment for multiple comparisons, the most robust result was a strong negative relationship between CBF in the left ACC and the AES score (standardized beta = −0.74, corrected p value = 0.0008).

4.1. Role of anterior cingulate cortex

The ACC is located in the medial portion of each hemisphere, in direct connection to both limbic “emotional” and prefrontal “cognitive” systems. This large region is composed of Brodmann areas (BA) 24, 25, 32, 33, with functionally division between the caudal sub-regions (caudal portion of BA 24, and BA 32, 33) involved in cognition and the rostral sub-regions (rostral portion of BA 24, and BA 25) involved in emotion regulation. This region is known to have a key role in driving mechanisms that associate affect and cognition (Devinsky et al., 1995). More precisely, the ACC has been identified to mediate the cognitive influences on emotions (Stevens et al., 2011).

ACC is thought to have a role in emotionally driven behaviors. Indeed, reduced activity of the cingulate cortex, secondary to lesions, such as stroke, epilepsy, psychosurgery, have been associated with diminished self-awareness, akinetic mutism, depression, impaired motor initiation (Devinsky et al., 1995). Recent works have reported a high-level integrative role of the ACC in the regulation of behaviors in the context of goal directed action (Holroyd and Yeung, 2012) or socially driven interactions (Lavin et al., 2013). This key region is described to have multiple roles such as affective evaluation in contexts that demand adaptation (Braem et al., 2017), exploration of alternatives - crucial in decision making - adaptation of action (Brockett et al., 2020) and maintenance of goal-directed behaviors (Kolling et al., 2016).

Taken together, ACC seems to have a role of integration of emotional salience of stimuli, cognitive control and behavioral response to situations that potentially need effort (Guequaine, 2013; Le Heron et al., 2019). Our study identified this brain area as a key structure that is associated with apathy intensity in depressed patients. We have to notice that the effect size reported highlights the central role of this region in apathy in depression. This result is of interest because it brings another proof of ACC’s involvement in a neuropsychiatric disease - such as depression - which is characterized by emotion dysregulation and cognitive control deficit (Chen et al., 2013; Etkin et al., 2015). More precisely, given this literature and our results, ACC perfusion could be considered as a surrogate of goal-directed behaviors in depression.

4.2. Goal-directed behaviors and anterior cingulate cortex

Following this assumption, ACC has been shown with a critical role in selecting and maintaining behaviors related to reward sensitivity, central in goal-directed behaviors (Holroyd and Yeung, 2012). More precisely his role is thought to be central in the transformation of effort into goal-directed behavior (Bonnelle et al., 2016; Holroyd and McGuire, 2015; for review: Le Heron et al., 2019).

In a study by Onoda and Yamaguchi, a graph theory analysis has emphasized abnormalities of nodal efficiency linked with apathy (Onoda and Yamaguchi, 2015). Nodal efficiency is defined as the ability of information propagation between a given node with the rest of the nodes in a network. Higher nodal efficiency is indicative of higher integration in the brain. In this study, decreased nodal efficiency in ACC was a significant predictor of...
apathy whereas increased nodal efficiency was for depression 1/apathy
depression has different cerebral patterns 2/salience-related pro-
cessing in the ACC is related to apathy (Onoda and Yamaguchi, 2015).
Our findings are consistent with these data in a sense that apathy in
depression is characterized by a specific pathophysiological pattern.
Ours brings additional evidence using another imaging modality, arte-
rial spin labelling MRI. We think important to note that our result cannot
be directly interpreted as a behavioral marker since our study was not
designed for that purpose. A task-based imaging study, such as suggested
by Cathomas and colleagues (Cathomas et al., 2015) would be a good
complement to our study.

It could be interesting to separate the proper perfusion profile of
dorsal versus subgenual ACC and its relationships with apathy intensity
in our population of depressed patients. Indeed, dorsal ACC has been
described with an integration role of reward/effort net value between
the goal value (vmPFC) and effort cost (anterior insula) (Pessiglione
et al., 2018). We could have hypothesized that in our study, higher levels
of apathy in depressed patients would be associated with lower perfu-
sion in more dorsal areas of ACC rather than ventral. As an exploratory
step, we investigated this hypothesis to explore whether there is a dif-
ference in the effect between the rostral and caudal parts of the ACC. We
performed the same stepwise regression analysis adding “ctx-caudal-
lanteriorcingulate” and “ctx-rostralanteriorcingulate” ROIs from the
Desikan-Killiany Atlas as two separate regressors. We found a significant
relationship between AES and three ROIs:

- left caudal ACC (standardized beta = −0.50, corrected p value = 0.0001)
- left OFC (standardized beta = −0.39, corrected p value = 0.0028)
- right caudal ACC (standardized beta = −0.35, corrected p value = 0.0182)

These results are in line with our findings as well as our hypothesis
that higher levels of apathy in depressed patients would be associated
with lower perfusion in more caudal areas of ACC rather than ventral.
However, reliability metrics of our model showed that these results are
less robust than the initial model. Indeed, the check for multicollinearity
based on variance inflation factors (VIF) emphasized a lack of robustness
with too high VIF values (up to 8.69). Despite that this result would be
an interesting addition, we believe that the model assessing caudal vs
rostral ACC CBF is not robust enough to be considered as the main
finding of our study. An independent study ran on another sample is
needed to test and confirm this hypothesis.

4.3. The anterior cingulate cortex in depression and treatment response

As part of the mesolimbic dopaminergic pathway, ACC is known to
be involved in the pathophysiology of depression specifically in relation
to proactive and reactive behaviors (Post and Warden, 2018). It has been
identified as a hub involved in reward related dimensions of depression
(Clery-Melin et al., 2019).

Neuroimaging studies have shown that apathy in depression has
been linked with ACC structural abnormalities such as decrease of grey
matter (Lavretsky et al., 2007), abnormal functional activity during
effortful tasks (Elliott et al., 1997; Harvey et al., 2005; Pizzagalli et al.,
2006).

Furthermore, decreased resting state functional connectivity (RSFC)
between amygdala and dorsal ACC correlated to emotional processing
deficit in adolescent depressed patients (Pannekoek et al., 2014). Thus,
in elderly depression, decreased ACC – anterior insula RSFC has been
proposed as a “biological” signature of late-life depression through the
implication of salience network in motivation-related behaviors (Yuen
et al., 2014). Taken together, ACC is a key region involved in the
emotional and motivational processes guiding the regulation of pro vs.
reactive behaviors. Our results are in line with these data and provide
additional evidence supporting the implication of this structure to the
motivational dimension of depression.

Finally, our study may open avenues on the therapeutic level.
Indeed, ACC functional activity or connectivity has been widely re-
ported as predictors of treatment response to several therapies: cognitive
psychotherapy (Clark and Beck, 2010), antidepressant (Godlew ska
et al., 2018; Tian et al., 2020; Yuen et al., 2014a,b), repetitive trans-
cranial magnetic stimulation (Downar and Daskalakis, 2013; Feffer
et al., 2017; Ge et al., 2020). In addition, subgenual ACC is an historical
target for deep brain stimulation in treatment resistant depression
(Holtzheimer et al., 2017; Mayberg et al., 2005) with promising results.
By pinpointing a strong relationship between ACC and apathy in depressed patients, our study suggests that apathy could be considered as a relevant subtype in depression with a robust biological basis that could be explored as a potential therapeutic target in future works.

4.4. Hemispheric asymmetry of the ACC perfusion in relation to apathy

Hemispheric asymmetry has been reported in several perfusion studies on depression with increased perfusion in left cingulate cortex in adult (Kaichi et al., 2016) and remitted late onset depression (Liao et al., 2017) whereas the opposite direction has been described in a study on first episode mood depressive disorder (Chen et al., 2016). Some authors suggested that this hemispheric asymmetry may be mediated by the onset age and therapeutic status (Liao et al., 2017). Although functional and structural asymmetry has been reported in depression, the role of these hemispheric differences in its pathophysiology is still debated (Jiang et al., 2019).

In regards to goal-directed behaviors, interestingly, in line with our results, one study reported that action motivation (regardless of stimulus valence) was characterized by a greater fMRI activation in left (as compared to the right) dorsolateral prefrontal cortex in a task-based paradigm (Berker and Lieberman, 2010). One study reported an opposite pattern of perfusion asymmetry in Alzheimer disease - as measured by single photon emission tomography - with a decreased perfusion in the right ACC associated with a lack of motivation (Benoit et al., 2004). This latter work reported findings in the opposite direction than ours. We must note that this study was conducted in a population of non-depressed patients.

Finally, we wanted to point out that the fact that the left and right ACC regression coefficients were in opposite directions - as opposed to initial correlation reported in the descriptive dendrogram - could be interpreted as a result of the strength of the negative relationship between AES and left ACC that is reported as the main finding.

4.5. Limitations

First, the inherently low spatial resolution of ASL did not allow a fine parcelation of the brain and the analysis of sub-regions of interest such striatum or pallidum. Second, the design of our study did not include any control group. A group of healthy subjects would have helped us to determine the baseline perfusion of the analyzed regions. Third, we have to mention the cross-sectional design of our study. Indeed, we did not investigate the predictive value of CBF in the clinical context of depression but rather focused on understanding the neurobiological basis of apathy in depression. Fifth, given our specific a priori hypotheses based on foundational works from Berridge and Robinson, and Le Heron (Berridge and Robinson, 2003; Le Heron et al., 2019), we conducted an ROI rather than a stepwise regression model to test our hypothesis which can be better suited to account for the complexity of brain pathophysiology and deal with inter-region brain perfusion correlation (as highlighted by our dendrogram analysis). Furthermore, we have provided the additional validation metrics of the final model and variable inclusion procedure in the supplementary material. Further studies are necessary to overcome these limitations.

5. Conclusion

This study focused on perfusion patterns of apathetic dimension in depressed patients. Our results highlight that apathy was specifically associated with brain perfusion patterns. Interestingly, we have shown that some perfusion patterns underlie the clinical specificities of apathy in depression (Batail et al., 2018). Furthermore, these abnormalities affect key regions involved in the meso-cortico-limbic dopaminergic loop of the reward system. The most striking result was a strong negative relationship between the CBF in the left ACC and the AES score. Therefore, apathy appears to be a relevant marker to better characterize different phenotypes of depression. Identifying the radiological and clinical specificities of apathy in depression would provide a better understanding of its underlying neurobiological mechanisms and would help to better adjust treatment. Our work brings a better understanding of the pathophysiology of apathy in depression and therefore may inform the development of some specific treatment for this particular subtype such as dopaminergic targeted pharmacologic strategies, pramipexole (Cusin et al., 2013) or new cerebral targets for non-pharmacological treatments like repetitive transcranial magnetic stimulation of dorso-medial prefrontal cortex (Downar and Daskalakis, 2013; Feffer et al., 2017) or neurofeedback (Arns et al., 2017).

Declaration of competing interest

The authors don’t have any conflict of interest related to this research work.

Acknowledgments

MRI data acquisition was supported by the Neurinfo MRI research facility from the University of Rennes I. Neurinfo is granted by the European Union (FEDER), the French State, the Brittany Council, Rennes Metropole, Inria, Inserm and the University Hospital of Rennes. This work has been funded by Institut des Neurosciences Cliniques de Rennes (INCR). The authors thank Mr Stéphane Brouse and Mr Jacques Soulabaïle for their involvement in the conduct of the study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpsychires.2022.11.015.

References

J. Cognit. Neurosci. 22 (9), 1970

