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Background
Response to lithium in patients with bipolar disorder is asso-
ciated with clinical and transdiagnostic genetic factors. The
predictive combination of these variables might help clinicians
better predict which patients will respond to lithium treatment.

Aims
To use a combination of transdiagnostic genetic and clinical
factors to predict lithium response in patients with bipolar
disorder.

Method
This study utilised genetic and clinical data (n = 1034) collected as
part of the International Consortium on Lithium Genetics
(ConLi+Gen) project. Polygenic risk scores (PRS) were computed
for schizophrenia and major depressive disorder, and then
combined with clinical variables using a cross-validated
machine-learning regression approach. Unimodal, multimodal
and genetically stratified models were trained and validated
using ridge, elastic net and random forest regression on 692
patients with bipolar disorder from ten study sites using leave-
site-out cross-validation. All models were then tested on an
independent test set of 342 patients. The best performing
models were then tested in a classification framework.

Results
The best performing linear model explained 5.1% (P = 0.0001) of
variance in lithium response and was composed of clinical

variables, PRS variables and interaction terms between them.
The best performing non-linearmodel used only clinical variables
and explained 8.1% (P = 0.0001) of variance in lithium response.
A priori genomic stratification improved non-linear model per-
formance to 13.7% (P = 0.0001) and improved the binary classi-
fication of lithium response. This model stratified patients based
on their meta-polygenic loadings for major depressive disorder
and schizophrenia and was then trained using clinical data.

Conclusions
UsingPRSto firststratifypatientsgeneticallyandthentrainmachine-
learningmodelswithclinical predictors led to large improvements in
lithium response prediction. When used with other PRS and bio-
logical markers in the future this approach may help inform which
patients are most likely to respond to lithium treatment.
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Background
Lithium remains a commonly used first-line treatment for bipolar
disorder,1–3 highly effective for both acute manic episodes4,5 and
maintenance treatment.3 However, in around 65% of acute manic
presentations, response is incomplete and 35% of patients do not
respond to treatment at all.6,7 In maintenance treatment, approxi-
mately 30% of patients report an excellent long-term response,
around 30% report an intermediate response and 30% respond
poorly.8 In addition, lithium has a range of serious acute and
chronic side-effects, including increased risk of renal failure and sup-
pression of thyroid and parathyroid function.2 Moreover, lithium can
be toxic at high doses so plasma levels often need to be monitored.9

These varying response rates and side-effect profiles suggest the
need to better tailor lithium treatment for individual patients, ensur-
ing timely prescription of the right drug for the right patient at the
right time. Better understanding of the link between genetic and
clinical factors may assist in achieving this personalised approach.

Regarding associated clinical factors, variables reflecting an
episodic pattern of mania–depression intervals, a later age at
onset and fewer hospital admissions preceding treatment have
shown significant associations with lithium response.10,11 Using a
large range of clinical factors, Nunes et al12 demonstrated the
ability of machine-learning models to classify lithium responders
from non-responders. Beyond these clinical factors, a genetic
basis to lithium response has also been found. In genome-wide asso-
ciation studies (GWASs), multiple genetic variants have been asso-
ciated with lithium response. However, the effects of these variants
have been too small to facilitate lithium response prediction.8

Combining these variants into polygenic risk scores (PRS) has
improved their performance, however, these scores still only
explain ∼1% of variance in lithium response.13

Given this biopsychosocial basis to lithium response, one solu-
tion may be to combine clinical factors with PRS to improve lithium
response prediction. This genotype–phenotype approach was
recently used by Antonucci et al14 to classify patients with schizo-
phrenia (SCZ) from healthy controls. Using environmental and
genetic data, they a priori stratified patients into tertiles (thirds)
based on decision scores from two support vector machines.
Making predictions with patients in the lower and upper tertiles
led to an increase in balanced accuracy from 77.7% to 89.4%.

In the context of lithium response prediction, Amare et al found
evidence for a non-linear stratified relationship between SCZ PRS
and lithium response.13 In particular, patients in the lowest decile
of the SCZ PRS distribution were 3.46 times more likely to be
lithium responders when compared with patients in the tenth
decile. In addition, Amare et al also found that patients with
bipolar disorder with a low polygenic load for major depressive dis-
order (MDD) were more likely to respond to lithium treatment,
with the largest differences observed between the quartiles of the
MDD PRS distribution.15 This transdiagnostic and polygenic basis
to lithium response is not without precedent. For example, recent
studies have shown significant genetic overlap and shared biological
pathways between SCZ, MDD and bipolar disorder.16,17 Exploiting
this genetic overlap,Maier et al17 usedmultitrait models to utilise cor-
relations between, as well as a participant’s individual risk for SCZ,
MDD and bipolar disorder. This multivariate approach led to an
equivalent increase in sample size of 34% for SCZ, 68% for bipolar dis-
order and 76% for MDD when compared with single trait models.

Aims

Given these findings, we have conducted a range of analyses to test
the predictive ability of combined transdiagnostic genetic and clin-
ical data for lithium response prediction. First, to measure the pre-
dictive contribution of PRS alongside clinical variables, we trained

both uni- and multimodal prediction models of lithium response
in patients with bipolar disorder. Second, we trained uni- andmulti-
modal models containing interaction terms within and across vari-
ables from each data modality to measure non-linear and
biopsychosocial effects between each modality. Third, to measure
the effects of a patient’s PRS loadings on clinical model accuracy,14

we used MDD and SCZ PRS, as well as a combined MDD and SCZ
meta-PRS to a priori stratify patients according to their polygenic
loadings prior to the supervised prediction of lithium response
with clinical data. This approach was then directly compared with
the traditional method of including PRS and clinical data modalities
together in a single predictive model.18 Finally, to test the effects of
model linearity on prediction, we compared the use of linear and
non-linear machine-learning models for regression analyses and vali-
dated all findings on a geographically stratified test set. We then
assessed the best performing models in a classification framework.

Method

The International Consortium on Lithium Genetics

The International Consortium on Lithium Genetics (ConLi+Gen,
www.ConLiGen.org) is an initiative by the National Institute of
Mental Health and the International Group for the Study of
Lithium-Treated Patients (www.IGSLI.org) and was established with
the aim of studying the genetic basis of lithium treatment response
in patients with bipolar disorder.19 The ConLi+Gen study involved
patients with bipolar disorder from Europe, South America, USA,
Asia and Australia20 who have been treated with lithium. A series of
quality control procedures were implemented on the genotype data
before and after imputation as described below. Sample characteristics
have been published in previous works.8,13 This study used consortium
data through an international collaboration.

The University of Heidelberg Ethics Committee provided
central ethics approval for the consortium. Written consent was
obtained from each patient according to the study protocols of
the participating cohorts.

Computing PRS

PRS were computed for people with SCZ and MDD, two traits pre-
viously associated with lithium response.13,15 Each PRS was calcu-
lated using individual genetic data from ConLi+Gen8 and
summary statistics from the previous largest GWASs available for
MDD21 and SCZ.22 PRS were calculated at different GWAS P-
value thresholds, however, the best predictive score was selected
for each trait based on previous analysis. More details on PRS calcu-
lation, genotyping, imputation and quality control steps can be
found in previous publications13,15,23 and in the Supplementary
Methods available at https://doi.org/10.1192/bjp.2022.28.

Study participants

As our aim was to assess both uni- and multimodal regression models
of lithium response, a requirement for inclusion was complete PRS
data and no more than 20% missingness on clinical predictors. Any
clinical predictors above this threshold were removed (Missing data
table in Supplementary Table 1). Only ConLi+Gen GWAS 1 was
used for analysis (n = 1163) as it contained both clinical and genetic
data, whereas GWAS 2 only contained genetic data. Fifteen demo-
graphic, clinical, substance use and comorbid psychiatric illness predic-
tors were used in analyses. To ensure geographic homogeneity, only
samples of European descent were used (Halifax n = 240, University
California San Diego n = 216, Cagliari n = 196, Poznan n = 97,
Wuerzburg n = 91, Geneva n = 46, Prague n = 45, Dresden n = 43,
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National Institute for Mental Health = 36, John Hopkins University n
= 24), leaving a final sample of n = 1034 patients.

To ensure the unbiased approximation of the model’s general-
isability to new patients, we partitioned 33% (n = 342) of our
sample into a holdout set for model testing, leaving 692 observations
for training and validation. This partitioning was stratified by data-
collection site to ensure the same distribution of sites across
partitions.

Regression and classification target

Lithium treatment response was assessed using the validated
‘Retrospective Criteria of Long-Term Treatment Response in
Research Subjects with Bipolar Disorder’ scale, also known as the
Alda scale.24 To arrive at a total Alda score, this scale measures
symptom improvement over the course of treatment (A score,
range 0–10), which is then weighted against five criteria (B score)
that assesses the quality of evidence for the response score.8 For
the predictive regression analyses, the total Alda score was used.25

For a subset of models assessed in a classification framework,
patients with a score ≥7 were coded as responders, whereas patients
scoring <7 were coded as non-responders.25

Unimodal and multimodal machine-learning pipelines

On our training sample of 692 patients, we fit pipelines that con-
ducted imputation, polynomial feature engineering (interaction
terms only), standardisation, feature selection, hyperparameter
optimisation, and the fitting of linear regression (regularised with
ridge and the elastic net) and random forest models. For the
unimodal linear regression models, we imputed predictors using
multivariate imputation by chained equations (MICE) with the
ten nearest predictors used in the imputation process.26 As regu-
larised linear regression models may perform poorly if variables
are on different scales, we standardised all predictors to have a
mean of 0 and a s.d. of 1. As the number of predictors were low
in the unimodal and multimodal PRS and clinical models (PRS 2,
clinical 15), all predictors were included in analyses. Finally, we fit
a linear regression model with ridge regularisation to the training
sample. For the interaction term models, interaction terms
between all predictors were engineered in the pipeline prior to
feature selection and hyperparameter tuning. As the number of pre-
dictor variables grew exponentially in these analyses, we conducted
feature selection with the elastic net, a form of penalised regression
that removes highly correlated predictors from the model while
retaining the most predictive subset for model fitting.27

This same procedure was then repeated using an random forest
model, however, as random forest models are scale invariant, we did
not scale the predictors prior tomodel training.28 Instead of regularised
linear predictor selection, we conducted non-linear predictor selection
according to the mean decrease in variance provided by each predictor
in the random forest model.28 For the subset of classification models,
equivalent classifiers replaced the regression models in each pipeline.

For all pipelines, we used a random search of 60 iterations to
tune model hyperparameters. When less than 60 hyperparameter
combinations were present we used an exhaustive grid search. See
Supplementary Table 2 for the tuned hyperparameter values. This
process and all steps inside the pipelines were completed using
leave-site-out cross-validation. This method trains on all data-col-
lection sites minus one. The excluded site is then used to assess
the selected features and hyperparameters, with the combination
that minimises the root mean squared error on the held-out site
selected.29 As there were ten collection sites, this equates to
tenfold cross-validation for model selection. This site-based stratifi-
cation protects against the optimisation of hyperparameters and
selection of features that may proxy for disparities in feature and

outcome distributions across sites and result in ungeneralisable esti-
mates.30 All tuned and selected models from training and validation
were then further tested in the a priori held-out set of 342 patients.

We then re-ran all analyses with clinical variables on patients
who were in the lower and upper quartiles of the PRS distributions
for MDD, SCZ, and MDD and SCZ combined. See Supplementary
Methods. In addition, we ran supplementary analyses to control for
sample size effects and changes in the number of predictor variables
across analyses (Supplementary Methods).

Results

Cohort characteristics

The final analysis cohort contained 1034 patients with an average
age of 47.7 years (s.d. = 14) years and an average age at onset of
bipolar disorder of 24.9 years (s.d. = 11). Of these patients, 627
(60.6%) were male and 803 (77.7%) were classified as having
bipolar I disorder. The average Alda score for lithium response
was 4.3 (s.d. = 3.3) out of 10. See Supplementary Fig. 1 for the full
distribution of Alda scores. See Table 1 for more information on
participant characteristics.

Unimodal and multimodal models

According to the coefficient of determination (R2), the unimodal
linear regression PRS and clinical models explained 1.2% and
1.8% of variance in lithium response, respectively, and the com-
bined multimodal model explained 4.7% of variance in lithium
response. Re-running the three models including interaction
terms between all variables resulted in 1.4%, 4.5% and 5.1%
explained variance. For the non-linear random forest models, the
unimodal PRS and clinical models explained 2% and 8.1% of vari-
ance in lithium response, and the combined multimodal model
explained 7.4% of variance in lithium response. Re-running the
three models and including interaction terms between all variables
resulted in −0.9%, 6.7% and 5.2% explained variance.

Stratified PRS analyses

For the stratified analysis using patients in the upper and lower
quartiles of the MDD PRS distribution, the clinical linear and clin-
ical linear interaction models explained −2.8% and 2.7% of variance
in lithium response, whereas the non-linear random forest and
random forest interaction models explained 3.5% and 1.8% of vari-
ance. For the stratified SCZ PRS analyses, the clinical linear and
clinical linear interaction models explained 7.1% and 9% of variance
in lithium response, and the non-linear random forest and random
forest interaction models explained 7.2% and 9.3% of variance.
Finally, for the stratified meta-PRS analyses, the clinical linear and
clinical linear interaction models explained 12.1% and 9.2% of vari-
ance in lithium response, and the non-linear random forest and
random forest interaction models explained 13.7% and 4.5% of vari-
ance. All models were statistically significant after false discovery rate
(FDR) corrections. See Fig. 1 and Table 2 for all model results.

Completing 1000 runs of the Monte-Carlo sampling procedure
to control for decreases in sample size on the stratified meta-PRS
model, we attained an average R2 = 2.7% (s.d. = 5, P = 0.002).
Therefore, the superior performance of our meta-PRS stratified
model was not explainable by increased performance variability
resulting from decreased sample size.31 In addition, increases in
R2 were not explained by changes in the number of predictor vari-
ables across models (Pearson’s r = 0.17, P = 0.44) (Supplementary
Fig. 1). See Table 2 for results and Supplementary Tables 3–6 for
all model metrics. After controlling for these confounds, the best
performing meta-PRS stratified model explained 69% more
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Table 1 Characteristics of bipolar disorder patients included in analyses, stratified by their study sitea

Total
Cagliari/
Sardinian Dresden Geneva Halifax JHU NIMH Poznan

Prague/
Czech

San Diego/
UCSD Wuerzburg Statistic P

n 1034 196 43 46 240 24 36 97 45 216 91 – –

Age at interview, mean (s.d.) 47.7 (14.0) 46.0 (14.7) 43.5 (14.4) 46.9 (9.2) 48.5 (13.4) 44.0 (10.0) 45.6 (12.8) 61.9 (10.4) 44.8 (14.6) 45.0 (12.9) – 15.4 4.5 × 10−21

Age at onset of bipolar disorder, years:
mean (s.d.)

24.9 (11.0) 27.1 (11.0) 25.4 (9.1) 21.4 (9.0) 26.1 (9.8) 21.7 (9.6) 19.9 (6.8) 31.5 (10.2) 28.8 (10.7) 17.6 (9.7) 28.8 (11.0) 21.9 1.3 × 10−33

Age at onset MDD, mean (s.d.) 26.2 (12.2) 27.1 (14.3) 26.9 (11.5) 26.6 (10.1) 28.6 (11.0) 25.6 (12.0) 22.2 (10.7) 32.4 (10.2) 29.4 (10.9) 19.4 (10.1) 30.0 (10.4) 13.5 3.7 × 10−20

Alda scale total score, mean (s.d.) 4.3 (3.3) 4.1 (3.1) 3.7 (3.2) 3.5 (3.0) 5.9 (3.6) 4.9 (3.1) 4.2 (2.7) 6.2 (2.8) 4.2 (3.0) 2.9 (2.6) 2.8 (3.0) 19.4 9.1 × 10−30

Lithium responder, yes: n (%) 330 (31.9) 55 (28.1) 11 (25.6) 10 (21.7) 138 (57.5) 8 (33.3) 10 (27.8) 47 (48.5) 13 (28.9) 23 (10.6) 15 (16.5) 144.3 3.1 × 10−26

Bipolar I versus rest, n (%) 803 (77.7) 147 (75.0) 31 (72.1) 36 (78.3) 173 (72.1) 24 (100.0) 33 (91.7) 80 (82.5) 39 (86.7) 187 (86.6) 53 (58.2) 49.9 1.4 × 10−07

Bipolar I schizoaffective bipolar disorder
versus rest, n (%)

821 (79.4) 147 (75.0) 31 (72.1) 36 (78.3) 177 (73.8) 24 (100.0) 35 (97.2) 80 (82.5) 39 (86.7) 199 (92.1) 53 (58.2) 70.0 2.3 × 10−11

Alcohol dependence, yes: n (%) 159 (17.5) 19 (9.7) 3 (7.3) 14 (30.4) 7 (2.9) 13 (54.2) 6 (16.7) 10 (12.5) 9 (20.0) 78 (37.0) 0 (0.0) 170.1 3.7 × 10−32

Substance dependence, yes: n (%) 152 (16.8) 17 (8.7) 1 (2.4) 13 (28.3) 1 (0.4) 11 (45.8) 2 (5.6) 42 (52.5) 1 (2.2) 64 (30.5) 0 (0.0) 231.4 1.0 × 10−44

OCD, yes: n (%) 46 (5.1) 0 (0.0) 3 (7.3) 4 (8.7) 6 (2.5) 2 (8.3) 5 (13.9) 6 (7.5) 0 (0.0) 20 (9.4) 0 (0.0) 69.8 8.6 × 10−12

PTSD, yes: n (%) 62 (7.2) 0 (0.0) 0 (0.0) 2 (4.4) 0 (0.0) 0 (0.0) 0 (0.0) 16 (20.0) 1 (2.2) 43 (20.3) 0 (0.0) 112.9 1.1 × 10−21

Panic disorder, yes: n (%) 124 (13.8) 0 (0.0) 5 (12.2) 6 (13.0) 15 (6.3) 5 (20.8) 9 (25.0) 43 (53.8) 4 (8.9) 37 (17.5) 0 (0.0) 189.1 4.9 × 10−36

Gender, male: n (%) 627 (60.6) 133 (67.9) 23 (53.5) 25 (54.3) 139 (57.9) 17 (70.8) 28 (77.8) 60 (61.9) 30 (66.7) 109 (50.5) 63 (69.2) 25.1 2.8 × 10−03

Polarity 1st episode (depression onset),
n (%)

655 (63.3) 130 (66.3) 25 (58.1) 22 (47.8) 150 (62.5) 13 (54.2) 23 (63.9) 51 (52.6) 38 (84.4) 133 (61.6) 70 (76.9) 28.0 1.0 × 10−03

Polarity 1st episode (mania onset), n (%) 185 (17.9) 61 (31.1) 7 (16.3) 3 (6.5) 33 (13.8) 11 (45.8) 11 (30.6) 12 (12.4) 4 (8.9) 33 (15.3) 10 (11.0) 55.4 1.4 × 10−08

Polarity 1st episode (hypomania onset),
n (%)

67 (6.5) 5 (2.6) 3 (7.0) 2 (4.3) 8 (3.3) 0 (0.0) 0 (0.0) 1 (1.0) 2 (4.4) 46 (21.3) 0 (0.0) 103.0 6.4 × 10−18

Any suicidal features, no: n (%) 433 (41.9) 125 (63.8) 0 (0.0) 9 (19.6) 104 (43.3) 15 (62.5) 21 (58.3) 61 (62.9) 14 (31.1) 41 (19.0) 43 (47.3) 154.7 2.2 × 10−28

Any suicidal features, yes: n (%) 449 (43.4) 70 (35.7) 18 (41.9) 34 (73.9) 14 (17.1) 9 (37.5) 15 (41.7) 19 (19.6) 31 (68.9) 164 (75.9) 48 (52.7) 220.8 7.8 × 10−42

Any suicidal features, unknown: n (%) 152 (14.7) 1 (0.50) 25 (58.1) 3 (6.5) 95 (39.6) 0 (0.0) 0 (0.0) 17 (17.5) 0 (0.0) 11 (5.1) 0 (0.0) 267.4 1.9 × 10−51

DSM diagnosis (bipolar I disorder), n (%) 803 (77.7) 147 (75.0) 31 (72.1) 36 (78.3) 173 (72.1) 24 (100.0) 33 (91.7) 80 (82.5) 39 (86.7) 187 (86.6) 53 (58.2) 49.9 1.4 × 10−07

DSM diagnosis (bipolar II disorder), n (%) 203 (19.6) 49 (25.0) 12 (27.9) 10 (21.7) 63 (26.3) 0 (0.0) 1 (2.8) 17 (17.5) 6 (13.3) 15 (6.9) 30 (33.0) 58.3 4.1 × 10−09

DSM diagnosis (schizoaffective bipolar
disorder), n (%)

18 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 4 (1.7) 0 (0.0) 2 (5.6) 0 (0.0) 0 (0.0) 12 (5.6) 0 (0.0) 31.0 3.1 × 10−04

DSM diagnosis (bipolar III disorder), n (%) 3 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (3.3) 31.2 3.1 × 10−04

DSM diagnosis (bipolar disorder not
otherwise specified), n (%)

7 (0.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.9) 5 (5.5) 36.6 3.7 × 10−05

Bipolar disorder family history, yes: n (%) 351 (33.9) 83 (42.3) 31 (72.1) 0 (0.0) 44 (18.3) 0 (0.0) 12 (33.3) 42 (43.3) 10 (22.2) 129 (59.7) 0 (0.0) 213.5 2.23 × 10−40

Bipolar disorder family history, no: n (%) 386 (37.3) 113 (57.7) 9 (20.9) 0 (0.0) 154 (64.2) 0 (0.0) 0 (0.0) 38 (39.2) 35 (77.8) 37 (17.1) 0 (0.0) 300.1 3.42 × 10−58

Bipolar disorder family history,
unknown: n (%)

297 (28.7) 0 (0.0) 3 (7.0) 46 (100.0) 42 (17.5) 24 (100.0) 24 (66.7) 17 (17.5) 0 (0.0) 50 (23.1) 91 (100.0) 555.9 1.65 × 10−112

JHU, John Hopkins University; NIMH,National Institute of Mental Health; UCSD, University California San Diego; MDD, major depressive disorder; OCD, obsessive–compulsive disorder; PTSD, post-traumatic stress disorder.
a. Statistics calculated using one-way ANOVA for continuous variables and Fischer exact tests for categorical variables. All P-values were false discovery rate-corrected using the Benjamini and Hochberg method.
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variance (R2 = 13.7%, P = 0.0001) than the equivalent model con-
taining no a priori meta-PRS stratification (R2 = 8.1%, P = 0.0001).
In this model, all clinical variables were retained in model selection
(See Supplementary Table 7). Re-running these two best performing
models in a classification framework led to balanced accuracies of
58.95% and 63.65%, respectively. See Supplementary Table 8 for
all classification metrics.

Patient characteristics in the genetically stratified
cohort

After FDR corrections, significant differences in clinical character-
istics were found between those in quartiles 1 (low meta-PRS
load) and 4 (high meta-PRS load) of the combined meta-PRS distri-
bution for binary lithium response (ALDA ≥ 7) (χ2 = 12.214, P =
0.005), bipolar I disorder versus rest (bipolar II disorder and schizo-
affective disorder) (χ2 = 12.755, P = 0.005) and DSM diagnosis
(bipolar I disorder, bipolar II disorder and schizoaffective disorder)
(χ2 = 13.33, P = 0.027).

In quartile 1 of the meta-PRS distribution, 70% had bipolar I
disorder, 26% had bipolar II disorder and 4% had schizoaffective
disorder. In total, 39% of these patients were lithium responders.
In quartile 4, 86% had bipolar I disorder, 12% had bipolar II dis-
order and 3% had schizoaffective disorder. In total, 22% of these
patients were lithium responders.

Overall, those in quartile 1 were 67.7% more likely to be lithium
responders compared with those in quartile 4 (odds ratio 1.677, 95%
CI 1.14–2.47, P = 0.009). For all other clinical characteristics,
including variables that attained nominal significance, see Table 3.

Discussion

Main findings

This is the first study to provide evidence for the combined predict-
ive ability of routine clinical data and PRS for lithium response.
Specifically, we show that first using PRS to stratify patients

according to their polygenic loadings, followed by training with
clinical data explains more variance in lithium response and
improves model accuracy in a classification setting.13,14

Interestingly, the combination of PRS with clinical data performed
best in the linear models, but not in the non-linear models. Outside
of the best performing stratified meta-PRS model, neither of these
multimodal models performed best overall. Moreover, unimodal
clinical models outperformed their PRS equivalents.

Interpretation of our findings

This observation of clinical variables outperforming their biological
counterparts has been repeatedly demonstrated across a range of
multimodal machine-learning studies.18,32 The most intuitive
explanation is that the small effect sizes yielded by biological vari-
ables, when compared with clinical variables, leads to overfitting
and/or their lack of selection in cross-validation, resulting in under-
performance for biomarker models when tested out of sample.

The next consideration is why effects are smaller for biological
variables. To answer this, we need to consider how psychiatric traits
are constructed and the implications this has for studies attempting
to elucidate a biological basis for psychiatric phenomenon. In com-
parison with other disorders, psychiatric phenotypes are defined by
deviations from normative behaviours and emotional–cognitive
experiences, rather than from well-defined physiological pro-
cesses.30 Therefore, it is plausible that they bias towards larger
effect sizes for clinical variables that correlate with clinical data
already used in the construction of phenotypes and illness trajector-
ies. Consequently, this tautology in the formation of diagnostic and
prognostic constructs may limit the predictive contribution of bio-
logical data. In theory, this problem could be circumvented by first
parsing patient heterogeneity at the biological level, and then using
clinical variables in secondary analyses.

This rationale informed our stratified analyses where we a priori
partitioned patients based on their polygenic loadings for MDD,
SCZ and their combination in the form of a standardised meta-
PRS. Interestingly, this method was most predictive of lithium
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response overall, explaining 69% more variance than the equivalent
model with no a priori meta-PRS stratification. These results
support the view that first parsing biological heterogeneity may
improve the prediction of bipolar disorder lithium response with
clinical data.

When assessing the best performing non-stratified model, the
clinical random forest model, and the best performing overall
model, the meta-PRS stratified model, we also observed an increase
in model performance in a classification framework, albeit a smaller
percentage change. This observation warranted an inspection and
interpretation of the lithium response distributions between
patients in the low and high meta-PRS quartiles (Supplementary
Fig. 1). Here, we observe disproportionate densities of very low
(0) and moderate response (5–7) scores for patients with high
meta-PRS loadings. Conversely, for patients with low meta-PRS
loadings, we observe disproportionate densities of very low (0)

and very high response (7–10) scores. Both quartiles of meta-PRS
loadings demonstrated high densities of very low response, yet dif-
ferences between moderate and high response scores were evident.
More specifically, patients with low meta-PRS loadings belonged to
a continuous bimodal response distribution, whereas those with
high meta-PRS loadings appeared to be mixed across the distribu-
tion and skewed towards lower response. When dichotomising
lithium response, this nuanced understanding between a patient’s
genetic loadings and lithium response was lost.

This observation is interesting in light of recent work that quan-
tified the asymmetrical reliability of the Alda scale, finding higher
interrater reliability in the upper tail of the response distribution.33

Therefore, a dichotomous representation of lithium responsewas gen-
erally argued for, even after considering the resultant loss in statistical
power. However, rather than deciding a priori to discretise this distri-
bution, an alternative approach would be to tune and select models in
a leave-site-out cross-validation framework, as was done in the
current work. This is because we would expect to see the highest
amount of interrater disagreement between data-collection sites, as
purported by Nunes et al.33 If it was high enough to warrant a
priori discretisation, these across site models would not generalise
because of their disagreement in lithium response. However, in the
current work nearly all models generalised across sites to the out-of-
sample-test sets that were excluded from model construction, dem-
onstrating that the use of leave-site-out cross-validation ensured
that each model was tuned to learn parameters and relationships
that generalised regardless of any disagreement between raters
across sites. In addition, this established that there was enough
agreement between raters to learnmeaningful, informative and gen-
eralisable patterns in the continuous lithium response distribution.

In future works, an alternative to dichotomising the Alda scale
would be to use the full scale and run analyses using spline regres-
sion.34 With this technique, we would not build one model for the
entire data-set, but instead, divide the data-set into multiple bins
and fit each bin with its own model. Some of these models may
be linear, whereas others may be polynomial. This approach
would allow us to fit PRS to the lithium response distribution and
account for the linear and non-linear relationships between differ-
ent strata of the PRS and lithium response distributions.34

Regarding the clinical characteristics of patients in each meta-
PRS quartile, we observed significant differences between the
types of psychiatric diagnosis. Quartile 1 (low meta-PRS load) had
lower proportions of bipolar I disorder diagnoses and higher pro-
portions of bipolar II disorder and schizoaffective disorder,
whereas the opposite was true for those in quartile 4 (high meta-
PRS load). Given that higher meta-PRS loadings are associated
with poorer lithium response, and that people with ‘purer’ forms
of bipolar I disorder are considered better responders to
lithium,2,35,36 this is an unexpected finding: one might have
hypothesised that there would be a higher proportion of people
with bipolar I disorder in the low, and therefore less ‘contaminated’,
meta-PRS group. Our finding suggests that the relationship between
meta-polygenic disposition for SCZ and MDD and actual pheno-
typical expression of bipolar spectrum disorders is more
complex,37 and that people with seemingly unfavourable genetic
constellations may still benefit from lithium once other clinical
and environmental parameters come into play. Similarly, patients
with seemingly less favourable diagnoses for lithium response (i.e.
bipolar II disorder and schizoaffective disorder) may still benefit if
their polygenic disposition points towards better responsiveness.

Considerations for clinical use

This leads to two main considerations for clinical use. The overall
increase in variance from combining clinical and genetic data may

Table 2 Train/validation (n = 692) and test (n = 342) results across all
modelsa

Train mean
(s.d.)

Validate
mean (s.d.) Test P

Linear (ridge and elastic net regression)
PRS 0.01 (0.0) 0.20 (0.18) 0.012 0.0131
Interaction PRS 0.01 (0.0) 0.20 (0.18) 0.014 0.01
Clinical 0.12 (0.02) 0.32 (0.17) 0.018 0.0004
Interaction clinical 0.12 (0.02) 0.26 (0.19) 0.045 0.0001
Clinical and PRS 0.09 (0.02) 0.20 (0.17) 0.047 0.0001
Interaction clinical and

PRS
0.13 (0.02) 0.27 (0.19) 0.051 0.0001

Random forest regression
PRS 0.09 (0.01) 0.22 (0.18) 0.02 0.0001
Interaction PRS 0.09 (0.01) 0.22 (0.19) 0.009 0.0001
Clinical 0.21 (0.02) 0.21 (0.11) 0.081 0.0001
Interaction clinical 0.24 (0.02) 0.23 (0.14) 0.067 0.0001
Clinical and PRS 0.22 (0.02) 0.21 (0.12) 0.074 0.0001
Interaction clinical and

PRS
0.25 (0.02) 0.23 (0.16) 0.052 0.0001

A priori PRS stratified regression (trained with clinical predictors)
Linear MDD stratified 0.12 (0.01) 0.12 (0.31) −0.028 0.0171
Linear interaction MDD

PRS stratified
0.13 (0.01) 0.21 (0.36) 0.027 0.0013

Linear SCZ PRS
stratified

0.12 (0.01) 0.41 (0.42) 0.071 0.0004

Linear interaction SCZ
PRS stratified

0.12 (0.01) 0.31 (0.21) 0.09 0.0001

Linear Meta-PRS
stratified

0.09 (0.01) 0.67 (0.39) 0.121 0.0001

Linear interaction
meta-PRS stratified

0.10 (0.01) 0.51 (0.34) 0.092 0.0001

Random forest MDD
PRS stratified

0.18 (0.01) 0.16 (0.22) 0.035 0.0001

Random forest
interaction MDD
PRS stratified

0.23 (0.01) 0.20 (0.29) 0.018 0.0001

Random forest SCZ
PRS stratified

0.24 (0.01) 0.24 (0.14) 0.072 0.0001

Random forest
interaction SCZ PRS
stratified

0.27 (0.02) 0.26 (0.14) 0.093 0.0001

Random forest meta-
PRS stratified

0.23 (0.02) 0.40 (0.29) 0.137 0.0001

Random forest
interaction meta-
PRS stratified

0.70 (0.01) 0.39 (0.35) 0.045 0.0001

PRS, polygenic risk scores; MDD, major depressive disorder; SCZ, schizophrenia.
a. Unimodal, multimodal and interaction term predictors spaces were measured using
both linear regression (ridge and the elastic net) and random forest regressionmodels. In
addition, PRS stratified models composed of MDD PRS, SCZ PRS, and their standardised
combinations in the form of a meta-PRS were assessed across model types and feature
interaction combinations. Mean and (s.d.) represent the mean (s.d.) from the leave-site-
out train and validation procedures. All P-values were false discovery rate-corrected
with the Benjamini and Hochberg method.
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be of use for clinicians to improve the accuracy of their clinical deci-
sion-making overall, especially when combined with other PRS and
biomarkers in future works and then incorporated into classifica-
tion models. Further and more immediate benefit could be
derived from using this added genetic data to reconsider patients
who would be traditionally ruled out as favourable responders to
lithium based solely on their clinical presentation if their meta-poly-
genic loadings suggest otherwise.

Limitations

A number of limitations exist in the current work. First, there was a
limited amount of clinical data available for analysis in this cohort.
Future studies should aim to collect a wider range of clinical data
(for example symptom scales) to elucidate the relationship
between PRS and clinical characteristics, as well as their combined
predictive ability. Ideally, prospective studies of lithium response
will be required in the future to quantify the predictive ability of
machine-learning models in an environment that is analogous to
clinical practice.

Second, correctly operationalising bipolar I disorder, bipolar II
disorder and schizoaffective disorder DSM phenotypes is difficult in
real-world practice. Relying on patient’s retrospective reporting of
symptoms and past episodes to form these diagnoses, as was done
in the current study, can lead to misdiagnosis of bipolar subtypes.2,3

Another consideration concerns the selection of quantile-based
PRS stratification over tertile12 and decile13 stratification used in
previous works. Choosing the number of PRS strata involves con-
sidering the trade-offs between a higher number of bins (i.e.
decile stratification) that would likely contain larger differences in
clinical characteristics, lithium response and polygenic risk, but
result in a smaller sample (only 20% of the original sample would
be retained when taking the extreme deciles). Alternatively, a
lower number of bins (i.e. tertiles) would result in the opposite
being true. To balance this trade-off, we chose quartile-based strati-
fication. When taking the two extreme quartiles, we retained 50% of
the original sample, while removing the middle of the PRS distribu-
tions that shows the smallest genetic differences in lithium
response.13,15 However, future studies could attempt to find the
optimal number of strata through the use of cross-validation with

spline regression, where the optimal number of strata could be
tuned and selected according to the minimisation of a loss function.
If completed in a leave-site-out framework, between site rater dis-
agreement would be controlled for and the full lithium response dis-
tribution could be modelled.

The next limitation pertains to the patients that do not fall in the
tails of the PRS distributions and who would therefore be excluded
from prediction with this model. However, such a stratified model
that confers superior predictive ability could first be used for
patients that fall within these strata, and for patients that do not,
models without stratification could be used12 or other stratifying
biomarkers could be incorporated.38 Through this lens, we envision
a stepwise process in clinical deployment where the choice of model
itself would be tailored to individual patients depending on their
unique clinical and biological characteristics (Supplementary
Fig. 2). An alternative approach to parse biological heterogeneity
would be to use unsupervised machine-learning models.39 However,
the disproportionately small effect sizes afforded by PRS,40 the large
risk of overfitting on unlabelled data,41 the high level of polygenic col-
linearity across psychiatric traits16,42 and the resultant demands these
considerations impose on statistical power,43 led us to take a simpler
approach informed by previous findings.13,14

Implications

In conclusion, using PRS to stratify patients genetically and then
train machine-learning models with clinical predictors led to large
improvements in lithium response prediction over other forms of
unimodal and multimodal modelling. Clinical data explained the
most variance and both clinical and PRS data showed non-linear
relationships with lithium response. To adequately model the
linear and non-linear relationships between these PRS and
lithium response across different genetic strata, future works
should consider modelling these relationships using spline regres-
sion. Moreover, engineering a direct lithium response PRS and
using this to parse heterogeneity may further improve model per-
formance. In addition, parsing heterogeneity with biomarkers
from neuroimaging and omics domains should also be considered.
Finally, data-sets with a larger range of clinical variables will likely
improve prediction following genetic stratification.

Table 3 Descriptive statistics for the clinical profiles of patients with bipolar disorder in the lower and upper quartiles of the meta-polygenic risk scores
(PRS) distributiona,b

Quartile 1
(low meta-PRS)

Quartile 4
(high meta- PRS) Statistic P FDR P

n 259 259 – – –

Alda scale total score, mean (s.d.) 4.852 (3.412) 4.078 (3.171) 2.412 0.016 0.065
Lithium response (Alda ≥7), no/yes: % 61/39 78/22 12.214 0.001 0.005
Age at onset of bipolar, mean (s.d.) 25.723 (11.606) 23.548 (10.784) 1.993 0.047 0.104
Age at onset of depression, mean (s.d.) 27.520 (12.587) 25.790 (12.010) 1.427 0.154 0.237
Age at interview, mean (s.d.) 48.277 (14.052) 48.434 (14.010) −0.114 0.909 0.909
Bipolar I disorder versus rest, no/yes: % 30/70 14/86 12.755 <0.001 0.005
Polarity first episode, depression/mania/hypomania onset: % 74/17/10 67/21/12 1.961 0.375 0.491
Alcohol dependence, no/yes: % 87/13 78/22 4.567 0.033 0.093
Substance dependence, no/yes: % 87/13 82/18 1.916 0.166 0.238
Obsessive–compulsive disorder, no/yes: % 95/5 94/06 0.270 0.603 0.670
Post-traumatic stress disorder, no/yes: % 96/4 91/09 3.726 0.054 0.107
Panic disorder, no/yes: % 92/8 86/14 2.980 0.084 0.153
Any suicidal features, no/yes/unknown: % 46/39/15 39/52/09 6.986 0.030 0.093
Gender, female/male: % 42/58 46/54 0.552 0.458 0.539
DSM diagnosis, bipolar I disorder/bipolar II disorder/schizoaffective disorder: % 70/26/4 86/12/3 13.330 0.004 0.027
Bipolar family history, no/yes/unknown: % 42/46/12 42/41/16 1.869 0.393 0.491

FDR, false discovery rate.
a. Statistic: calculated using independent samples t-tests for continuous variables and χ2 tests for categorical variables. All P-values were FDR-corrected using the Benjamini and Hochberg
method.
b. Nominal and FDR-corrected P-values in bold.
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