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Abstract: Despite considerable morbidity and mortality, numerous cases of endocrine hypertension
(EHT) forms, including primary aldosteronism (PA), pheochromocytoma and functional paragan-
glioma (PPGL), and Cushing’s syndrome (CS), remain undetected. We aimed to establish signatures
for the different forms of EHT, investigate potentially confounding effects and establish unbiased
disease biomarkers. Plasma samples were obtained from 13 biobanks across seven countries and
analyzed using untargeted NMR metabolomics. We compared unstratified samples of 106 PHT
patients to 231 EHT patients, including 104 PA, 94 PPGL and 33 CS patients. Spectra were subjected
to a multivariate statistical comparison of PHT to EHT forms and the associated signatures were
obtained. Three approaches were applied to investigate and correct confounding effects. Though we
found signatures that could separate PHT from EHT forms, there were also key similarities with the
signatures of sample center of origin and sample age. The study design restricted the applicability
of the corrections employed. With the samples that were available, no biomarkers for PHT vs. EHT
could be identified. The complexity of the confounding effects, evidenced by their robustness to
correction approaches, highlighted the need for a consensus on how to deal with variabilities probably
attributed to preanalytical factors in retrospective, multicenter metabolomics studies.

Keywords: confounders; metabolomics; multicenter; plasma NMR; preanalytical conditions

1. Introduction

Arterial hypertension (HT) was prevalent in approximately 22% of the global pop-
ulation in 2015 [1] and was found to be the leading cause of death in 2017 [2]. Three
types of secondary HT, specifically endocrine HT (EHT), are primary aldosteronism (PA),
pheochromocytoma and paraganglioma (PPGL), and Cushing’s syndrome (CS). All these
diseases are associated with increased morbidity and mortality [3–7]. Tailored medical
treatments, in specific surgical resection of the underlying hormone-producing lesion, result
in decreased morbidity and mortality of patients [3,5–7], therefore correct diagnosis is key
for patient survival. However, diagnosing EHT can be challenging, due to the dependence
of the PA screening test on numerous factors [8], highly variable clinical presentations and
a lack of routine cost-effective biochemical screening for PPGLs [9], and heavy reliance
on medical experts’ experience in CS screening [10,11]. As a result, many cases of PA,
PPGL and CS remain undetected [8,11,12]. By employing a more general, objective and
cost-effective screening method, the chances for a long-term cure as well as blood pressure
control should be increased [13]. In addition, early disease identification may shed light
on pathophysiological mechanisms allowing for personalized treatment approaches [13].
Metabolomics has led to the discovery of potential biomarkers for several diseases [14–17].
The ENSAT-HT consortium aims to establish multi-omics diagnostic biomarkers, including
metabolomics, for classifying patients as having either primary HT (PHT) or a form of
EHT [18]. Erlic et al. [19] applied a targeted Liquid Chromatography–Mass Spectrometry
approach to differentiate ENSAT-HT plasma samples collected from patients with EHT
from those collected from patients with PHT and delineated a biomarker signature with
high classification accuracy.
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Metabolomics studies, however, when applied to clinical studies, are prone to lim-
itations such as confounding effects [20]. For example, the initial report on the high
accuracy of metabolomics in predicting coronary artery disease [21], was contrasted by
the follow-up report by Kirschenlohr et al., in which patient gender and medication were
identified as sources of unwanted variation and lower accuracies were found by analyz-
ing subgroups [22]. According to the 2005 review by David Ransohoff, “Bias can be so
powerful in non-experimental observational research that a study should be presumed
‘guilty’—or biased—until proven innocent” [23], therefore it is advisable to investigate and
correct the influence of confounders in metabolomics studies. Confounding effects can be
corrected using methods such as Analysis Of Variance Simultaneous Component Analy-
sis (ASCA) [24], Covariate-Adjusted Projection to Latent Structures [25] and regularized
Multivariate Analysis Of Variance [26].

In this paper, we analyzed bio-banked plasma samples sent from various centers
that are part of the ENSAT-HT consortium, using proton nuclear magnetic resonance
spectroscopy (1H-NMR)-based untargeted metabolomics as an alternative and possibly
complementary approach to targeted metabolomics [19]. We aimed to establish unbiased
EHT biomarkers, so we initially compared each EHT disease group to PHT and obtained
signatures of each comparison from the analyses. Subsequently, we applied three ap-
proaches to investigate and correct the influence of confounders on the obtained signatures,
as center heterogeneity is a well-known challenge in multicenter studies [27], particularly
when disease groups are inadequately represented in each center’s patient cohort [28].

2. Results
2.1. Initial Approach: Establishing Possible EHT–PHT Biomarkers

Table 1 summarizes the characteristics of all patient samples analyzed. Briefly, our
final dataset consisted of 231 plasma samples collected from patients with EHT
(104 PA + 94 PPGL + 33 CS) and 106 samples from patients with PHT.

Table 1. Patient and sample characteristics. Abbreviations are explained in the main text.

PHT (n = 106) EHT (n = 231) PA (n = 104) PPGL (n = 94) CS (n = 33)

PATIENT CHARACTERISTICS
PATIENT AGE 55 [18–79] * 49 [17–77] 48 [26–74] 50 [19–77] 47 [17–76]

p-value ** 0.003 0.002 0.1 0.03
PATIENT SEX (F/M) 61/45 135/96 47/57 58/36 30/3

p-value *** 0.9 0.1 0.6 0.0003
PREANALYTICAL SAMPLE CHARACTERISTICS

SAMPLE AGE (days) 2393 [127–6418] * 1125 [11–3442] * 535 [52–2280] * 1548 [11–3442] * 162 [19–1186] *
p-value ** 6 × 10−11 4 × 10−10 0.002 3 × 10−12

SAMPLE CENTER OF ORIGIN
FRPA1 17 (16%) 66 (29%) 40 (38%) 26 (28%) 0
FRPA2 0 11 (4.8%) 0 0 11 (33%)
GBGL2 49 (46%) 0 0 0 0
GYDR 20 (19%) 28 (12%) 8 (7.7%) 19 (20%) 1 (3.0%)
GYLU 0 1 (0.4%) 0 1 (1.1%) 0
GYMU 0 4 (1.7%) 0 4 (4.3%) 0
GYWU 0 1 (0.4%) 0 1 (1.1%) 0
IRGA 0 3 (1.3%) 0 0 3 (9.1%)
ITPD 0 20 (8.7%) 2 (1.9%) 4 (4.3%) 14 (42%)

ITPD3 0 9 (3.9%) 8 (7.7%) 0 1 (3.0%)
ITTU3 20 (16%) 51 (22%) 46 (44%) 2 (2.1%) 3 (9.1%)
NLNI 0 6 (2.6%) 0 6 (6.4%) 0

PLWW 0 31 (13%) 0 31 (33%) 0
p-value *** 5 × 10−4 5 × 10−4 5 × 10−4 6 × 10−26
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Table 1. Cont.

PHT (n = 106) EHT (n = 231) PA (n = 104) PPGL (n = 94) CS (n = 33)

ANALYTICAL SAMPLE CHARACTERISTICS
BATCH 22 [1–42] * 25 [1–48] * 22 [1–44] 31 [1–48] * 24 [1–46] *

p-value ** 0.1 0.8 0.006 0.9
RUN ORDER 7 [2–16] * 7 [2–17] * 7 [2–14] * 9 [2–17] * 7 [2–15] *

p-value ** 0.6 0.7 0.5 0.9

* Each continuous variable, such as patient age, is presented as a mean or median (depending on normality,
indicated with the asterisk) and a range. ** For continuous variables, a p-value was obtained from a t/Wilcoxon test
(depending on normality), comparing each disease group (Endocrine Hypertension (EHT), Primary Aldosteronism
(PA), Pheochromocytoma/Paraganglioma (PPGL) or Cushing’s Syndrome (CS)) to the control group (Primary
Hypertension, PHT). *** For categorical variables, such as patient sex, a p-value was obtained from a Fisher test,
comparing each disease group (EHT, PA, PPGL or CS) to the control group (PHT).

Results from the peak picking procedure are shown in Figure 1.
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Figure 1. Results obtained after peak picking, as well after grouping and filling of the NMR spectra.
Only the first half of samples analyzed are depicted.

The Principal Component Analysis (PCA) score plot of the complete dataset including
all 86 peaks (Figure S1) showed Quality Control (QC) samples clustering closely together,
indicating a low analytical variation compared to the sum of biological and preanalytical
variation. The result shown in Figure 2a appeared promising for the successful separation of
the two main disease groups (EHT and PHT), as the two disease groups resulted in slightly
different scores along the second principal component (PC2). The classification analyses
of these datasets resulted in high accuracies of approximately 80% when attempting to
distinguish PHT from EHT forms (Table S2 and Table 2). Lower balanced accuracies (e.g.,
65%, Table 2) resulted from separating all groups from each other. Table 3 depicts the
signatures obtained from scenario EHT–PHT.
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Figure 2. PCA plots of the first two principal components, calculated from all samples and all
86 peaks. In score plot (a), samples were colored according to disease group (CS, PA, PHT or PPGL),
whereas in score plot (b), samples were colored according to the centers in which they were collected
and score plot (c) depicts samples colored according to sample age, with the median value as the
cutoff. In all scores plots, the percentage of explained variance per component is depicted in the
plot axes. Though PC2 scores are slightly higher for PHT samples compared to EHT, samples were
strikingly different from center to center. The 95% ellipses in plot (b) were calculated based on a
score plot colored according to the two main clusters according to PC1, i.e., cluster 1 (orange) and
cluster 2 (blue), and were included here to highlight what seems to be the most important source of
variation in these data. Plot (d) is the loadings plot of the same PCA, with NMR peaks in blue and
the corresponding metabolite names in red. Only peaks with a correlation cutoff above 0.5 are shown,
as these arise from metabolites that most affect sample distribution in the scores plots (a–c).

By investigating the various sources of variation present in our data using PCA, sample
center of origin, as well as sample age, appeared to be major sources of variation in the
data. As illustrated in Figure 2b, clusters of centers were apparent. Figure 2c demonstrates
a tendency for separation of samples based on their sample age, which was significantly
different between disease groups, as well as amongst centers, according to a Kruskal–
Wallis test (p < 2 × 10−16). Effects of other factors, such as analytical batch and patient
age, were not observed to coincide with tendencies in the first two principal components
(Figure S2a–d). Inspection of the corresponding loadings plot (Figure 2d and Figure S2e)
showed that, in comparison to the cluster of centers Dresden (GYDR), Lübeck (GYLU),
München (GYMU), Würzburg (GYWU), Torino (ITTU3), Nijmegen (NLNI) and Warsaw
(PLWW), samples in cluster Paris (FRPA1) PHT had low glutamine and high glutamate,
whereas samples from centers FRPA1 (non-PHT), FRPA2, Glasgow (GBGL2), Galway (IRGA)
and Padova (ITPD/ITPD3) were characterized by high lactate and ornithine, GBGL2 samples
were further characterized by high glutamate and low glutamine, and ITPD/ITPD3 samples
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had high methanol. These metabolites, as well as those found in signatures, were identified as
described in the Methods section of this paper and shown in Figure 3.

Table 2. Summary of accuracies from sPLSDA models via each approach for each scenario.

Scenario Metric Initial Approach Approach A Approach B Approach C

EHT-PHT
Balanced Accuracy 79 (78–79) 79 (79–79) 67 (66–67) 58 (57–59)

Sensitivity ** 87 (87–87) 84 (83–84) 69 (69–70) 62 (61–63)
Specificity *** 70 (70–71) 74 (73–74) 64 (63–65) 53 (51–55)

PA-PHT
Balanced Accuracy 83 (83–84) 83 (83–83) 69 (69–70) 69 (68–70)

Sensitivity ** 90 (89–90) 89 (89–90) 70 (69–71) 77 (76–79)
Specificity *** 77 (77–78) 77 (77–77) 69 (68–70) 61 (60–62)

PPGL-PHT
Balanced Accuracy 79 (78–79) 81 (80–81) 68 (68–69) 68 (67–69)

Sensitivity ** 88 (87–88) 86 (85–87) 69 (68–70) 69 (68–70)
Specificity *** 70 (69–70) 75 (75–76) 67 (66–68) 66 (65–68)

CS-PHT
Balanced Accuracy 85 (84–85) - 82 (81–82) -

Sensitivity ** 71 (71–72) - 79 (78–80) -
Specificity *** 98 (98–99) - 84 (84–85) -

ALL-ALL

Balanced Accuracy 65 (64–65) - 53 (52–53) 57 (57–58)
CS TP Rate 73 (72–74) - 72 (71–73) -

PA TP * Rate 65 (64–65) - 53 (52–54) 69 (67–70)
PHT TP * Rate 72 (72–72) - 45 (45–46) 35 (33–36)

PPGL TP * Rate 50 (49–51) - 42 (41–43) 69 (68–70)

* TP stands for True Positive. ** Sensitivity is the TP rate of the disease group (EHT, PA, PPGL or CS). *** Specificity
is the TP rate of the control group (PHT). All metrics are given as means, with the 95% confidence interval
(in brackets).

Table 3. Regression coefficients for peaks representative of each metabolite, obtained via sPLSDA
on the EHT vs. PHT scenario, from each approach. Most peaks that were selected as predictors
via the Initial Approach were not selected via Approach C. Lactate, which was selected by both,
has a negative coefficient in the Approach C model, contrasting the Initial Approach. Metabolites
highlighted in bold were found to have a strong relationship with a confounder (Table 4).

Metabolite NMR Signal (ppm) Initial Approach Approach A Approach B Approach C

Alanine 1.457 −0.19975 −0.07187 0 0
Creatine 3.917 0 0 0.019157

Creatinine 4.041 0 0 0.177419 0
Dimethyl sulfone 3.137 0 0 0.109629

Dimethylamine 2.695 0 0 −0.03439 0
Dimethylglycine 2.91 0 0 0.04487 0.027703

Formate 8.441 −0.01988 −0.01755 0.023133 0
Glutamine 2.433 0.148614 0.135957 0
Glutamate 2.325 −0.12554 −0.14981 0

Glucose 5.22 0.039396 0.0097 0.147391
Glycine 3.548 −0.0108 0 0
Glycerol 3.555 0 0 0.091654
Lactate 4.108 0.025885 0 −0.08734
Lysine 2.997 0 0 0.03347 0

Methionine 2.122 0.052659 0.02404 0
Methanol 3.346 0.062726 0.050343 0.04658

Proline 1.996 −0.02291 −0.00628 −0.13954 −0.01636
Pyruvate 2.356 0.312859 0.32791 0.197295
Threonine 4.24 0 0 0.040696 0
Tyrosine 7.168 0 0 −0.0194 0

Valine 0.981 0 0 0 −0.00058

Unknown
Metabolites

3.162 0.009448 0.017788 0.236056 0
3.262 0 0 −0.15528 −0.05692
3.284 −0.03909 −0.02878 0
3.612 0 0 −0.11482 0
3.67 0 0 −0.12957 0
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Table 4. Metabolites selected for exclusion due to a strong relationship with a confounder.

Metabolite NMR Peaks (ppm) Dataset Reason * FRPA1 PHT/Cluster
2/High Sample Age

Acetylcarnitine 3.177 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↓

Creatine 3.021, 3.917 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↑

Dimethyl sulfone 3.137 PA-PHT, PPGL-PHT PLSDA SAMPLE AGE ↑

Glucose 5.220, 5.227 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↓

Glutamate

2.047, 2.060, 2.075, 2.095,
2.103, 2.108, 2.113, 2.122,
2.132, 2.140, 2.145, 2.325,

2.332, 2.341, 2.356

PA-PHT, PPGL-PHT
FRPA1 PHT, PLSDA
CLUSTER, SAMPLE

AGE
↑

Glutamine

2.095, 2.103, 2.108, 2.113,
2.122, 2.132, 2.140, 2.145,
2.418, 2.428, 2.433, 2.444,

2.449, 2.460

PA-PHT, PPGL-PHT
FRPA1 PHT, PLSDA
CLUSTER, SAMPLE

AGE
↓

Glycerol 3.555, 3.567 PA-PHT PLSDA CLUSTER,
SAMPLE AGE ↑

Glycine 3.548 PA-PHT, PPGL-PHT PLSDA SAMPLE AGE ↓

Lactate 1.321, 1.307, 4.080, 4.094,
4.108, 4.121 PA-PHT, PPGL-PHT PLSDA CLUSTER,

SAMPLE AGE ↑

Methanol 3.346 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↓

Methionine 2.122 PA-PHT, PPGL-PHT FRPA1 PHT, PLSDA
SAMPLE AGE ↓

Ornithine 3.041, 3.057 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↑

Pyruvate 2.356 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↓

Unknown metabolite 3.284 PA-PHT, PPGL-PHT PLSDA CLUSTER,
SAMPLE AGE ↑

* Peaks were excluded either because they were found to be important in discriminating samples in a Partial
Least Squares Discriminant Analysis (PLSDA) of center cluster, i.e., the separation of centers according to the first
dimension in the PCA score plot of Figure 2b, in a PLSDA of sample age (with the median sample age as a cutoff),
or because they were found to be higher or lower in the FRPA1 PHT group of samples.

2.2. Correcting for Confounders: Approach A (ASCA Correction)

We could not use Analysis of Variance Simultaneous Component Analysis (ASCA)
to correct for the center directly, as there was not an adequate representation of each
center in all investigated groups. Therefore, we attempted to correct our data for possible
confounders using ASCA, performed according to the observed clustering of centers along
the first principal component (Figure 2b, with centers GYDR, GYLU, GYMU, GYWU,
ITTU3, NLNI, PLWW, as well as the FRPA1 PHT group included in cluster 1 and FRPA1
(non-PHT), FRPA2, GBGL2, IRGA, ITPD/ITPD3 in cluster 2. We did not use ASCA to
correct for sample age, as our implementation did not allow continuous variables to be
considered as design factors. As shown in Table S3 and Table 2, classification analyses
after using ASCA for correcting the data resulted in overall similar results to the previous
approach. ASCA correction was not possible on the CS-PHT or the all vs. all dataset, as
there were no samples represented by cluster 1 in the CS group.

According to Table 3, glycine and lactate were the differences between the ASCA
and Initial Approach signatures of scenario EHT-PHT, indicating that their levels were
normalized by ASCA, diminishing their importance. In the other scenarios, ASCA similarly
normalized levels of metabolites that correlated to the first principal component of Figure 2.
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2.3. Correcting for Confounders: Approach B (Metabolite Exclusions)

As shown in Figure 2, center and sample age appeared to be major sources of variation
in our data. Table S4 provides an overview of all analyses carried out to assess the effects of
these confounders on the various datasets. Overall, accuracies were higher when comparing
groups defined by confounders than they were based on disease groups (Initial Approach).
We employed PLSDA to establish the signatures of these effects (Table 4) and compared
cluster 1 (excluding the FRPA1 PHT group due to a distinct signature) to cluster 2, as well as
samples with a sample age below the median to those with a sample age above the median
(calculated including all samples). We used PCA, due to limited sample sizes, to compare
the FRPA1 PHT group to the rest of cluster 1. Metabolites acetylcarnitine, creatine, dimethyl
sulfone, glucose, glutamate, glutamine, glycerol, glycine, lactate, methanol, methionine,
ornithine, pyruvate and the unknown signal at 3.284 ppm were all found to be related
to these confounders. In relation to disease groups, all scenarios resulted in signatures
that included confounder-related metabolites. Notably, 9/13 metabolites making up the
EHT–PHT signature depicted in Table 3 were also found to be related to a confounder.
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Figure 3. The identification of metabolites from NMR signals. After significant differences were
detected and observed directly in spectra (a), spiking experiments were carried (b) out to validate
assignments performed by means of 2D NMR experiments, namely J-resolved (c) and correlation
spectroscopy (d).

Analyses of data after we excluded confounder-related peaks yielded lower accuracy
estimates than those calculated from the complete datasets (Table S5 and Table 2).
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Regarding signatures, Approach B resulted in a unique set of metabolites compared
to the other approaches (with 8/12 metabolites not found with any other approach in the
EHT–PHT scenario, Table 3). Some signals arising from the same metabolite were high in
one group while others were high in the other, which may be the result of the low statistical
power of the data, as peaks from the same metabolite correlated in the overall loadings
plot in Figure 2d and Figure S2e (except for the lysine peaks at 2.997 and 3.013 ppm). As
a result, the resulting signatures were unreliable, though probably less affected by the
confounding effects.

2.4. Correcting for Confounders: Approach C (Whole Center Exclusions)

As a final approach to illustrate the putative effects of confounders on our initial
signature, we investigated disease group metabolome differences in the cluster which
comprised only the centers shown in Table 5 (GYDR, GYLU, GYMU, GYWU, ITTU3, NLNI,
PLWW), as these clustered closely compared to other centers (Figure 2b). We included a
total of 40 patients with PHT, along with 118 patients with EHT. Of the latter, 54 had PA
and 64 had PPGL.

Table 5. Patient and sample characteristics, after whole center exclusions (Approach C). Abbreviations
are explained in the main text.

PHT (n= 40) EHT (n = 118) PA (n = 54) PPGL (n = 64)

PATIENT CHARACTERISTICS
PATIENT AGE 44 [19–70] 49 [19–74] 48 [32–74] 50 [19–74]

p-value ** 0.03 0.05 0.04/0.6
PATIENT SEX (F/M) 15/25 65/53 24/30 41/23

p-value *** 0.07 0.5 0.009/0.04
PREANALYTICAL SAMPLE CHARACTERISTICS

SAMPLE AGE 366 [127–1307] * 748 [83–2841] * 380 [83–1598] * 1419 [121–2841]
p-value ** 1 × 10−5 1 4 × 10−13/1 × 10−15

SAMPLE CENTER OF ORIGIN
GYDR 20 (50%) 27 (23%) 8 (15%) 19 (30%)
GYLU 0 1 (0.8%) 0 1 (1.6%)
GYMU 0 4 (3.4%) 0 4 (6.3%)
GYWU 0 1 (0.8%) 0 1 (1.6%)
ITTU3 20 (50%) 48 (41%) 46 (85%) 2 (3.1%)
NLNI 0 6 (5.1%) 0 6 (9.4%)

PLWW 0 31 (26%) 0 31 (48%)
p-value *** 6 × 10−5 5 × 10−4 2 × 10−13/4 × 10−23

ANALYTICAL SAMPLE CHARACTERISTICS
BATCH 19 [1–42] 27 [1–48] * 22 [1–42] 37 [1–48] *

p-value ** 0.001 0.1 7 × 10−5/0.0001
RUN ORDER 7 [2–16] * 9 [2–14] * 8 [2–14] * 9 [2–14] *

p-value ** 0.3 0.4 0.4/1

* Each continuous variable, such as patient age, is presented as a mean or median (depending on normality,
indicated with the asterisk) and a range. ** For continuous variables, a p-value was obtained from a t/Wilcoxon
test (depending on normality), comparing each disease group (EHT, PA, or PPGL) to the control group (PHT).
The PPGL column has an additional p-value obtained from the comparison of PA to PPGL. *** For categorical
variables, such as patient sex, a p-value was obtained from a Fisher test, comparing each disease group (EHT, PA,
or PPGL) to the control group (PHT). The PPGL column has an additional p-value obtained from the comparison
of PA to PPGL.

Though center selection led to lesser confounding effects compared to the Initial
Approach, it also led to lower accuracies for all investigated scenarios. Tables S6 and 2 sum-
marize the resulting accuracies obtained from this approach; accuracies of approximately
60% were found when comparing EHT to PHT, or PA–PPGL–PHT, and approximately 70%
via the PA–PHT and PPGL–PHT scenarios. When predicting the excluded samples’ disease
groups using these models, the EHT–PHT model was 56% accurate, with a sensitivity of
26% and a specificity of 86%, the PA–PHT model was 50% accurate, with a sensitivity of 6%
and a specificity of 94%, and the PPGL–PHT model was 65% accurate, with a sensitivity
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of 57% and a specificity of 74%. To evaluate any remaining confounding effects, we also
compared center GYDR to ITTU3, resulting in higher accuracies than the analyses compar-
ing disease groups (Table S7), indicating the possible presence of an additional source of
center-related bias. Considering whole center removal as the most effective way of dimin-
ishing the influence of the possible confounders seen in Figure 2, we used the Approach
C signature to evaluate the other three. According to Table 3, glutamine and glutamate
were not found to be related to disease group separation by Approach C, contrasting both
the Initial Approach and Approach A. Additionally, seven confounder-related metabolites,
which were excluded for Approach B, were selected by Approach C as predictors. Another
group of seven metabolites selected only by Approach B was not corroborated by Approach
C. Similar observations made in the other scenarios comparing approaches show that
Approach A did not correct for some effects at all, several metabolites were related to both
confounders and disease groups, and Approach B may have led to overfitted results.

3. Discussion

We found that our untargeted NMR metabolomics signatures of endocrine hyper-
tension were statistically related to confounders. The metabolomes of our samples were
organized in distinct clusters, primarily defined by their center of origin. Glutamate,
glutamine, lactate, ornithine and methanol appeared to have a strong relation to this center-
related clustering, while also being a part of the EHT–PHT signature. In the targeted
metabolomics study [19], both glutamate and glutamine were included in the reported
biomarkers. Glutamine was reported to correlate positively to atherogenesis [29,30], and
high levels of the amino acid were hypothesized to protect vasculature [31]. Lower levels of
the amino acid were found in hypertensive men compared to healthy controls [15], whereas
higher levels were found in hypertensive women compared to controls [32]. Glutamate
was included in a panel for detecting albuminuria in hypertensive patients [33] and, along
with proline, has shown a statistically different concentration distribution in hypertensive
nephrosclerosis compared to controls [34]. In our previous work [35], proline and methanol
were found to be higher in preoperative PPGL patients. To investigate possible confounders
in our EHT–PHT signatures, we employed three correction approaches to compare results.
We used ASCA [24] (Approach A) but found full correction of possibly confounding effects
impossible, due to the lack of adequate representation of each center in each disease group.

We, therefore, established a signature for the center-related clustering, to formulate a
hypothesis as to the reason for this source of variation and to determine its potentially con-
founding effect on the initially established EHT–PHT signature. We found lactate increased
and glucose decreased in samples originating from cluster 2 centers compared to those
from cluster 1, which was found before in plasma samples harvested from whole blood
after a pre-centrifugation delay due to prolonged red blood cell glycolysis [36–47]; this
would mean that cluster 2 included samples collected after such a delay, compared to the
rest of the samples. The coinciding lower levels of pyruvate in cluster 2 compared to cluster
1 samples were shown before when there is a delay in cold temperatures [37,38,42,44,46]
(Brunius et al. report the contrary [39]), whereas, at room temperature, pyruvate was found
to increase [37,39,40,44,46] (contrary results in [42]). A delay before whole blood centrifu-
gation could also explain the lower levels of glutamine in cluster 2 compared to cluster
1 [40,43] and higher glutamate [40,46–48] (contrary results in [42]), possibly due to the con-
version of glutamine to glutamate by glutaminase [48], and higher ornithine [40,42,46,47],
possibly due to the activity of erythrocyte arginase [40]. Interestingly, cluster 2′s higher
glycerol is not supported by the literature [40,42], in which it is reported to be lower in
samples collected after a pre-centrifugation delay. It was unclear why methanol was higher
in ITPD/ITPD3 samples compared to the rest, but it can be speculated that it could have
originated as an impurity. The separate cluster of FRPA1 PHT samples can be explained by
a delay between plasma harvesting and storage at room temperature, which would result
in the observed increase in glutamate and decrease in glutamine, and in the lack of effects
on glycolysis-related metabolite levels [42].
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Sample age may have also influenced the resulting metabolic signature, especially
given that there were significantly different sample ages amongst centers. We report
results obtained from control (PHT) samples collected one year to 17 years before analysis
(averaging at 6.5 years), and EHT samples ranging from less than two weeks to 9.5 years
(averaging at 3 years), which show a similar sample age signature as that obtained from
analyzing the metabolite differences between the two main clusters of samples. Though
Pinto et al. [49] reported minimal metabolic impact of storage at −80 ◦C for a period up
to 2.5 years, a recent study [50] reported increasing levels of glutamate and decreasing
glutamine and pyruvate with storage time up to 16 years at −80 ◦C, as well as higher levels
of ornithine, lactate and glycerol after 11 years of storage, in line with our results for these
metabolites. Another study [51] found altered levels of several of these metabolites due to
sample age. Specifically, increased levels of ornithine, methionine, glycine, glutamine and
lower glutamate were found in samples analyzed after 5 years in −80 ◦C storage, of which
we only found a similar direction for ornithine herein.

These findings, linking metabolites from the signatures obtained via the Initial Ap-
proach to any confounder, render our EHT–PHT signatures unreliable. In the targeted
metabolomics study [19], which also used samples from the ENSAT-HT retrospective
cohort, preanalytical confounders were not addressed, but GBGL2 samples were excluded.

The exclusion of confounder-related peaks (Approach B) resulted in analyses with
lower statistical power, resulting also in low classification accuracies and signatures that
could not be corroborated by any other approach. Metabolites such as lactate were ex-
cluded but were still found to play a role in discriminating samples by the final approach.
Exclusion of whole centers (Approach C), specifically those we deemed compromised most
by confounders, resulted in signatures that we used to evaluate the initially established
ones. We expected this approach to yield the most reliable signature from our dataset
and research questions, as it was the only one that both provided a complete view of
the NMR plasma metabolome and kept confounding effects to a minimum by excluding
compromised samples. Even so, we do not claim that Approach C signatures have merit
in clinically discriminating PHT from any EHT form, as these analyses were restricted to
certain centers and so included far fewer samples than originally planned. Approach C
models predicted excluded PHT sample groups accurately, but sensitivity was low, while
the highest accuracy achieved was 65% (PPGL-PHT model). Moreover, analyses compar-
ing centers GYDR to ITTU3 were more accurate than those comparing disease groups in
Approach C, which demonstrates another potentially confounding effect, albeit weaker
than those already discussed. Approach C signatures differed substantially from the Initial
Approach signatures, with several metabolites related to confounders not being selected as
predictors or being selected with a coefficient of an opposite direction.

These differences underscore the uncertainty associated with the signatures from the
Initial Approach, given the simultaneous relationship some metabolites have with both
the confounders and the disease group separation. Furthermore, Approaches A and B do
not seem to resolve the issue of confounding effects. Other approaches, such as multilevel
analysis [52], which could be used to center the centers, would not be appropriate either, as
EHT–PHT signatures varied by the center. Notably, the PA–PHT and PPGL–PHT signatures
obtained from analyzing ITTU3 and GYDR data, respectively, were different from FRPA1
signatures (result not shown), as expected from the distinct cluster of FRPA1 PHT samples.

Untargeted NMR metabolomics of the ENSAT-HT retrospectively collected plasma
samples described in this work was not suitable for obtaining a biomarker that discrimi-
nates EHT forms from PHT, due to the method’s sensitivity to the sample set’s probable
confounders. Still, there were additional limitations in our work. Specifically, sample
hemolysis [53] was not considered, but it was shown to not have a significant impact on
the plasma metabolome with NMR [38], though the opposite was shown with MS [42].
Additionally, diet and medication at the time of sampling, as well as additional clinical
parameters, such as patient BMI and disease severity, can all affect the metabolome [53]
but were not considered here. There may also be additional confounders, e.g., analytical
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bias or patient characteristics, but their effect, if any, was less than that of the confounding
effects already addressed, since the latter was the strongest source of variation within our
data. Methodologically, our NMR method was limited by a relatively high detection limit,
resulting in 33 identified metabolites, of which we excluded the ketone bodies acetoacetate
and 3-hydroxybutyrate due to their dependence on fasting levels as well as acetone, acetate
and choline due to their dependence on run order. There were five peaks to which we could
not assign any known metabolites, and four metabolites (dimethylamine, dimethylglycine,
dimethyl sulfone and formate) were identified only by visual inspection and comparison
to databases. Our internal standard, which was used for peak scaling, was recently found
to be attenuated by the presence of macromolecules [54], possibly resulting in lower peak
intensities in samples with high concentrations of macromolecules. However, given that in
our comparison of methods in our own paper 19/25 (76%) peaks in the final (LED) signa-
ture were also found in the ultrafiltration signature [55], we concluded that any bias, e.g.,
from the binding of maleic acid to protein, represented a minority of variation in a dataset,
compared to the differences between groups. Permutation testing, though invaluable for
assessing model accuracy, was not performed for the models presented, as these were
deemed confounded and their resulting biomarkers unreliable.

4. Materials and Methods
4.1. Patient and Sample Characteristics

We analyzed Lithium Heparin blood plasma samples collected from 356 patients
sampled at 13 ENSAT-HT centers, along with the post-operative counterparts of a subset
of PPGL samples, which were used in our previous study [35]. After excluding technical
outliers, 337 patients were finally included.

4.2. Untargeted 1H-NMR Metabolomics

We recorded spectra according to our NMR method as reported and previously ap-
plied [35,55]. Study samples, along with 146 Quality Control (QC) samples, were ana-
lyzed over 46 batches, whereas 99 Healthy Volunteer (HV) samples, were analyzed over
43 batches. A maximum of 15 samples per batch to limit intra-batch variability was selected,
based on robust Principal Component Analysis (PCA) [56] results (R package “rospca” [57],
version 1.0.4, Tom Reynkens), which showed QC samples outlying after 18 NMR exper-
iments. NMR spectra recorded after this limit of 18 samples (n = 4, due to recording
delays) were excluded. Samples were thawed and centrifuged at room temperature for
the first three batches and at 4 ◦C for all the rest. A Bruker DRX AVANCE spectrometer
equipped with a triple resonance inverse 5 mm probe head operating at 500.13 MHz was
employed for analyzing samples. Both the sequence and batch number of all samples
were recorded for estimating technical variability. Longitudinal Eddy-Current Delay (LED)
spectra were recorded and processed as previously described [35,55]. Spectra with high
line width were not used for further analysis (maleic acid peak width > 1.2 Hz, n = 4),
along with spectra recorded from samples that had large chemical shift differences from
other samples (n = 4) or peaks corresponding to EDTA (n = 2) or citrate (intensities cor-
responding to blood collection, n = 1). Four samples were retrospectively found to not
correspond to any of the four disease groups (PA, PPGL, CS or PHT) and were excluded
from the analysis. Areas corresponding to macromolecules, water, glucose and noise were
excluded from data processing (areas above 10, 5.35 to 5.24, 5.15 to 4.40, 3.91 to 3.68, 3.54
to 3.36, 3.26 to 3.19, 1.30 to 1.10, 0.90 to 0.75, and below 0 ppm). R studio version 1.1.463
(J. J. Allaire, Boston, MA, USA) [58] running R version 3.4.4 (R core team, Vienna, Aus-
tria) [59] was used for loading the R package “batman” [60] version 1.2.1.03 (Jie Hao),
which was used to extract the spectra as tables. R package “SPEAQ” [61] version 2.0.0
(Charlie Beirnaert) was used for obtaining the peak table and was applied according to
the script “SPEAQ pipeline 3”. Due to their high number, SPEAQ was not possible to
perform on all samples simultaneously. Hence, a script for aligning different SPEAQ
batches was developed (“Combining1 2 PLASMA 3 new”). These two scripts can be found
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on the first author’s GitHub page (https://github.com/NickBliz/PPGL-PRE-VS-POST,
last update on 5 June 2021) and data can be provided upon request. All subsequent
data processing steps, which can be found in scripts on the first author’s GitHub page
(https://github.com/NickBliz/ENSAT-HT-PLASMA-NMR, last update on 28 September 2021),
were performed on R version 3.6.3, loaded on R studio version 1.2.5033. The ethanol peaks
at 3.65 ppm, the highly variable histidine peaks at 7.06 and 7.81 ppm, the macromolecule
peak at 2.02 ppm and the peaks with a strong correlation with the run order of samples at
3.185, 2.21 and 1.904 ppm were also excluded, along with peaks at 2.26, 2.28, 2.31, 2.37, 2.39
and 4.13 ppm, corresponding to ketone bodies. These latter metabolites were not taken into
account as, giving rise to outliers, would not be valuable biomarkers. HV samples could
be separated based on the batch in which they were analyzed, and QC samples based on
their run order within batches, but these analytical factors were not found to have a major
impact on our dataset, as seen in Figure S2. As the first step in data processing, features
not present in at least 80% of samples belonging to either the QC or HV group [62], were
removed. Probabilistic Quotient Normalization (PQN [63]) was applied as a normalization
method, using as reference the median spectrum ignoring non-detects of a set of samples
that were drawn from 98 HVs from the GYDR center. HV samples obtained from center
FRPA1 were not used for normalization, as these only included healthy young male subjects.
Next, peaks with a coefficient of variation of more than 30% in QC samples were removed.
Finally, after missing value estimation with the k-nearest neighbors (k-NN) method [64]
(k = 10), using R package “impute” version 1.58.0 (Balasubramanian Narasimhan) [65],
the generalized log transformation (GLOG [66]) based on 133 QC samples was applied
using R package “LMGene” version 2.40.0 (Blythe Durbin-Johnson) [67]. The QC samples
were prepared by pooling plasma obtained from 390 anonymized plasma samples to a
total volume of about 450 mL, which was subsequently aliquoted into 1 mL batches and
stored at −80 ◦C until analysis. As a normalization and GLOG transformation optimiza-
tion step, the process was repeated after the HV and QC sample groups were relieved of
outliers detected by means of robust PCA [56]. The resulting dataset was directly used
for multivariate statistics. We assigned peaks to metabolites using Chenomx evaluation
v. 8.4 [68] and Bruker Topspin v. 4.0.6. We used the human metabolome database [69], along
with the Madison Metabolomics Consortium Database [70], as references. To aid in peak
assignment, additional methods were employed. Specifically, 2D NMR, namely correlation
spectroscopy (COSY, cosyprqf) and J-resolved (JRES, jresgpprqf) pulse sequences allowed
for investigating correlations between peaks and peak multiplicity, respectively. These
experiments, along with 1D NMR on filtered samples in pH 2.5 [71], allowed for a number
of peak identities to be confirmed, and some unknowns to be assigned to metabolites.
COSY spectra were recorded using 4 K data points in F2 direction, 128 in F1, 16 scans,
8 dummy scans, a spectral width of 6 K Hz in both directions, an acquisition time of 0.02 s
in F2 and 0.34 s in F1, resolution of 46.89 Hz in F2 and 2.83 Hz in F1. Receiver gain was set to
the optimum value. Spectra were processed using Fourier transform in both directions and
calibrated Trimethylsilylpropanoic acid (TSP) to 0 ppm. JRES spectra were recorded using
8 K data points in F2 direction, 64 in F1, 16 scans, 8 dummy scans, a spectral width of 8 K Hz
in F2 and 60 in F1, an acquisition time of 0.49 s in F2 and 1.07 s in F1, resolution of 2.03 Hz
in F2 and 0.94 Hz in F1. Receiver gain was set to the optimum value. Spectra were pro-
cessed using Fourier transform in both directions, tilting and symmetrizing phase-sensitive
spectra, and calibrated TSP to 0 ppm. F Furthermore, a spiking experiment was carried
out, utilizing a QC sample and a non-related-to-the-study control sample, which were
spiked with pyruvic acid, succinic acid, choline, carnitine, acetylcarnitine, methanol and
5-methylthioadenosine, along with histidine, serine, phenylalanine (Sigma) and tyrosine
(Merck). A stock solution (#1) with concentrations of 0.31 mM of pyruvic acid, 0.15 mM
succinic acid, 0.12 mM choline, 0.18 mM carnitine, 0.041 mM acetylcarnitine, 0.024 mM
5-methylthioadenosine and 0.99 mM methanol, another (#2) with 1.1 mM histidine, 1.5 mM
serine, 0.60 mM phenylalanine, 0.42 mM tyrosine, along with two stock solutions (#3, #4)
with half these concentrations, were prepared. A volume of 100 µL of stock #1 was added

https://github.com/NickBliz/PPGL-PRE-VS-POST
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to 400 µL of a QC, another volume of 100 µL of stock #3 to another 400 µL of a QC, and a
volume of 100 µL of stock #2 was added to 400 µL of the unrelated control, another volume
of 100 µL of stock #4 to another 400 µL of the unrelated control. All these spiked samples
underwent the same procedure as the study plasma samples to acquire as similar results
as possible. Table S1 summarizes all peaks included for our analyses, along with their
assigned metabolite names and the level of assignment rigor.

4.3. Data Analysis and Statistics

Based on our research aims, we aimed to separate the following disease groups:
(a) EHT (PA + CS + PPGL) vs. PHT, (b) PA vs. PHT (c) CS vs. PHT, (d) PPGL vs. PHT,
(e) PA vs. CS vs. PPGL vs. PHT. Multivariate Analysis (MVA) was performed on mean-
centered data by employing the “MixOmics” R package version 6.11.33 (Kim-Anh Le
Cao) [72] on R version 3.6.3, loaded on R studio version 1.2.5033. We used PCA [73], as an
unsupervised method to discover trends and outliers within the data. Partial Least Squares
Discriminant Analysis (PLSDA) [74] was used as a supervised method for establishing
the signature for separating samples grouped by center as well as sample age (median
sample age cutoff). Important PLSDA variables were determined based on their Variable
Importance in the Projection (VIP) score [75] (median outer-loop VIP score above 1 after
double cross-validation, or CV2) in PLSDA models. Analysis of Variance Simultaneous
Component Analysis (ASCA [24]) was used for removing the interaction between PCA
cluster and disease group, present within the dataset (as observed in the PCA score plot of
Figure 2). Sparse PLSDA (sPLSDA [76,77]), was employed for investigating the metabolic
signature (regression coefficients) of the differences between samples grouped by diagnostic
category (PHT, PA, PPGL or CS, with EHT as a pool of the latter three and the first as
controls). As an alternative to sPLSDA, l1-norm regularized logistic regression [78] was
employed, using R package “glmnet” version 4.0-2 (Trevor Hastie). Parameters for glmnet
included alpha = 1, family = binomial and the minimum lambda, which was determined
by cross-validation, was used for prediction, whereas “class” was selected as a prediction
measure. Metabolomics data were not scaled, whereas when including age and gender
as variables data were autoscaled (unit variance). Optimal model parameters (number of
latent variables in sPLSDA, number of included variables in sPLSDA and glmnet) were
determined by cross-validation. Each model was assessed by double cross-validation
(CV2) [79,80], by leaving out a number of samples determined by the k-fold method, with
k = 8 and 7 for outer and inner loops, respectively. These values for k were switched to
k = 6 and k = 5 (respectively) for approach 4 samples, where a higher class imbalance
was present. In scenario CSVPHT, k = 7 and k = 6 (respectively), where a higher class
imbalance was also present. A single repeat of the process was chosen for the inner loop
and 50 repeats for the outer loop. Finally, the left-out sample labels were predicted based
on the model and using the Mahalanobis distance. Each model’s signature was determined
based on the total set of samples, after single CV and the same parameters as with CV2 (e.g.,
50 repeats). The maximum number of latent variables for (s)PLSDA models was 10, and for
each inner cross-validation loop, the minimum number of components with the maximum
accuracy was chosen, based on predictions using the Mahalanobis distance. All parameters
and scripts for multivariate data analysis can be found on the first author’s GitHub page
(https://github.com/NickBliz/ENSAT-HT-PLASMA-NMR) and data can be provided
upon request. Univariate statistical analysis methods were used to assess confounder effects
on multivariate models and were performed using the “stats” R package [59], to check for
data normality and to discover significant differences between variables. Tests included
the ANOVA/Krusall–Wallis test, as well as the t/Wilcoxon test [81] to compare averages,
at a significance level of 5%. For model accuracies, sensitivities and specificities reported
in tables, one-sample t-tests were performed in R and the means and 95% confidence
intervals were obtained. The Pearson/Kendall/Spearman correlation [82] estimates were
used for investigating univariate correlations between various factors (technical, clinical
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and biological) and each model’s number of misclassifications. A p-value of less than 0.05
was accepted as statistically significant.

4.4. Confounders

Several approaches were used to investigate trends found by PCA: (A) Using ASCA [24],
we estimated the confounder effects and used the Simultaneous Component Analysis
residuals for sPLSDA. (B) We analyzed the data with PLSDA, based on groups defined by a
specific confounder, to establish an inclusive list of all potentially relevant metabolites (i.e.,
without searching for most predictive metabolites, but rather all related metabolites, in our
attempts to prove the study “innocent” of confounding effects). These metabolites were
thereafter excluded from the dataset, in the initial phase of data processing (i.e., during the
peak exclusion step), and the new dataset was used for classifying samples based on their
disease groups. (C) Samples most related to the strongest confounder were removed, and
classification models were calculated based on the remaining samples.

5. Conclusions

Our data reveal obvious between-center differences. Probably the most important
factor is the retrospective multicenter character of the study. Specifically, for untargeted
metabolomics studies, this stresses the importance of the preanalytical conditions (vena
puncture- and sampling specifics, storage conditions and storage time, medication and
dietary influences, transport and handling conditions, etc.). In the present study, the most
likely explanation for the large variation in samples per center is a combination of pre-
centrifugation and pre-storage delay, as well as variations in storage time, which form a
triangle of effects with the disease group variation. These factors are equally important in
prospective multicenter studies. In such studies, investigators can catch such variables in
protocols and can use control samples as quality control means. In retrospective studies,
multicenter quality controls may be more challenging to obtain, therefore, the study design
should include a harmonized protocol, which would allow for these factors to be considered.
This protocol should be followed by all participating centers [83] ensuring that preanalytical
confounders are kept to a minimum. Samples should only be selected for inclusion if they
fulfill certain preanalytical criteria. In fact, it would be beneficial for any multicenter or
retrospective study to carry out a preliminary experiment on samples collected to assess
the quality of the selected or prospective cohort. In addition, quality markers could
help detect samples of low quality to be discarded [40]. Finally, normalization methods
could be used for adjusting any residual preanalytical effects, provided that samples are
selected in such a way that ensures their applicability [24–26,52]. Implementation of these
procedures may prove vital in the discovery of robust disease biomarkers. Our study did
not result in robust EHT biomarkers, due to the lack of adequate solutions and international
consensus for containing the bias caused by preanalytical factors. This need should be
covered by decisions on study design requirements for future multicenter metabolomics
studies, with respect to future as well as published research findings on the effects of
preanalytical conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12080679/s1, Figure S1: PCA score plot of the com-
plete dataset. This plot includes Healthy Volunteers (HV), Quality Controls (QC), as well as samples
collected from all disease groups (PA, PHT, PPGL and CS). One patient was found to have adreno-
cortical carcinoma (ACC) and was left out of subsequent analyses. Principal components 1 and 2
were used for the plot. QC samples were technical replicates and were aliquoted from pooled plasma
collected from patients not included in the present study. The spread of QC samples is indicative
of technical variation associated to the data, which is significantly lower than biological. Figure S2:
PCA score plots of the dataset that included all disease groups. Samples colored by (a) patient age,
(b) patient sex, (c) analytical batch, (d) run order within batches. For continuous variables patient age,
analytical batch and run order, groups were defined by the corresponding medians. Figure (e) is the
loadings plot of the PCA score plot depicted in Figure 1. The clusters of samples can be explained by
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outstanding metabolites lactate (peaks at 1.3 and 4 ppm), methanol (3.346 ppm), glutamine (peaks at
2.1 and 2.4 ppm) and glutamate (peaks at 2.325 and 2.05 ppm). Table S1: Detectable metabolites, based
on their corresponding peaks, PubMed CID, level of identification rigor (according to MSI guidelines
(Sumner et al., 2007)) and metabolites that also correspond to at least one peak. L2* identification
rigor resulted from visual inspection along with 2D NMR and experiments on filtered plasma at
pH 2.5. Table S2: Summary of accuracies from analyses done via the Initial Approach, without
correcting for confounders. Table S3: Summary of accuracies from analyses done via Approach A
(ASCA correction). Table S4: Summary of PLSDA analyses done to compare groups of samples
defined by confounders. Table S5: Summary of accuracies from analyses done via Approach B (after
the exclusion of peaks related to confounders). Table S6: Summary of accuracies from analyses done
via approach C (whole center exclusions). Table S7: Summary of accuracies from analyses done
to evaluate datasets used in approach C (whole center exclusions). Reference [84] is cited in the
Supplementary Materials
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