

Identification of major human IgE-inducing parasite antigens: a path to therapeutic approaches?

David Dombrowicz

▶ To cite this version:

David Dombrowicz. Identification of major human IgE-inducing parasite antigens: a path to the rappeutic approaches?. Journal of Allergy and Clinical Immunology, 2022, 10.1016/j.jaci.2022.10.008 . inserm-03838411

HAL Id: inserm-03838411 https://inserm.hal.science/inserm-03838411

Submitted on 3 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Identification of major human IgE-inducing parasite antigens: a path to therapeutic approaches? David Dombrowicz, PhD

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France

Corresponding author:

David Dombrowicz

Inserm U1011. Institut Pasteur de Lille.

1, rue du Professeur Calmette BP245.

59019 Lille Cedex, France.

Email: david.dombrowicz@pasteur-lille.fr

Phone number: +33 320 87 79 67

<u>Conflicts of interest</u>: The authors declare no conflicts of interest.

Funding: DD work is supported in part by grants from the ANR and the European Union: EGID ANR-10-LABX-46, ANR-20-CE15-0026 and by Fondation pour la Recherche Médicale (Nouveaux défis en allergologie).

<u>Acknowledgment</u>: This editorial is dedicated to Professor Andre Capron (1930-2020), a pioneer in anti-helminth immunity

Keywords: IgE; helminths; antigen

Words: 1213 (without references, table & legend)

Type 2 immunity is a hallmark of allergic diseases, where it plays a detrimental role, and the major contributor to anti-helminth immunity^{1, 2}. It is characterized by the production of an expanding subset of alarmins (IL-25, IL-33, TSLP) and cytokines (IL-4, IL5, IL-9, IL-13, IL-31...) and by the involvement of a specific group of cell subsets associated with innate and adaptive responses (innate lymphoid cells -ILC-2, dendritic cells -DC-, alternatively activated macrophages, mast cells, basophils, eosinophils, Th2 and B lymphocytes) ultimately leading to IgE production by B cells. IgE binds to and acts through 2 specific receptors. FccRI is a high affinity IgE receptor expressed by mast cells and basophils and, in humans, by antigen presenting cells (DC, epidermal Langerhans cells, monocytes/macrophages), eosinophils and platelets³. FccRII/CD23 is a low affinity receptor mainly expressed by B cells and regulating IgE production. IgE-dependent FccRI -mediated cellular cytotoxicity (ADCC) towards helminth larval stages carried out by eosinophils, macrophages and platelets is a key mechanism in anti-helminth immunity. Mast cells and basophils contribute to antihelminth immunity mainly through cytokine and protease production, while a specific role for IgEmediated enhanced antigen presentation has not been formally demonstrated in the context of helminth infections. In line with the (fairly long) timing of IgE isotype switching and affinity maturation and with larval stages being the main targets, (antigen-specific), IgE concentrations are positively correlated with immunity to reinfection, for instance in schistosomiasis⁴, rather than to protection against a primary infection. Thus, the identification of the major antigens promoting a strong IgE response is an important step both for establishing specific and sensitive diagnostic tools and testing new vaccine candidates.

In an interesting study, using filarial infections as a demonstrator, Hadadianpour et al.⁵ identified major filarial antigens recognized by human (h)IgE using a labor-intensive technique, previously applied for the identification of Aspergillus antigens⁶. This method is based on the generation of human monoclonal IgE antibodies from hIgE-expressing B cells, isolated from human PBMC. From 7 patients with lymphatic filariasis, tropical pulmonary eosinophilia, loiasis or onchocerciasis, 56 monoclonal hIgE antibodies were generated regardless of their antigenic specificity, then screened for their reactivity towards a Brugia malayi extract by ELISA, Western blot and specific "ImmunoCAP" assay. 26 hlgE antibodies were positive in at least one assay. Specificity against other extracts from these human pathogens was not assessed. However, 13 antibodies cross reacted with antigens from dog filaria Dirofilaria immitis. Importantly but surprisingly, these hlgE antibodies do not cross-react with 112 common allergens, which might share some common glycan epitopes with parasite antigens as reported in several studies⁷. This suggests that hlgE response during filarial infections is highly parasite specific. 16 hIgE were able to immunoprecipitate filarial antigens that were analyzed by mass spectrometry. 14 unique antigens were identified. All were excreted/secretory (E/S) proteins with a transthyretin-related (TTR) protein of unknown function being the dominant antigen for induction of hlgE response. Other proteins of interest were WbSXP-1, a nematode-specific secreted protein, whose homolog is a vaccine candidate against Ascaris, a filarial homologue of human migration inhibitory factor and an ubiquitously expressed 400 kDA polyprotein ladder-like protein (gp15/400). Production of recombinant antigens, in a bacterial expression system, hence lacking full native glycosylation, allowed further identification of 1 additional hIgE against Wucheria bancroftispecific antigens, that were not selected on the basis of reactivity against B. malayi. Screening for reactivity against 15 other recombinant TTR-family proteins identified multiple hlgE with restricted or broad TTR cross reactivity, confirming TTR proteins as major antigens inducing hlgE response against filariae. The functionality of hlgE-cognate filarial (dimeric) antigen recognition was assessed in an IgEmediated passive systemic anaphylaxis test using hFccRIa transgenic mice expressing a humanized FccRI with a structure and cell distribution comparable to that found in humans⁸. Expectedly, cognate antigen injection induced hypothermia in hIgE-sensitized animals.

The advantages of the antigen-specific monoclonal hIgE approach chosen by Hadadianpour *et al.*⁵ over direct IgE purification from serum/plasma are obvious. First, contamination with other isotypes

might occur as hIgG concentrations in serum are much higher than hIgE ones and hIgG can display overlapping antigen specificity with hIgE. Second, monoclonal antibodies allow the precise identification of epitope recognized. Third, the unlimited availability of monoclonal hIgE antibodies not only allows a much more extensive biochemical characterization of the antibodies themselves but, importantly, of the identified antigens. Finally, together with the use of recombinant cognate antigens, monoclonal hIgE antibodies can be used in functional assays *in vitro* or *in vivo*. A promising, yet complex alternative approach is based on direct single cell RNA-sequencing (scRNA-seq) of hIgEexpressing B cells from plasma followed by cloning and expressing all the IgE-relevant sequences as recombinant antibodies and has allowed the identification of clonal high affinity hIgE from patients with peanut allergy⁹. A major advantage of this recent method is that scRNA-seq additonally provides extensive information about individual hIgE-expressing B cells (see Table 1 for comparison). However, it has not been used so far in the context of helminth infections.

Surprizingly, besides gp15/400, none of the few known filarial antigens recognized by hIgE, such as tropomyosin, paramyosin, glutathione S-transferase, aspartic protease inhibitor, Venom-Allergen-Like protein¹⁰, were identified by Hadadianpour *et al.*⁵ using monoclonal hIgE technology. A possible explanation for this barely overlapping helminth-specific antigen subsets identified by the 2 methods is that a monoclonal hIgE-based strategy for parasite antigen identification is able to select high affinity epitope(s) even when frequency of cognate IgE is very low. By contrast, procedures based on direct parasite antigen recognition by serum/plasma (polyclonal) IgE require higher frequency of cognate IgE but are probably less stringent regarding IgE affinity for a given epitope.

Finally, while the induction of higE-mediated passive anaphylaxis in hFccRI α Tg mice unambiguously demonstrates that hIgE-helminth antigen interactions are driving a functional mast cell response in vivo, a conclusion drawn by authors form this experiment, namely that hIgE, through mast cell activation, acts as an early sensor of infection, driving further eosinophil and basophil infiltration, appears speculative in the absence of additional experiments. Indeed, IgE-mediated passive anaphylaxis is strictly dependent on mast cells and FccRI. Thus, a role for any other FccRI-expressing cell types, such as eosinophils or for CD23-expressing cells, cannot be established using this model. It is rather likely that, during an actual helminth infection, all FccRI- and CD23 expressing cell types bearing receptor-bound antigen-specific hIgE, rather than mast cells only, are directly and concomitantly activated, upon encounter with the cognate antigen, and perform their respective function, including cytoxicity, antigen presentation, cytokine or IgE production. Therefore, the passive transfer of helminth antigen-specific hlgE prior to the infection of hFccRI α Tg mice with B. malayi, as proposed by the authors, remains the first key experiment to be performed for firmly establishing a protective role of antigen-specific monoclonal hIgE in B. malayi infection. Use of mice also humanized for IgE and CD23 would further increase the relevance of such a demonstration. This would pave the way, on one hand, for experiments aiming to determine which hFccRI-expressing cell types contribute to this protective effect and, on the other hand, for testing the identified antigens in vaccinal strategies against deadly pathologies for which new therapeutic approaches are sorely needed. Should this experiment succeed, the monoclonal hIgE-based strategy described in the present work might be applied to identify new major antigens driving the IgE response in non-filarial helminth infections.

References

- 1. Devos M, Mogilenko DA, Fleury S, Gilbert B, Becquart C, Quemener S, et al. Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis. J Invest Dermatol 2019; 139:135-45.
- 2. Haase P, Voehringer D. Regulation of the humoral type 2 immune response against allergens and helminths. Eur J Immunol 2021; 51:273-9.
- 3. Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007; 7:365-78.

- 4. Dunne DW, Butterworth AE, Fulford AJ, Kariuki HC, Langley JG, Ouma JH, et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur J Immunol 1992; 22:1483-94.
- 5. Hadadianpour A, Daniel J, Zhang J, Spiller BW, Makaraviciute A, DeWitt AM, et al. Human IgE mAbs identify major antigens of parasitic worm infection. J Allergy Clin Immunol 2022.
- 6. Wurth MA, Hadadianpour A, Horvath DJ, Daniel J, Bogdan O, Goleniewska K, et al. Human IgE mAbs define variability in commercial Aspergillus extract allergen composition. JCI Insight 2018; 3.
- 7. Platts-Mills TA, Hilger C, Jappe U, van Hage M, Gadermaier G, Spillner E, et al. Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy 2021; 76:2383-94.
- 8. Dombrowicz D, Brini AT, Flamand V, Hicks E, Snouwaert JN, Kinet JP, et al. Anaphylaxis mediated through a humanized high affinity IgE receptor. J Immunol 1996; 157:1645-51.
- 9. Croote D, Darmanis S, Nadeau KC, Quake SR. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. Science 2018; 362:1306-9.
- 10. Fitzsimmons CM, Falcone FH, Dunne DW. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol 2014; 5:61.

Key step/Sequence	I. Hadadianpour et al.⁵	II. Croote et al. ⁹	Comment(s)
order			
PBMC isolation	1		
In vitro B cell expansion	2		
hlgE ⁺ -B cell selection	3	1	I. ELISA. II. Flow cytometry
Hybridoma generation	4		
Single cell sorting	5	2.	
Clone amplification-hlgE	6		
purification			
scRNA-seq		3	II. Full transcriptome
			characterization
VDJ-C region	6'	(3)	II. Obtained from scRNA-
sequencing & analysis			seq
Recombinant hIgE		3'	
expression			
Antigen reactivity	7		I. ELISA, Western Blot,
screening			ImmunoCap
Antigen affinity	8		
purification			
Antigen identification	9		
Recombination antigen	10		
exression			
hlgE-cognate antigen	11	4'	I . In vitro: ELISA, Western
recognition validation			blot. <i>In vivo</i> : hlgE
			Anaphylaxis in hFc ϵ RI $lpha$ Tg
			mice. II. ELISA
Method illustration	Figure E1 ⁵	Figure 1 ⁹	

Table 1. Comparison of human monoclonal IgE-based methods.